79 lines
2 KiB
C
79 lines
2 KiB
C
|
/*
|
|||
|
* This software is licensed under the terms of the MIT-License
|
|||
|
* See COPYING for further information.
|
|||
|
* ---
|
|||
|
* Copyright (c) 2011-2018, Lukas Weber <laochailan@web.de>.
|
|||
|
* Copyright (c) 2012-2018, Andrei Alexeyev <akari@alienslab.net>.
|
|||
|
*/
|
|||
|
|
|||
|
#include "taisei.h"
|
|||
|
|
|||
|
#include "geometry.h"
|
|||
|
|
|||
|
bool point_in_ellipse(complex p, Ellipse e) {
|
|||
|
double Xp = creal(p);
|
|||
|
double Yp = cimag(p);
|
|||
|
double Xe = creal(e.origin);
|
|||
|
double Ye = cimag(e.origin);
|
|||
|
double a = e.angle;
|
|||
|
|
|||
|
return (
|
|||
|
pow(cos(a) * (Xp - Xe) + sin(a) * (Yp - Ye), 2) / pow(creal(e.axes)/2, 2) +
|
|||
|
pow(sin(a) * (Xp - Xe) - cos(a) * (Yp - Ye), 2) / pow(cimag(e.axes)/2, 2)
|
|||
|
) <= 1;
|
|||
|
}
|
|||
|
|
|||
|
// Is the point of shortest distance between the line through a and b
|
|||
|
// and a point c between a and b and closer than r?
|
|||
|
// if yes, return f so that a+f*(b-a) is that point.
|
|||
|
// otherwise return -1.
|
|||
|
double lineseg_circle_intersect(LineSegment seg, Circle c) {
|
|||
|
complex m, v;
|
|||
|
double projection, lv, lm, distance;
|
|||
|
|
|||
|
m = seg.b - seg.a; // vector pointing along the line
|
|||
|
v = seg.a - c.origin; // vector from circle to point A
|
|||
|
|
|||
|
lv = cabs(v);
|
|||
|
lm = cabs(m);
|
|||
|
|
|||
|
if(lv < c.radius) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
if(lm == 0) {
|
|||
|
return -1;
|
|||
|
}
|
|||
|
|
|||
|
projection = -creal(v*conj(m)) / lm; // project v onto the line
|
|||
|
|
|||
|
// now the distance can be calculated by Pythagoras
|
|||
|
distance = sqrt(pow(lv, 2) - pow(projection, 2));
|
|||
|
|
|||
|
if(distance <= c.radius) {
|
|||
|
double f = projection/lm;
|
|||
|
|
|||
|
if(f >= 0 && f <= 1) { // it’s on the line!
|
|||
|
return f;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return -1;
|
|||
|
}
|
|||
|
|
|||
|
bool lineseg_ellipse_intersect(LineSegment seg, Ellipse e) {
|
|||
|
// Transform the coordinate system so that the ellipse becomes a circle
|
|||
|
// with origin at (0, 0) and diameter equal to its X axis. Then we can
|
|||
|
// calculate the segment-circle intersection.
|
|||
|
|
|||
|
double ratio = creal(e.axes) / cimag(e.axes);
|
|||
|
complex rotation = cexp(I * -e.angle);
|
|||
|
seg.a *= rotation;
|
|||
|
seg.b *= rotation;
|
|||
|
seg.a = creal(seg.a) + I * ratio * cimag(seg.a);
|
|||
|
seg.b = creal(seg.b) + I * ratio * cimag(seg.b);
|
|||
|
|
|||
|
Circle c = { .radius = creal(e.axes) / 2 };
|
|||
|
return lineseg_circle_intersect(seg, c) >= 0;
|
|||
|
}
|