taisei/src/util/geometry.c

230 lines
6.1 KiB
C
Raw Normal View History

/*
* This software is licensed under the terms of the MIT-License
* See COPYING for further information.
* ---
* Copyright (c) 2011-2019, Lukas Weber <laochailan@web.de>.
2019-07-03 20:00:56 +02:00
* Copyright (c) 2012-2019, Andrei Alexeyev <akari@taisei-project.org>.
*/
#include "taisei.h"
#include "geometry.h"
2019-03-26 16:58:38 +01:00
static inline void ellipse_bbox(const Ellipse *e, Rect *r) {
float largest_radius = fmax(creal(e->axes), cimag(e->axes)) * 0.5;
r->top_left = e->origin - largest_radius - I * largest_radius;
r->bottom_right = e->origin + largest_radius + I * largest_radius;
}
bool point_in_ellipse(complex p, Ellipse e) {
double Xp = creal(p);
double Yp = cimag(p);
double Xe = creal(e.origin);
double Ye = cimag(e.origin);
double a = e.angle;
2019-03-26 16:58:38 +01:00
Rect e_bbox;
ellipse_bbox(&e, &e_bbox);
return point_in_rect(p, e_bbox) && (
pow(cos(a) * (Xp - Xe) + sin(a) * (Yp - Ye), 2) / pow(creal(e.axes)/2, 2) +
pow(sin(a) * (Xp - Xe) - cos(a) * (Yp - Ye), 2) / pow(cimag(e.axes)/2, 2)
) <= 1;
}
// If segment_ellipse_nonintersection_heuristic returns true, then the
// segment and ellipse do not intersect. However, **the converse is not true**.
// Used for quick returning false in real intersection functions.
static bool segment_ellipse_nonintersection_heuristic(LineSegment seg, Ellipse e) {
Rect seg_bbox = {
.top_left = fmin(creal(seg.a), creal(seg.b)) + I * fmin(cimag(seg.a), cimag(seg.b)),
.bottom_right = fmax(creal(seg.a), creal(seg.b)) + I * fmax(cimag(seg.a), cimag(seg.b))
};
2019-03-26 16:58:38 +01:00
Rect e_bbox;
ellipse_bbox(&e, &e_bbox);
return !rect_rect_intersect(seg_bbox, e_bbox, true, true);
}
// Is the point of shortest distance between the line through a and b
// and a point c between a and b and closer than r?
// if yes, return f so that a+f*(b-a) is that point.
// otherwise return -1.
static double lineseg_circle_intersect_fallback(LineSegment seg, Circle c) {
complex m, v;
double projection, lv, lm, distance;
m = seg.b - seg.a; // vector pointing along the line
v = seg.a - c.origin; // vector from circle to point A
lv = cabs(v);
lm = cabs(m);
if(lv < c.radius) {
return 0;
}
if(lm == 0) {
return -1;
}
projection = -creal(v*conj(m)) / lm; // project v onto the line
// now the distance can be calculated by Pythagoras
2019-03-26 16:58:38 +01:00
distance = sqrt(lv*lv - projection*projection);
if(distance <= c.radius) {
double f = projection/lm;
if(f >= 0 && f <= 1) { // its on the line!
return f;
}
}
return -1;
}
bool lineseg_ellipse_intersect(LineSegment seg, Ellipse e) {
if(segment_ellipse_nonintersection_heuristic(seg, e)) {
return false;
}
// Transform the coordinate system so that the ellipse becomes a circle
// with origin at (0, 0) and diameter equal to its X axis. Then we can
// calculate the segment-circle intersection.
seg.a -= e.origin;
seg.b -= e.origin;
double ratio = creal(e.axes) / cimag(e.axes);
complex rotation = cexp(I * -e.angle);
seg.a *= rotation;
seg.b *= rotation;
seg.a = creal(seg.a) + I * ratio * cimag(seg.a);
seg.b = creal(seg.b) + I * ratio * cimag(seg.b);
Circle c = { .radius = creal(e.axes) / 2 };
return lineseg_circle_intersect_fallback(seg, c) >= 0;
}
double lineseg_circle_intersect(LineSegment seg, Circle c) {
Ellipse e = { .origin = c.origin, .axes = 2*c.radius + I*2*c.radius };
if(segment_ellipse_nonintersection_heuristic(seg, e)) {
return -1;
}
return lineseg_circle_intersect_fallback(seg, c);
}
2019-03-26 16:58:38 +01:00
bool point_in_rect(complex p, Rect r) {
return
creal(p) >= rect_left(r) &&
creal(p) <= rect_right(r) &&
cimag(p) >= rect_top(r) &&
cimag(p) <= rect_bottom(r);
}
bool rect_in_rect(Rect inner, Rect outer) {
return
rect_left(inner) >= rect_left(outer) &&
rect_right(inner) <= rect_right(outer) &&
rect_top(inner) >= rect_top(outer) &&
rect_bottom(inner) <= rect_bottom(outer);
}
bool rect_rect_intersect(Rect r1, Rect r2, bool edges, bool corners) {
if(
rect_bottom(r1) < rect_top(r2) ||
rect_top(r1) > rect_bottom(r2) ||
rect_left(r1) > rect_right(r2) ||
rect_right(r1) < rect_left(r2)
) {
// Not even touching
return false;
}
if(!edges && (
rect_bottom(r1) == rect_top(r2) ||
rect_top(r1) == rect_bottom(r2) ||
rect_left(r1) == rect_right(r2) ||
rect_right(r1) == rect_left(r2)
)) {
// Discard edge intersects
return false;
}
if(!corners && (
(rect_left(r1) == rect_right(r2) && rect_bottom(r1) == rect_top(r2)) ||
(rect_left(r1) == rect_right(r2) && rect_bottom(r2) == rect_top(r1)) ||
(rect_left(r2) == rect_right(r1) && rect_bottom(r1) == rect_top(r2)) ||
(rect_left(r2) == rect_right(r1) && rect_bottom(r2) == rect_top(r1))
)) {
// Discard corner intersects
return false;
}
return true;
}
bool rect_rect_intersection(Rect r1, Rect r2, bool edges, bool corners, Rect *out) {
if(!rect_rect_intersect(r1, r2, edges, corners)) {
return false;
}
out->top_left = CMPLX(
fmax(rect_left(r1), rect_left(r2)),
fmax(rect_top(r1), rect_top(r2))
);
out->bottom_right = CMPLX(
fmin(rect_right(r1), rect_right(r2)),
fmin(rect_bottom(r1), rect_bottom(r2))
);
return true;
}
bool rect_join(Rect *r1, Rect r2) {
if(rect_in_rect(r2, *r1)) {
return true;
}
if(rect_in_rect(*r1, r2)) {
memcpy(r1, &r2, sizeof(r2));
return true;
}
if(!rect_rect_intersect(*r1, r2, true, false)) {
return false;
}
if(rect_left(*r1) == rect_left(r2) && rect_right(*r1) == rect_right(r2)) {
// r2 is directly above/below r1
double y_min = fmin(rect_top(*r1), rect_top(r2));
double y_max = fmax(rect_bottom(*r1), rect_bottom(r2));
r1->top_left = CMPLX(creal(r1->top_left), y_min);
r1->bottom_right = CMPLX(creal(r1->bottom_right), y_max);
return true;
}
if(rect_top(*r1) == rect_top(r2) && rect_bottom(*r1) == rect_bottom(r2)) {
// r2 is directly left/right to r1
double x_min = fmin(rect_left(*r1), rect_left(r2));
double x_max = fmax(rect_right(*r1), rect_right(r2));
r1->top_left = CMPLX(x_min, cimag(r1->top_left));
r1->bottom_right = CMPLX(x_max, cimag(r1->bottom_right));
return true;
}
return false;
}
void rect_set_xywh(Rect *rect, double x, double y, double w, double h) {
rect->top_left = CMPLX(x, y);
rect->bottom_right = CMPLX(w, h) + rect->top_left;
}