taisei/src/util/geometry.c

78 lines
2 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* This software is licensed under the terms of the MIT-License
* See COPYING for further information.
* ---
* Copyright (c) 2011-2018, Lukas Weber <laochailan@web.de>.
* Copyright (c) 2012-2018, Andrei Alexeyev <akari@alienslab.net>.
*/
#include "taisei.h"
#include "geometry.h"
bool point_in_ellipse(complex p, Ellipse e) {
double Xp = creal(p);
double Yp = cimag(p);
double Xe = creal(e.origin);
double Ye = cimag(e.origin);
double a = e.angle;
return (
pow(cos(a) * (Xp - Xe) + sin(a) * (Yp - Ye), 2) / pow(creal(e.axes)/2, 2) +
pow(sin(a) * (Xp - Xe) - cos(a) * (Yp - Ye), 2) / pow(cimag(e.axes)/2, 2)
) <= 1;
}
// Is the point of shortest distance between the line through a and b
// and a point c between a and b and closer than r?
// if yes, return f so that a+f*(b-a) is that point.
// otherwise return -1.
double lineseg_circle_intersect(LineSegment seg, Circle c) {
complex m, v;
double projection, lv, lm, distance;
m = seg.b - seg.a; // vector pointing along the line
v = seg.a - c.origin; // vector from circle to point A
lv = cabs(v);
lm = cabs(m);
if(lv < c.radius) {
return 0;
}
if(lm == 0) {
return -1;
}
projection = -creal(v*conj(m)) / lm; // project v onto the line
// now the distance can be calculated by Pythagoras
distance = sqrt(pow(lv, 2) - pow(projection, 2));
if(distance <= c.radius) {
double f = projection/lm;
if(f >= 0 && f <= 1) { // its on the line!
return f;
}
}
return -1;
}
bool lineseg_ellipse_intersect(LineSegment seg, Ellipse e) {
// Transform the coordinate system so that the ellipse becomes a circle
// with origin at (0, 0) and diameter equal to its X axis. Then we can
// calculate the segment-circle intersection.
double ratio = creal(e.axes) / cimag(e.axes);
complex rotation = cexp(I * -e.angle);
seg.a *= rotation;
seg.b *= rotation;
seg.a = creal(seg.a) + I * ratio * cimag(seg.a);
seg.b = creal(seg.b) + I * ratio * cimag(seg.b);
Circle c = { .radius = creal(e.axes) / 2 };
return lineseg_circle_intersect(seg, c) >= 0;
}