taisei/src/util/geometry.c
2024-05-17 04:58:47 +02:00

322 lines
8.1 KiB
C

/*
* This software is licensed under the terms of the MIT License.
* See COPYING for further information.
* ---
* Copyright (c) 2011-2024, Lukas Weber <laochailan@web.de>.
* Copyright (c) 2012-2024, Andrei Alexeyev <akari@taisei-project.org>.
*/
#include "geometry.h"
#include "miscmath.h"
Rect ellipse_bbox(Ellipse e) {
double largest_radius = max(re(e.axes), im(e.axes)) * 0.5;
cmplx d = CMPLX(largest_radius, largest_radius);
return (Rect) {
.top_left = e.origin - d,
.bottom_right = e.origin + d,
};
}
bool point_in_ellipse(cmplx p, Ellipse e) {
Rect e_bbox = ellipse_bbox(e);
if(!point_in_rect(p, e_bbox)) {
return false;
}
p -= e.origin;
cmplx dir = cdir(e.angle);
cmplx dotcross = CMPLX(cdot(p, dir), ccross(p, dir));
cmplx dotcross2 = cwmul(dotcross, dotcross);
cmplx terms = cwdiv(dotcross2, cwmul(e.axes, e.axes));
return re(terms) + im(terms) <= 0.25;
}
Rect lineseg_bbox(LineSegment seg) {
cmplx rmm = csort(CMPLX(re(seg.a), re(seg.b)));
cmplx imm = csort(CMPLX(im(seg.a), im(seg.b)));
return (Rect) {
.top_left = CMPLX(re(rmm), re(imm)),
.bottom_right = CMPLX(im(rmm), im(imm))
};
}
// If segment_ellipse_nonintersection_heuristic returns true, then the
// segment and ellipse do not intersect. However, **the converse is not true**.
// Used for quick returning false in real intersection functions.
static bool segment_ellipse_nonintersection_heuristic(LineSegment seg, Ellipse e) {
Rect seg_bbox = lineseg_bbox(seg);
Rect e_bbox = ellipse_bbox(e);
return !rect_rect_intersect(seg_bbox, e_bbox, true, true);
}
static double lineseg_closest_factor_impl(cmplx m, cmplx v) {
// m == vector from A to B
// v == vector from point of interest to A
double lm2 = cabs2(m);
if(UNLIKELY(lm2 == 0)) {
return 0;
}
double f = -re(cmul_finite(v, conj(m))) / lm2; // project v onto the line
f = clamp(f, 0, 1); // restrict it to segment
return f;
}
// Return f such that a + f * (b - a) is the closest point on segment to p
double lineseg_closest_factor(LineSegment seg, cmplx p) {
return lineseg_closest_factor_impl(seg.b - seg.a, seg.a - p);
}
cmplx lineseg_closest_point(LineSegment seg, cmplx p) {
return clerp(seg.a, seg.b, lineseg_closest_factor_impl(seg.b - seg.a, seg.a - p));
}
// Is the point of shortest distance between the line through a and b
// and a point c between a and b and closer than r?
// if yes, return f so that a+f*(b-a) is that point.
// otherwise return -1.
static double lineseg_circle_intersect_fallback(LineSegment seg, Circle c) {
double rad2 = c.radius * c.radius;
double f = lineseg_closest_factor_impl(seg.b - seg.a, seg.a - c.origin);
cmplx p = clerp(seg.a, seg.b, f);
if(cabs2(p - c.origin) <= rad2) {
return f;
}
return -1;
}
bool lineseg_ellipse_intersect(LineSegment seg, Ellipse e) {
if(segment_ellipse_nonintersection_heuristic(seg, e)) {
return false;
}
// Transform the coordinate system so that the ellipse becomes a circle
// with origin at (0, 0) and diameter equal to its X axis. Then we can
// calculate the segment-circle intersection.
seg.a -= e.origin;
seg.b -= e.origin;
double ratio = re(e.axes) / im(e.axes);
if(UNLIKELY(ratio != ratio || !ratio)) {
// either axis is nan or 0?
assert(0 && "Bad ellipse");
return false;
}
cmplx rotation = cdir(-e.angle);
seg.a = cmul_finite(seg.a, rotation);
seg.b = cmul_finite(seg.b, rotation);
im(seg.a) *= ratio;
im(seg.b) *= ratio;
Circle c = { .radius = re(e.axes) * 0.5 };
return lineseg_circle_intersect_fallback(seg, c) >= 0;
}
double lineseg_circle_intersect(LineSegment seg, Circle c) {
Ellipse e = { .origin = c.origin, .axes = 2*c.radius + I*2*c.radius };
if(segment_ellipse_nonintersection_heuristic(seg, e)) {
return -1;
}
return lineseg_circle_intersect_fallback(seg, c);
}
bool point_in_rect(cmplx p, Rect r) {
return
re(p) >= rect_left(r) &&
re(p) <= rect_right(r) &&
im(p) >= rect_top(r) &&
im(p) <= rect_bottom(r);
}
bool rect_in_rect(Rect inner, Rect outer) {
return
rect_left(inner) >= rect_left(outer) &&
rect_right(inner) <= rect_right(outer) &&
rect_top(inner) >= rect_top(outer) &&
rect_bottom(inner) <= rect_bottom(outer);
}
bool rect_rect_intersect(Rect r1, Rect r2, bool edges, bool corners) {
if(
rect_bottom(r1) < rect_top(r2) ||
rect_top(r1) > rect_bottom(r2) ||
rect_left(r1) > rect_right(r2) ||
rect_right(r1) < rect_left(r2)
) {
// Not even touching
return false;
}
if(!edges && (
rect_bottom(r1) == rect_top(r2) ||
rect_top(r1) == rect_bottom(r2) ||
rect_left(r1) == rect_right(r2) ||
rect_right(r1) == rect_left(r2)
)) {
// Discard edge intersects
return false;
}
if(!corners && (
(rect_left(r1) == rect_right(r2) && rect_bottom(r1) == rect_top(r2)) ||
(rect_left(r1) == rect_right(r2) && rect_bottom(r2) == rect_top(r1)) ||
(rect_left(r2) == rect_right(r1) && rect_bottom(r1) == rect_top(r2)) ||
(rect_left(r2) == rect_right(r1) && rect_bottom(r2) == rect_top(r1))
)) {
// Discard corner intersects
return false;
}
return true;
}
bool rect_rect_intersection(Rect r1, Rect r2, bool edges, bool corners, Rect *out) {
if(!rect_rect_intersect(r1, r2, edges, corners)) {
return false;
}
out->top_left = CMPLX(
max(rect_left(r1), rect_left(r2)),
max(rect_top(r1), rect_top(r2))
);
out->bottom_right = CMPLX(
min(rect_right(r1), rect_right(r2)),
min(rect_bottom(r1), rect_bottom(r2))
);
return true;
}
bool rect_join(Rect *r1, Rect r2) {
if(rect_in_rect(r2, *r1)) {
return true;
}
if(rect_in_rect(*r1, r2)) {
memcpy(r1, &r2, sizeof(r2));
return true;
}
if(!rect_rect_intersect(*r1, r2, true, false)) {
return false;
}
if(rect_left(*r1) == rect_left(r2) && rect_right(*r1) == rect_right(r2)) {
// r2 is directly above/below r1
double y_min = min(rect_top(*r1), rect_top(r2));
double y_max = max(rect_bottom(*r1), rect_bottom(r2));
r1->top_left = CMPLX(re(r1->top_left), y_min);
r1->bottom_right = CMPLX(re(r1->bottom_right), y_max);
return true;
}
if(rect_top(*r1) == rect_top(r2) && rect_bottom(*r1) == rect_bottom(r2)) {
// r2 is directly left/right to r1
double x_min = min(rect_left(*r1), rect_left(r2));
double x_max = max(rect_right(*r1), rect_right(r2));
r1->top_left = CMPLX(x_min, im(r1->top_left));
r1->bottom_right = CMPLX(x_max, im(r1->bottom_right));
return true;
}
return false;
}
void rect_set_xywh(Rect *rect, double x, double y, double w, double h) {
rect->top_left = CMPLX(x, y);
rect->bottom_right = CMPLX(w, h) + rect->top_left;
}
double ucapsule_dist_from_point(cmplx p, UnevenCapsule ucap) {
assert(ucap.radius.b >= ucap.radius.a);
p -= ucap.pos.a;
ucap.pos.b -= ucap.pos.a;
double h = cabs2(ucap.pos.b);
cmplx q = CMPLX(cdot(p, conj(cswap(ucap.pos.b))), cdot(p, ucap.pos.b)) / h;
q = CMPLX(fabs(re(q)), im(q));
double b = ucap.radius.a - ucap.radius.b;
cmplx c = CMPLX(sqrt(h - b * b), b);
double k = ccross(c, q);
double m = cdot(c, q);
double n = cabs2(q);
if(k < 0) {
return sqrt(h * n) - ucap.radius.a;
}
if(k > re(c)) {
return sqrt(h * (n + 1 - 2 * im(q))) - ucap.radius.b;
}
return m - ucap.radius.a;
}
bool lineseg_lineseg_intersection(LineSegment seg0, LineSegment seg1, cmplx *out) {
// Based on an answer from https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect
double p0_x = re(seg0.a);
double p0_y = im(seg0.a);
double p1_x = re(seg0.b);
double p1_y = im(seg0.b);
double p2_x = re(seg1.a);
double p2_y = im(seg1.a);
double p3_x = re(seg1.b);
double p3_y = im(seg1.b);
double s1_x = p1_x - p0_x;
double s1_y = p1_y - p0_y;
double s2_x = p3_x - p2_x;
double s2_y = p3_y - p2_y;
double d = -s2_x * s1_y + s1_x * s2_y;
if(d == 0) {
// NOTE: parallel or colinear.
// In the colinear case, the intersection may be another line segment.
// For our purposes, ignoring it is probably fine.
return false;
}
double s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / d;
if(s < 0 || s > 1) {
return false;
}
double t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / d;
if(t < 0 || t > 1) {
return false;
}
if(out) {
*out = CMPLX(p0_x + (t * s1_x), p0_y + (t * s1_y));
}
return true;
}