322 lines
8.1 KiB
C
322 lines
8.1 KiB
C
/*
|
|
* This software is licensed under the terms of the MIT License.
|
|
* See COPYING for further information.
|
|
* ---
|
|
* Copyright (c) 2011-2024, Lukas Weber <laochailan@web.de>.
|
|
* Copyright (c) 2012-2024, Andrei Alexeyev <akari@taisei-project.org>.
|
|
*/
|
|
|
|
#include "geometry.h"
|
|
#include "miscmath.h"
|
|
|
|
Rect ellipse_bbox(Ellipse e) {
|
|
double largest_radius = max(re(e.axes), im(e.axes)) * 0.5;
|
|
cmplx d = CMPLX(largest_radius, largest_radius);
|
|
return (Rect) {
|
|
.top_left = e.origin - d,
|
|
.bottom_right = e.origin + d,
|
|
};
|
|
}
|
|
|
|
bool point_in_ellipse(cmplx p, Ellipse e) {
|
|
Rect e_bbox = ellipse_bbox(e);
|
|
|
|
if(!point_in_rect(p, e_bbox)) {
|
|
return false;
|
|
}
|
|
|
|
p -= e.origin;
|
|
cmplx dir = cdir(e.angle);
|
|
cmplx dotcross = CMPLX(cdot(p, dir), ccross(p, dir));
|
|
cmplx dotcross2 = cwmul(dotcross, dotcross);
|
|
cmplx terms = cwdiv(dotcross2, cwmul(e.axes, e.axes));
|
|
return re(terms) + im(terms) <= 0.25;
|
|
}
|
|
|
|
Rect lineseg_bbox(LineSegment seg) {
|
|
cmplx rmm = csort(CMPLX(re(seg.a), re(seg.b)));
|
|
cmplx imm = csort(CMPLX(im(seg.a), im(seg.b)));
|
|
|
|
return (Rect) {
|
|
.top_left = CMPLX(re(rmm), re(imm)),
|
|
.bottom_right = CMPLX(im(rmm), im(imm))
|
|
};
|
|
}
|
|
|
|
// If segment_ellipse_nonintersection_heuristic returns true, then the
|
|
// segment and ellipse do not intersect. However, **the converse is not true**.
|
|
// Used for quick returning false in real intersection functions.
|
|
static bool segment_ellipse_nonintersection_heuristic(LineSegment seg, Ellipse e) {
|
|
Rect seg_bbox = lineseg_bbox(seg);
|
|
Rect e_bbox = ellipse_bbox(e);
|
|
return !rect_rect_intersect(seg_bbox, e_bbox, true, true);
|
|
}
|
|
|
|
static double lineseg_closest_factor_impl(cmplx m, cmplx v) {
|
|
// m == vector from A to B
|
|
// v == vector from point of interest to A
|
|
|
|
double lm2 = cabs2(m);
|
|
|
|
if(UNLIKELY(lm2 == 0)) {
|
|
return 0;
|
|
}
|
|
|
|
double f = -re(cmul_finite(v, conj(m))) / lm2; // project v onto the line
|
|
f = clamp(f, 0, 1); // restrict it to segment
|
|
|
|
return f;
|
|
}
|
|
|
|
// Return f such that a + f * (b - a) is the closest point on segment to p
|
|
double lineseg_closest_factor(LineSegment seg, cmplx p) {
|
|
return lineseg_closest_factor_impl(seg.b - seg.a, seg.a - p);
|
|
}
|
|
|
|
cmplx lineseg_closest_point(LineSegment seg, cmplx p) {
|
|
return clerp(seg.a, seg.b, lineseg_closest_factor_impl(seg.b - seg.a, seg.a - p));
|
|
}
|
|
|
|
// Is the point of shortest distance between the line through a and b
|
|
// and a point c between a and b and closer than r?
|
|
// if yes, return f so that a+f*(b-a) is that point.
|
|
// otherwise return -1.
|
|
static double lineseg_circle_intersect_fallback(LineSegment seg, Circle c) {
|
|
double rad2 = c.radius * c.radius;
|
|
|
|
double f = lineseg_closest_factor_impl(seg.b - seg.a, seg.a - c.origin);
|
|
cmplx p = clerp(seg.a, seg.b, f);
|
|
|
|
if(cabs2(p - c.origin) <= rad2) {
|
|
return f;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
bool lineseg_ellipse_intersect(LineSegment seg, Ellipse e) {
|
|
if(segment_ellipse_nonintersection_heuristic(seg, e)) {
|
|
return false;
|
|
}
|
|
|
|
// Transform the coordinate system so that the ellipse becomes a circle
|
|
// with origin at (0, 0) and diameter equal to its X axis. Then we can
|
|
// calculate the segment-circle intersection.
|
|
|
|
seg.a -= e.origin;
|
|
seg.b -= e.origin;
|
|
|
|
double ratio = re(e.axes) / im(e.axes);
|
|
|
|
if(UNLIKELY(ratio != ratio || !ratio)) {
|
|
// either axis is nan or 0?
|
|
assert(0 && "Bad ellipse");
|
|
return false;
|
|
}
|
|
|
|
cmplx rotation = cdir(-e.angle);
|
|
seg.a = cmul_finite(seg.a, rotation);
|
|
seg.b = cmul_finite(seg.b, rotation);
|
|
im(seg.a) *= ratio;
|
|
im(seg.b) *= ratio;
|
|
|
|
Circle c = { .radius = re(e.axes) * 0.5 };
|
|
return lineseg_circle_intersect_fallback(seg, c) >= 0;
|
|
}
|
|
|
|
double lineseg_circle_intersect(LineSegment seg, Circle c) {
|
|
Ellipse e = { .origin = c.origin, .axes = 2*c.radius + I*2*c.radius };
|
|
if(segment_ellipse_nonintersection_heuristic(seg, e)) {
|
|
return -1;
|
|
}
|
|
return lineseg_circle_intersect_fallback(seg, c);
|
|
}
|
|
|
|
bool point_in_rect(cmplx p, Rect r) {
|
|
return
|
|
re(p) >= rect_left(r) &&
|
|
re(p) <= rect_right(r) &&
|
|
im(p) >= rect_top(r) &&
|
|
im(p) <= rect_bottom(r);
|
|
}
|
|
|
|
bool rect_in_rect(Rect inner, Rect outer) {
|
|
return
|
|
rect_left(inner) >= rect_left(outer) &&
|
|
rect_right(inner) <= rect_right(outer) &&
|
|
rect_top(inner) >= rect_top(outer) &&
|
|
rect_bottom(inner) <= rect_bottom(outer);
|
|
}
|
|
|
|
bool rect_rect_intersect(Rect r1, Rect r2, bool edges, bool corners) {
|
|
if(
|
|
rect_bottom(r1) < rect_top(r2) ||
|
|
rect_top(r1) > rect_bottom(r2) ||
|
|
rect_left(r1) > rect_right(r2) ||
|
|
rect_right(r1) < rect_left(r2)
|
|
) {
|
|
// Not even touching
|
|
return false;
|
|
}
|
|
|
|
if(!edges && (
|
|
rect_bottom(r1) == rect_top(r2) ||
|
|
rect_top(r1) == rect_bottom(r2) ||
|
|
rect_left(r1) == rect_right(r2) ||
|
|
rect_right(r1) == rect_left(r2)
|
|
)) {
|
|
// Discard edge intersects
|
|
return false;
|
|
}
|
|
|
|
if(!corners && (
|
|
(rect_left(r1) == rect_right(r2) && rect_bottom(r1) == rect_top(r2)) ||
|
|
(rect_left(r1) == rect_right(r2) && rect_bottom(r2) == rect_top(r1)) ||
|
|
(rect_left(r2) == rect_right(r1) && rect_bottom(r1) == rect_top(r2)) ||
|
|
(rect_left(r2) == rect_right(r1) && rect_bottom(r2) == rect_top(r1))
|
|
)) {
|
|
// Discard corner intersects
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool rect_rect_intersection(Rect r1, Rect r2, bool edges, bool corners, Rect *out) {
|
|
if(!rect_rect_intersect(r1, r2, edges, corners)) {
|
|
return false;
|
|
}
|
|
|
|
out->top_left = CMPLX(
|
|
max(rect_left(r1), rect_left(r2)),
|
|
max(rect_top(r1), rect_top(r2))
|
|
);
|
|
|
|
out->bottom_right = CMPLX(
|
|
min(rect_right(r1), rect_right(r2)),
|
|
min(rect_bottom(r1), rect_bottom(r2))
|
|
);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool rect_join(Rect *r1, Rect r2) {
|
|
if(rect_in_rect(r2, *r1)) {
|
|
return true;
|
|
}
|
|
|
|
if(rect_in_rect(*r1, r2)) {
|
|
memcpy(r1, &r2, sizeof(r2));
|
|
return true;
|
|
}
|
|
|
|
if(!rect_rect_intersect(*r1, r2, true, false)) {
|
|
return false;
|
|
}
|
|
|
|
if(rect_left(*r1) == rect_left(r2) && rect_right(*r1) == rect_right(r2)) {
|
|
// r2 is directly above/below r1
|
|
double y_min = min(rect_top(*r1), rect_top(r2));
|
|
double y_max = max(rect_bottom(*r1), rect_bottom(r2));
|
|
|
|
r1->top_left = CMPLX(re(r1->top_left), y_min);
|
|
r1->bottom_right = CMPLX(re(r1->bottom_right), y_max);
|
|
|
|
return true;
|
|
}
|
|
|
|
if(rect_top(*r1) == rect_top(r2) && rect_bottom(*r1) == rect_bottom(r2)) {
|
|
// r2 is directly left/right to r1
|
|
double x_min = min(rect_left(*r1), rect_left(r2));
|
|
double x_max = max(rect_right(*r1), rect_right(r2));
|
|
|
|
r1->top_left = CMPLX(x_min, im(r1->top_left));
|
|
r1->bottom_right = CMPLX(x_max, im(r1->bottom_right));
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void rect_set_xywh(Rect *rect, double x, double y, double w, double h) {
|
|
rect->top_left = CMPLX(x, y);
|
|
rect->bottom_right = CMPLX(w, h) + rect->top_left;
|
|
}
|
|
|
|
double ucapsule_dist_from_point(cmplx p, UnevenCapsule ucap) {
|
|
assert(ucap.radius.b >= ucap.radius.a);
|
|
|
|
p -= ucap.pos.a;
|
|
ucap.pos.b -= ucap.pos.a;
|
|
double h = cabs2(ucap.pos.b);
|
|
cmplx q = CMPLX(cdot(p, conj(cswap(ucap.pos.b))), cdot(p, ucap.pos.b)) / h;
|
|
|
|
q = CMPLX(fabs(re(q)), im(q));
|
|
|
|
double b = ucap.radius.a - ucap.radius.b;
|
|
cmplx c = CMPLX(sqrt(h - b * b), b);
|
|
|
|
double k = ccross(c, q);
|
|
double m = cdot(c, q);
|
|
double n = cabs2(q);
|
|
|
|
if(k < 0) {
|
|
return sqrt(h * n) - ucap.radius.a;
|
|
}
|
|
|
|
if(k > re(c)) {
|
|
return sqrt(h * (n + 1 - 2 * im(q))) - ucap.radius.b;
|
|
}
|
|
|
|
return m - ucap.radius.a;
|
|
}
|
|
|
|
bool lineseg_lineseg_intersection(LineSegment seg0, LineSegment seg1, cmplx *out) {
|
|
// Based on an answer from https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect
|
|
|
|
double p0_x = re(seg0.a);
|
|
double p0_y = im(seg0.a);
|
|
|
|
double p1_x = re(seg0.b);
|
|
double p1_y = im(seg0.b);
|
|
|
|
double p2_x = re(seg1.a);
|
|
double p2_y = im(seg1.a);
|
|
|
|
double p3_x = re(seg1.b);
|
|
double p3_y = im(seg1.b);
|
|
|
|
double s1_x = p1_x - p0_x;
|
|
double s1_y = p1_y - p0_y;
|
|
|
|
double s2_x = p3_x - p2_x;
|
|
double s2_y = p3_y - p2_y;
|
|
|
|
double d = -s2_x * s1_y + s1_x * s2_y;
|
|
|
|
if(d == 0) {
|
|
// NOTE: parallel or colinear.
|
|
// In the colinear case, the intersection may be another line segment.
|
|
// For our purposes, ignoring it is probably fine.
|
|
return false;
|
|
}
|
|
|
|
double s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / d;
|
|
|
|
if(s < 0 || s > 1) {
|
|
return false;
|
|
}
|
|
|
|
double t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / d;
|
|
|
|
if(t < 0 || t > 1) {
|
|
return false;
|
|
}
|
|
|
|
if(out) {
|
|
*out = CMPLX(p0_x + (t * s1_x), p0_y + (t * s1_y));
|
|
}
|
|
|
|
return true;
|
|
}
|