2022-03-30 20:19:11 +02:00
|
|
|
\documentclass[12pt, a4paper]{report}
|
2022-04-01 17:31:09 +02:00
|
|
|
|
2022-04-27 23:03:56 +02:00
|
|
|
\PassOptionsToPackage{dvipsnames}{xcolor}
|
|
|
|
\usepackage{tikz}
|
2022-03-30 20:19:11 +02:00
|
|
|
\usepackage{amsmath}
|
|
|
|
\usepackage{amsfonts}
|
|
|
|
\usepackage{enumitem}
|
2022-03-30 22:06:16 +02:00
|
|
|
\usepackage{amssymb}
|
2022-03-31 10:46:15 +02:00
|
|
|
\usepackage{marvosym}
|
2022-03-30 20:19:11 +02:00
|
|
|
\usepackage{mathtools}
|
2022-04-02 21:03:36 +02:00
|
|
|
\usepackage{cancel}
|
2022-04-03 18:10:13 +02:00
|
|
|
\usepackage[ngerman]{babel}
|
2022-04-28 10:33:22 +02:00
|
|
|
\usepackage{harpoon}
|
2022-06-09 16:15:44 +02:00
|
|
|
\usetikzlibrary{tikzmark,calc,arrows,arrows.meta,angles,math,decorations.markings}
|
2022-06-01 16:29:47 +02:00
|
|
|
\usepackage{pgfplots}
|
2022-06-08 23:13:15 +02:00
|
|
|
\usepackage{framed}
|
2024-05-02 23:55:25 +02:00
|
|
|
\usepackage[hyperref,amsmath,thmmarks,framed]{ntheorem}
|
2023-01-04 23:18:29 +01:00
|
|
|
\usepackage[colorlinks=true, linkcolor=magenta]{hyperref}
|
2022-06-08 23:13:15 +02:00
|
|
|
\usepackage{tcolorbox}
|
2022-06-09 11:00:51 +02:00
|
|
|
\usepackage{geometry}
|
|
|
|
\geometry{a4paper, top=35mm, left=25mm, right=25mm, bottom=30mm}
|
2022-06-01 16:29:47 +02:00
|
|
|
|
2024-05-02 23:55:25 +02:00
|
|
|
\pgfplotsset{compat=1.18}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
|
|
|
\title{Lineare Algebra 2}
|
2022-03-30 21:00:40 +02:00
|
|
|
\date{Sommersemester 2022}
|
2022-04-01 17:31:09 +02:00
|
|
|
\author{Philipp Grohs \\ \small \LaTeX-Satz: Anton Mosich}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2022-04-27 23:03:56 +02:00
|
|
|
\newcounter{textbox}
|
|
|
|
\def\tl{\stepcounter{textbox}\tikzmarknode{a\thetextbox}{\strut}}
|
2023-01-31 13:30:38 +01:00
|
|
|
\def\br{\tikzmarknode{b\thetextbox}{\strut}
|
|
|
|
\begin{tikzpicture}[overlay, remember picture]
|
|
|
|
\draw ($(a\thetextbox.north west)+(-0.4\arraycolsep,0ex)$) rectangle
|
|
|
|
($(b\thetextbox.south east)+(0.2\arraycolsep,0ex)$);
|
|
|
|
\end{tikzpicture}
|
|
|
|
}
|
2022-04-27 23:03:56 +02:00
|
|
|
% https://tex.stackexchange.com/questions/481978/how-to-write-the-block-matrix-in-latex
|
|
|
|
|
2022-04-28 10:33:22 +02:00
|
|
|
\newcommand*{\vect}[1]{\overrightharp{\ensuremath{#1}}}
|
|
|
|
\newcommand\R{\ensuremath{\mathbb{R}}}
|
|
|
|
\newcommand\C{\ensuremath{\mathbb{C}}}
|
|
|
|
\newcommand\K{\ensuremath{\mathbb{K}}}
|
2022-06-08 18:03:22 +02:00
|
|
|
\newcommand\mapsfrom{\rotatebox{180}{$\mapsto$}}
|
2022-04-28 10:33:22 +02:00
|
|
|
|
2023-01-04 23:18:29 +01:00
|
|
|
\theoremsymbol{\ensuremath{\square}}
|
|
|
|
\theorembodyfont{\normalfont}
|
|
|
|
\theoremheaderfont{\normalfont\it}
|
|
|
|
\theoremseparator{.}
|
|
|
|
\newtheorem*{proof}{Beweis}
|
|
|
|
\qedsymbol{\Lightning}
|
|
|
|
|
2022-06-09 23:44:55 +02:00
|
|
|
\definecolor{pastellblau}{HTML}{5BCFFA}
|
|
|
|
\definecolor{pastellrosa}{HTML}{F5ABB9}
|
|
|
|
\definecolor{weiss}{HTML}{FFFFFF}
|
|
|
|
|
2022-06-08 23:13:15 +02:00
|
|
|
\theoremstyle{break}
|
2022-06-09 10:59:32 +02:00
|
|
|
\theoremseparator{:\smallskip}
|
2022-06-08 23:13:15 +02:00
|
|
|
\theoremindent=1em
|
|
|
|
\theoremheaderfont{\kern-1em\normalfont\bfseries}
|
2022-06-09 10:59:32 +02:00
|
|
|
\theorembodyfont{\normalfont}
|
2022-06-08 23:13:15 +02:00
|
|
|
\theoreminframepreskip{0em}
|
|
|
|
\theoreminframepostskip{0em}
|
2023-01-04 23:18:29 +01:00
|
|
|
\theoremsymbol{}
|
2023-01-04 21:56:36 +01:00
|
|
|
\newtcbox{\theoremBox}{colback=pastellrosa!17,colframe=pastellrosa!87,boxsep=0pt,left=7pt,right=7pt,top=7pt,bottom=7pt}
|
2022-06-08 23:13:15 +02:00
|
|
|
\def\theoremframecommand{\theoremBox}
|
|
|
|
|
|
|
|
\newshadedtheorem{theo}{Theorem}[section]
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2022-06-08 23:13:15 +02:00
|
|
|
\newshadedtheorem{satz}[theo]{Satz}
|
2022-06-11 12:51:34 +02:00
|
|
|
\theoremstyle{nonumberbreak}
|
|
|
|
\newshadedtheorem{nonumbersatz}{Satz}
|
|
|
|
\theoremstyle{break}
|
2022-06-09 10:59:32 +02:00
|
|
|
\newshadedtheorem{lemma}[theo]{Lemma}
|
2022-06-08 23:13:15 +02:00
|
|
|
\newshadedtheorem{korollar}[theo]{Korollar}
|
|
|
|
\newshadedtheorem{folgerung}[theo]{Folgerung}
|
2023-01-04 21:56:36 +01:00
|
|
|
\newtcbox{\definBox}{colback=pastellblau!17,colframe=pastellblau!94,boxsep=0pt,left=7pt,right=7pt,top=7pt,bottom=7pt}
|
2022-06-09 10:59:32 +02:00
|
|
|
\def\theoremframecommand{\definBox}
|
|
|
|
\newshadedtheorem{defin}[theo]{Definition}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
|
|
|
\DeclareMathOperator{\sgn}{sgn}
|
2022-06-07 19:16:17 +02:00
|
|
|
\DeclareMathOperator{\rg}{rg}
|
2022-03-30 23:31:00 +02:00
|
|
|
\DeclareMathOperator{\spec}{spec}
|
2022-03-30 20:19:11 +02:00
|
|
|
\DeclareMathOperator{\spur}{sp}
|
2022-04-28 10:33:22 +02:00
|
|
|
\DeclareMathOperator{\Hom}{Hom}
|
2022-03-30 22:06:16 +02:00
|
|
|
\DeclareMathOperator{\adj}{adj}
|
2022-03-30 20:19:11 +02:00
|
|
|
\DeclareMathOperator{\id}{id}
|
|
|
|
\DeclareMathOperator{\diag}{diag}
|
2022-03-30 23:31:00 +02:00
|
|
|
\DeclareMathOperator{\eig}{Eig}
|
|
|
|
\DeclareMathOperator{\nxn}{n \times n}
|
2022-04-12 12:36:21 +02:00
|
|
|
\DeclareMathOperator{\im}{im}
|
2022-05-19 09:42:55 +02:00
|
|
|
\DeclareMathOperator{\GL}{GL}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2022-04-28 10:33:22 +02:00
|
|
|
\newcommand\homkv{\Hom_\K(V, V)}
|
|
|
|
\newcommand\homk{\Hom_\K}
|
2022-06-13 11:29:12 +02:00
|
|
|
\newcommand\linspan[1]{\left\langle #1 \right\rangle}
|
2022-06-13 10:52:46 +02:00
|
|
|
\newcommand\inner[2]{\left\langle #1, #2 \right\rangle}
|
|
|
|
\newcommand\norm[1]{\left\lVert #1 \right\rVert}
|
2022-06-07 19:16:17 +02:00
|
|
|
\newcommand\ontop[2]{\genfrac{}{}{0pt}{0}{#1}{#2}}
|
2022-06-13 10:52:46 +02:00
|
|
|
\newcommand\abs[1]{\left\lvert #1 \right\rvert}
|
2022-06-22 10:05:40 +02:00
|
|
|
\newcommand\real{\mathfrak{Re}}
|
2022-04-28 10:33:22 +02:00
|
|
|
|
2022-06-15 19:33:18 +02:00
|
|
|
\newif\ifhideproofs
|
|
|
|
%\hideproofstrue
|
|
|
|
|
|
|
|
\ifhideproofs
|
2023-01-31 13:30:38 +01:00
|
|
|
\usepackage{environ}
|
|
|
|
\NewEnviron{hide}{}
|
|
|
|
\let\proof\hide
|
|
|
|
\let\endproof\endhide
|
2022-06-15 19:33:18 +02:00
|
|
|
\fi
|
|
|
|
|
2022-03-30 20:19:11 +02:00
|
|
|
\begin{document}
|
2022-06-08 20:59:01 +02:00
|
|
|
|
2022-06-08 22:09:26 +02:00
|
|
|
\tikzset{%
|
|
|
|
-||-/.style={decoration={markings,
|
2022-06-09 16:15:44 +02:00
|
|
|
mark=at position 0.5 with {\draw[thick, -] (-.2,-.2) -- (0, .2);\draw[thick, -] (0, -.2) -- (.2, .2);}},
|
2022-06-08 22:09:26 +02:00
|
|
|
postaction={decorate}},
|
|
|
|
}
|
|
|
|
|
2022-06-08 20:59:01 +02:00
|
|
|
\begin{titlepage}
|
|
|
|
\begin{tikzpicture}[remember picture, overlay]
|
2022-06-08 22:09:26 +02:00
|
|
|
% Trans pride flag
|
2022-06-08 20:59:01 +02:00
|
|
|
\foreach[count=\i] \col in {pastellblau,pastellrosa,weiss,pastellrosa,pastellblau}
|
|
|
|
\node (back names) [shape=rectangle,
|
|
|
|
fill=\col,
|
|
|
|
minimum width=\paperwidth / 5,
|
|
|
|
anchor=south west,
|
|
|
|
minimum height=\paperheight] at ([xshift=(\i - 1)*(\paperwidth / 5)]current page.south west) {};
|
2022-06-08 22:09:26 +02:00
|
|
|
% The Loss
|
|
|
|
% Panel 1
|
2022-06-09 16:15:44 +02:00
|
|
|
\draw[line width=.5mm, {Stealth[scale=1.3]}-] ([xshift = 85pt, yshift = -60pt]current page.north west) -- +(0, -.35\paperheight);
|
2022-06-08 22:09:26 +02:00
|
|
|
% Panel 2
|
2022-06-09 16:15:44 +02:00
|
|
|
\draw[line width=.5mm, {Stealth[scale=1.3]}-, -||-] ([xshift = -85pt, yshift = -.1\paperheight - 60pt] current page.north east) --
|
2022-06-08 22:09:26 +02:00
|
|
|
+(0, -.25\paperheight);
|
2022-06-09 16:15:44 +02:00
|
|
|
\draw[line width=.5mm, {Stealth[scale=1.3]}-, -||-] ([xshift = -185pt, yshift = -60pt]current page.north east) --
|
2022-06-08 22:09:26 +02:00
|
|
|
+(0, -.35\paperheight);
|
|
|
|
% Panel 3
|
2022-06-09 16:15:44 +02:00
|
|
|
\draw[line width=.5mm, -{Stealth[scale=1.3]}, -||-] ([xshift = 40pt, yshift = 60pt] current page.south west) -- +(0, .35\paperheight);
|
|
|
|
\draw[line width=.5mm, -{Stealth[scale=1.3]}, -||-] ([xshift = 175pt, yshift = 60pt] current page.south west) -- +(0, .35\paperheight);
|
2022-06-08 22:09:26 +02:00
|
|
|
% Panel 4
|
2022-06-09 16:15:44 +02:00
|
|
|
\draw[line width=.5mm, -{Stealth[scale=1.3]}] ([xshift = -175pt, yshift = 60pt] current page.south east) -- +(0, .35\paperheight);
|
|
|
|
\draw[line width=.5mm, {Stealth[scale=1.3]}-] ([yshift = 120pt, xshift = -25pt] current page.south east) -- +(-.38\paperwidth,0);
|
2022-06-08 22:09:26 +02:00
|
|
|
\draw[very thick] ([xshift = -175+40pt, yshift = 120]current page.south east)
|
|
|
|
arc [radius=40pt, start angle=0, end angle=90];
|
|
|
|
% Title, Author & Date
|
2022-06-08 22:09:57 +02:00
|
|
|
\node at ([yshift = -.45\paperheight]current page.north) {\Huge{ \textbf{Lineare Algebra 2} }};
|
|
|
|
\node at ([yshift = -.52\paperheight]current page.north) {\Large{Philipp Grohs}};
|
|
|
|
\node at ([yshift = -.55\paperheight]current page.north) {\large{\LaTeX-Satz: Anton Mosich}};
|
|
|
|
\node at ([yshift = -.60\paperheight]current page.north) {\large{Sommersemester 2022}};
|
2022-06-08 20:59:01 +02:00
|
|
|
\end{tikzpicture}
|
|
|
|
\end{titlepage}
|
|
|
|
|
2022-04-03 18:10:13 +02:00
|
|
|
\tableofcontents
|
|
|
|
|
2022-03-30 20:19:11 +02:00
|
|
|
\chapter{Determinanten}
|
2022-03-30 21:00:40 +02:00
|
|
|
|
2022-03-30 20:19:11 +02:00
|
|
|
\section{Permutationen}
|
2022-03-30 21:00:40 +02:00
|
|
|
|
2022-03-30 20:19:11 +02:00
|
|
|
\begin{defin}
|
2023-11-14 12:37:13 +01:00
|
|
|
Sei $n \in \mathbb{N} \setminus \{0\}, [n] \coloneq \{1, 2, \dots, n\}$. \\
|
2023-03-28 11:46:57 +02:00
|
|
|
Eine bijektive Abbildung $\pi\colon[n]\to[n]$ heißt \underline{Permutation} von $[n]$.
|
2022-04-12 12:48:05 +02:00
|
|
|
Wir definieren die \underline{symmetrische Gruppe}
|
2023-11-14 12:37:13 +01:00
|
|
|
$S_n \coloneq \{\pi\text{ Permutation von }[n]\}$
|
2022-04-12 12:48:05 +02:00
|
|
|
mit der Hintereinanderausführung als Gruppenoperation.
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{defin}
|
2022-04-01 17:31:09 +02:00
|
|
|
|
2022-03-30 20:19:11 +02:00
|
|
|
\subsubsection{Bemerkung}
|
|
|
|
\begin{itemize}
|
2022-04-12 12:48:05 +02:00
|
|
|
\item $(S_n, \circ)$ ist eine Gruppe.
|
|
|
|
\item $\pi\in S_n$ ist eindeutig durch das Tupel $(\pi(1), \dots, \pi(n))$ definiert.
|
|
|
|
\item Fixpunkte $(\pi(i)=i)$ werden oft weggelassen.
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
\begin{defin}
|
2022-04-12 12:48:05 +02:00
|
|
|
$\pi\in S_n$ heißt \underline{Transposition} wenn es $i, j\in [n]$ gibt mit
|
2023-01-31 13:30:38 +01:00
|
|
|
\[\pi(k) =
|
|
|
|
\begin{cases}
|
|
|
|
k & k\notin\{i, j\} \\
|
|
|
|
i & k = j \\
|
|
|
|
j & k=i
|
|
|
|
\end{cases}
|
|
|
|
\]
|
2022-04-12 12:48:05 +02:00
|
|
|
Wir schreiben $\pi = (ij)$.
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{defin}
|
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{satz}
|
|
|
|
\label{theo:1.1.3}
|
2023-01-31 13:30:38 +01:00
|
|
|
Es gilt $\abs{ S_n } = n!$.
|
|
|
|
\end{satz}
|
2022-06-08 23:13:15 +02:00
|
|
|
\begin{proof}
|
|
|
|
Vollständige Induktion
|
|
|
|
\begin{itemize}
|
2022-06-13 11:44:23 +02:00
|
|
|
\item[$n=1$:] $S_1 = \{\id\}\implies\abs{ S_1} = 1 = 1!$
|
|
|
|
\item[$n-1\to n$:] Angenommen $\abs{ S_{n-1} } = (n-1)!$.
|
2023-03-28 11:46:57 +02:00
|
|
|
Dann gilt $\abs{\{\pi \in S_n\colon \pi(n) = n \}} = (n-1)!$. Sei allgemein $i \in [n]$.
|
2022-06-13 11:44:23 +02:00
|
|
|
Dann gilt $\pi(n)=i \iff (in)\circ\pi(n)=n$. Also gilt
|
|
|
|
\begin{align*}
|
2023-03-28 11:46:57 +02:00
|
|
|
& \abs{\{\pi\in S_n\colon \pi(n)=i\}} = \abs{\{(in)\circ\pi\colon \pi(n)=n\}} \\
|
|
|
|
& = \abs{\{\pi\colon \pi(n)=n\}} = (n-1)!
|
2022-06-13 11:44:23 +02:00
|
|
|
\end{align*}
|
|
|
|
Weiters gilt
|
|
|
|
\begin{align*}
|
2023-03-28 11:46:57 +02:00
|
|
|
& S_n = \bigcup_{i\in[n]}^\bullet\{\pi\in S_n\colon \pi(n)=i\} \implies \\
|
|
|
|
& \abs{S_n}= \sum_{i\in[n]}\abs{\{\pi \in S_n\colon \pi(n) = i\}}
|
2022-06-13 11:44:23 +02:00
|
|
|
= n\cdot(n-1)! = n!
|
|
|
|
\end{align*}
|
2022-06-08 23:13:15 +02:00
|
|
|
\end{itemize}
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{satz}
|
|
|
|
\label{theo:1.1.4}
|
2022-04-12 12:48:05 +02:00
|
|
|
Für $n\in \mathbb{N}_{\ge2}$ ist jedes $\pi \in S_n$ das Produkt von (endlich vielen) Transpositionen.
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{satz}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
2022-06-13 11:44:23 +02:00
|
|
|
Vollständige Induktion
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{itemize}
|
2022-06-13 11:44:23 +02:00
|
|
|
\item[$n=2$:] $S_2 = \{\id, (2 1)\}$
|
|
|
|
\item[$n-1\to n$:]
|
|
|
|
Sei $\pi \in S_n$. Dann gilt (siehe Beweis von Satz \ref{theo:1.1.3}) mit $i=\pi(n)$, dass
|
|
|
|
\[\underbrace{(i n)\pi}_{\pi_i}(n) = n\]
|
|
|
|
Sei $\pi_i = (\underbrace{\pi_i(1) \dots \pi_i(n-1)}_{\in S_{n-1}} n)
|
|
|
|
\underset{\text{Induktions VS}}{\implies} \pi_i = (i_1 j_1) \dots (i_k j_k)$.\\
|
|
|
|
Außerdem gilt $\pi = (i n)\pi_i$, also $\pi = (i n)(i_1 j_1) \dots (i_k j_k)$
|
2022-06-08 23:25:28 +02:00
|
|
|
\end{itemize}
|
|
|
|
\end{proof}
|
2022-06-08 23:13:15 +02:00
|
|
|
|
2022-03-30 20:19:11 +02:00
|
|
|
\subsubsection{Bemerkung}
|
|
|
|
\begin{itemize}
|
2023-03-28 11:46:57 +02:00
|
|
|
\item Produktdarstellung ist nicht eindeutig, zum Beispiel:
|
|
|
|
\[
|
|
|
|
(3 1 2) = (2 1)(3 1) = (3 1)(3 2)
|
|
|
|
\]
|
2022-05-07 19:59:06 +02:00
|
|
|
\item $f\in \mathbb{Z}[X_1, \dots, X_n], \pi \in S_n$ \\
|
2023-11-14 12:37:13 +01:00
|
|
|
$\pi f(X_1, \dots, X_n) \coloneq f(X_{\pi(1)}, \dots, X_{\pi(n)})$
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{itemize}
|
|
|
|
\subsubsection{Beispiel}
|
|
|
|
$\pi = (2 3 1), f(X_1, X_2, X_3) = X_1-X_2+X_1X_3 \implies \pi f(X_1, X_2, X_3) = X_2 - X_3 + X_2X_1$
|
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{lemma}
|
|
|
|
\label{theo:1.1.5}
|
2022-05-07 19:59:06 +02:00
|
|
|
Sei
|
|
|
|
\[
|
|
|
|
f(X_1, \dots, X_n) = \prod_{\substack{i, j\in[n]\\ i < j}} (X_j-X_i)\in \mathbb{Z}[X_1, \dots, X_n]
|
|
|
|
\]
|
2023-01-31 13:30:38 +01:00
|
|
|
Dann gilt
|
|
|
|
\begin{enumerate}[label=\alph*)]
|
|
|
|
\item Zu jedem $\pi \in S_n$ existiert eine eindeutig Zahl $s(\pi) \in \{-1, 1\}$ mit
|
|
|
|
$\pi f = s(\pi)f$.
|
2022-04-12 12:48:05 +02:00
|
|
|
\item Für $\pi$ eine Transposition gilt $s(\pi) = -1$.
|
|
|
|
\end{enumerate}
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{lemma}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
|
|
|
\begin{enumerate}[label=\alph*)]
|
2023-01-31 13:30:38 +01:00
|
|
|
\item
|
|
|
|
\begin{align*}
|
2023-03-28 11:46:57 +02:00
|
|
|
\pi f(X_1, \dots, X_n) & = \prod_{i<j}(X_{\pi(j)}-X_{\pi(i)}) \\
|
|
|
|
& =\Bigl(\prod_{\substack{i<j \\
|
2023-11-14 12:37:13 +01:00
|
|
|
\pi(i)<\pi(j)}}
|
|
|
|
(X_{\pi(j)}-X_{\pi(i)})\Bigr)
|
2023-03-28 11:46:57 +02:00
|
|
|
\Bigl(\prod_{\substack{i<j \\
|
|
|
|
\pi(j)<\pi(i)}}(X_{\pi(j)}-X_{\pi(i)})\Bigr) \\
|
|
|
|
& = (-1)^{\abs{\{(i, j)\in[n]\times[n]\colon i<j\land\pi(i)>\pi(j)\}}}
|
|
|
|
\prod_{i<j}(X_j-X_i) \\
|
|
|
|
& = s(\pi)f(X_1, \dots, X_n) \text{ mit } \\
|
|
|
|
s(\pi) & = (-1)^{\abs{\{(i, j)\in[n]\times[n]\colon i<j\land\pi(i)>\pi(j)\}}}
|
2022-06-08 23:25:28 +02:00
|
|
|
\end{align*}
|
2023-03-28 11:46:57 +02:00
|
|
|
\item $\pi = (i j), i<j, k\in\{i+1, \dots, j-1\}\colon
|
|
|
|
\pi(i, j) = (j, i), \pi(i, k) = (j, k), \pi(k, j) = (k, i)$\\
|
2022-06-08 23:25:28 +02:00
|
|
|
Für diese Paare gilt $x<y \land \pi(x) > \pi(y)$\\
|
|
|
|
Für alle anderen Paare gilt $x<y \land \pi(x)<\pi(y)$\\
|
|
|
|
Erstere sind $2(j-i-1)+1$ Paare. Daraus folgt $\pi f=(-1)^{2(j-i-1)+1}f$, also $s(\pi)=-1$.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
|
|
|
\begin{defin}
|
2022-04-12 12:48:05 +02:00
|
|
|
\begin{itemize}
|
2023-01-31 13:30:38 +01:00
|
|
|
\item Die durch Lemma \ref{theo:1.1.5} bestimmte Größe $s(\pi)$ heißt
|
|
|
|
\underline{Signum} von $\pi \in S_n$. Wir schreiben $\sgn(\pi)$.
|
2022-04-12 12:48:05 +02:00
|
|
|
\item $\pi$ heißt \underline{gerade} falls $\sgn(\pi)=1$ und \underline{ungerade} falls $\sgn(\pi)=-1$.
|
|
|
|
\end{itemize}
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{defin}
|
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{satz}
|
|
|
|
\label{theo:1.1.7}
|
2022-04-12 12:48:05 +02:00
|
|
|
Für $\pi, \sigma \in S_n$ gilt \[\sgn(\sigma\pi)=\sgn(\sigma)\sgn(\pi)\]
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{satz}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
|
|
|
Nach Satz \ref{theo:1.1.5}(a) gilt:
|
|
|
|
\begin{align*}
|
|
|
|
& f(X_1, \dots, X_n) = \prod\limits_{i<j}(X_j-X_i) \implies \\
|
|
|
|
& \sigma\pi f(X_1, \dots, X_n) = \sgn(\sigma\pi)f(X_1, \dots, X_n)
|
|
|
|
\end{align*}
|
|
|
|
Andererseits gilt:
|
|
|
|
\begin{align*}
|
|
|
|
\sigma\pi f(X_1, \dots, X_n) & = \sigma[\pi f(X_1, \dots, X_n)] \\
|
|
|
|
& = \sigma[\sgn(\pi)f(X_1, \dots, X_n)] \\
|
|
|
|
& = \sgn(\pi) \sigma f(X_1, \dots, X_n) \\
|
|
|
|
& = \sgn(\pi)\sgn(\sigma)f(X_1, \dots, X_n)
|
|
|
|
\end{align*}
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
|
|
|
\begin{satz}
|
2022-04-12 12:48:05 +02:00
|
|
|
\begin{enumerate}[label=\alph*)]
|
|
|
|
\item $\sgn(\pi)=1\iff\pi$ ist Produkt gerader Anzahl Transpositionen
|
|
|
|
\item $\pi$ Produkt von k Transpositionen $\implies \sgn(\pi)=(-1)^k$
|
|
|
|
\end{enumerate}
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{satz}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
|
|
|
Folgt direkt aus Satz \ref{theo:1.1.5}(b) und Satz \ref{theo:1.1.7}
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
|
|
|
\begin{folgerung}
|
2022-04-12 12:48:05 +02:00
|
|
|
Es gibt genau $\frac12n!$ gerade und $\frac12n!$ ungerade Permutationen in $S_n$
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{folgerung}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
|
|
|
Folgt aus Satz \ref{theo:1.1.3}
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2022-04-03 19:15:57 +02:00
|
|
|
\begin{defin}
|
2022-06-09 11:00:51 +02:00
|
|
|
Die geraden Permutationen bilden eine Untergruppe $A_n$ von $S_n$, die man \\
|
2022-05-07 19:59:06 +02:00
|
|
|
\underline{alternierende Gruppe} nennt.
|
2022-04-03 19:15:57 +02:00
|
|
|
\end{defin}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
|
|
|
\section{Multilinearformen}
|
|
|
|
\begin{defin}
|
2023-03-28 11:46:57 +02:00
|
|
|
Seien $V_1, \dots, V_n, W$ \K-Vektorräume. Eine Abbildung $\varphi\colon V_1 \times \dots \times V_n \to W$
|
2022-05-07 19:59:06 +02:00
|
|
|
heißt \underline{n-linear}, wenn für alle
|
|
|
|
$v_1, v'_1 \in V_1, \dots, v_n, v'_n\in V_n, i \in [n], \lambda\in\K$ gilt, dass
|
2022-04-12 12:48:05 +02:00
|
|
|
\begin{itemize}
|
2022-05-07 19:59:06 +02:00
|
|
|
\item $\varphi(v_1, \dots, v_i+v'_i, \dots, v_n)=
|
|
|
|
\varphi(v_1, \dots, v_i, \dots, v_n)+\varphi(v_1, \dots, v'_i, \dots, v_n)$
|
2022-04-12 12:48:05 +02:00
|
|
|
\item $\varphi(v_1, \dots, \lambda v_i, \dots, v_n)= \lambda\varphi(v_1, \dots, v_i, \dots, v_n)$.
|
|
|
|
\end{itemize}
|
2022-05-07 19:59:06 +02:00
|
|
|
Ist $W=\K$ und $V_1, \dots, V_n=V$, so heißt $\varphi$ \underline{n-Linearform}. \\
|
|
|
|
($n=2 \to$ \underline{Bilinearform})
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{defin}
|
|
|
|
|
|
|
|
\subsubsection{Beispiel}
|
2022-04-04 22:25:02 +02:00
|
|
|
\[
|
2023-03-28 11:46:57 +02:00
|
|
|
\varphi\colon
|
2022-04-12 12:48:05 +02:00
|
|
|
\begin{cases}
|
2022-04-28 10:33:22 +02:00
|
|
|
\K^2\times \K^2 & \to \K \\
|
2023-01-31 13:30:38 +01:00
|
|
|
\left(
|
|
|
|
\begin{pmatrix}
|
|
|
|
a_{11} \\
|
|
|
|
a_{21}
|
|
|
|
\end{pmatrix}
|
|
|
|
,
|
|
|
|
\begin{pmatrix}
|
|
|
|
a_{12} \\
|
|
|
|
a_{22}
|
|
|
|
\end{pmatrix}
|
|
|
|
\right)
|
2022-04-28 10:33:22 +02:00
|
|
|
& \mapsto a_{11}a_{22} - a_{12}a_{21}
|
2022-04-12 12:48:05 +02:00
|
|
|
\end{cases}
|
2022-04-04 22:25:02 +02:00
|
|
|
\]
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2023-01-31 13:30:38 +01:00
|
|
|
\begin{defin}
|
|
|
|
\label{theo:1.2.2}
|
2022-05-07 19:59:06 +02:00
|
|
|
Eine n-Linearform von $V$ heißt
|
2022-04-12 12:48:05 +02:00
|
|
|
\begin{itemize}
|
|
|
|
\item \underline{nicht ausgeartet}, falls
|
|
|
|
$(a_1, \dots, a_n)\in V\times\dots\times V$ existiert mit \\
|
|
|
|
$\varphi(a_1, \dots, a_n) \neq 0$.
|
|
|
|
\item \underline{alternierend}, falls $\varphi(a_1, \dots, a_n)=0$ für $a_1, \dots, a_n$ linear abhängig.
|
|
|
|
\end{itemize}
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{defin}
|
|
|
|
|
|
|
|
\subsubsection{Bemerkung}
|
|
|
|
$\varphi$ alternierend und $a_i = a_j$ für $i\neq j \implies \varphi(a_1, \dots, a_n) = 0$.
|
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{lemma}
|
|
|
|
\label{theo:1.2.3}
|
2023-03-28 11:46:57 +02:00
|
|
|
Sei $\varphi$ alternierende n-Linearform von V und $\pi \in S_n$. Dann gilt für
|
2022-04-12 12:48:05 +02:00
|
|
|
$a_1, \dots, a_n\in V$:
|
2023-03-28 11:46:57 +02:00
|
|
|
\[\varphi\left(a_{\pi(1)}, \dots, a_{\pi(n)}\right)=\sgn(\pi)\varphi(a_1, \dots, a_n)\]
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{lemma}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
|
|
|
Wegen Satz \ref{theo:1.1.4} und Satz \ref{theo:1.1.7} genügt es anzunehmen, dass $\pi$ Transposition ist.
|
|
|
|
Sei also $\pi=(ij)$. Es gilt
|
|
|
|
\begin{align*}
|
|
|
|
0 & =\varphi(a_1, \dots, \underbrace{a_i+a_j}_{i}, \dots, \underbrace{a_i+a_j}_{j}, \dots, a_n) \\
|
|
|
|
& =\underbrace{\varphi(a_1, \dots, a_i, \dots, a_i, \dots, a_n)}_{0} +
|
|
|
|
\underbrace{\varphi(a_1, \dots, a_j, \dots, a_j, \dots, a_n)}_{0} \\
|
|
|
|
& \;\; + \varphi(a_1, \dots, a_i, \dots, a_j, \dots, a_n) +
|
|
|
|
\varphi(a_1, \dots, a_j, \dots, a_i, \dots, a_n) \\
|
|
|
|
& \implies \varphi(a_1, \dots, a_j, \dots, a_i, \dots, a_n)=
|
|
|
|
\underbrace{(-1)}_{=\sgn{\pi}}\varphi(a_1, \dots, a_i, \dots, a_j, \dots, a_n)
|
|
|
|
\end{align*}
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{lemma}
|
|
|
|
\label{theo:1.2.4}
|
2022-05-12 09:32:32 +02:00
|
|
|
Sei $V$ ein $\K$-VR mit $\dim(V)=n$ und $\varphi$ nicht ausgeartete und alternierende n-Linearform von V.
|
2022-05-07 19:59:06 +02:00
|
|
|
Dann gilt
|
|
|
|
\[
|
|
|
|
a_1, \dots, a_n \text{ linear abhängig} \iff \varphi(a_1, \dots, a_n) = 0
|
|
|
|
\]
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{lemma}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
|
|
|
\begin{itemize}
|
2022-06-13 11:44:23 +02:00
|
|
|
\item[$\implies$:] folgt aus Definition \ref{theo:1.2.2}
|
|
|
|
\item[$\impliedby$:] z.Z.: $\varphi(b_1, \dots, b_n)\neq0\impliedby b_1, \dots, b_n \text{ Basis von } V$.
|
|
|
|
Da $\varphi$ nicht ausgeartet ist, gibt es $a_1, \dots, a_n\in V$ mit $\varphi(a_1, \dots, a_n)\neq0$.\\
|
|
|
|
Da $b_1, \dots, b_n$ Basis gibt es $\lambda_{ij}\in\K$ mit $a_i=\sum\limits_{j=1}^n{\lambda_{ij}b_j}$\\
|
|
|
|
Wegen n-Linearität gilt
|
|
|
|
\begin{align*}
|
|
|
|
0\neq\varphi(a_1, \dots, a_n) & =\sum_{j_1=1}^n{\dots}\sum_{j_n=1}^n{\varphi(b_{j_1}, \dots, b_{j_n})
|
|
|
|
\lambda_{1j_1}\cdots\lambda_{nj_n}} \\
|
|
|
|
& \underbrace{=}_{\mathclap{\varphi\text{ alternierend}}}
|
|
|
|
\sum_{\substack{j_1, \dots, j_n \\
|
2023-11-14 12:37:13 +01:00
|
|
|
\text{paarweise verschieden}}}
|
2022-06-18 18:20:57 +02:00
|
|
|
{\varphi(b_{j_1}, \dots, b_{j_n})\lambda_{1j_1} \cdots \lambda_{nj_n}} \\
|
2022-06-13 11:44:23 +02:00
|
|
|
& = \sum_{\pi\in S_n} \varphi(b_{\pi(1)}, \dots, b_{\pi(n)})
|
|
|
|
\lambda_{1\pi(1)} \cdots \lambda_{n\pi(n)} \\
|
|
|
|
& \underbrace{=}_{\mathclap{\text{Lemma \ref{theo:1.2.3}}}}
|
|
|
|
\varphi(b_1, \dots, b_n)\left(\sum_{\pi\in S_n}
|
|
|
|
\sgn(\pi)\lambda_{1\pi(1)}\cdots\lambda_{n\pi(n)}\right) \\
|
|
|
|
& \implies\varphi(b_1, \dots, b_n)\neq 0
|
|
|
|
\end{align*}
|
2022-06-08 23:25:28 +02:00
|
|
|
\end{itemize}
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{satz}
|
|
|
|
\label{theo:1.2.5}
|
2022-04-28 10:33:22 +02:00
|
|
|
Sei V $\K$-VR mit $\dim(V)=n$ und Basis $a_1, \dots, a_n$.
|
2022-04-12 12:48:05 +02:00
|
|
|
\begin{enumerate}[label=\alph*)]
|
2023-01-31 13:30:38 +01:00
|
|
|
\item Für $\varphi$ alternierende nicht ausgeartete n-Linearform gilt für\\ $b_i =
|
|
|
|
\sum\lambda_{ij}a_j$, dass
|
2022-05-07 19:59:06 +02:00
|
|
|
\[
|
|
|
|
\varphi(b_1, \dots, b_n) =
|
2022-06-15 19:34:43 +02:00
|
|
|
\varphi(a_1, \dots, a_n)\left(\sum_{\pi \in S_n}\sgn(\pi)\lambda_{1\pi(1)}\cdots\lambda_{n\pi(n)}\right)
|
2022-04-12 12:48:05 +02:00
|
|
|
\]
|
2022-04-28 10:33:22 +02:00
|
|
|
\item Sei $c\in\K\setminus\{0\}$. Dann ist die Abbildung
|
2022-04-12 12:48:05 +02:00
|
|
|
\[
|
2022-06-15 19:34:43 +02:00
|
|
|
\varphi(b_1, \dots, b_n) = c\left(\sum_{\pi \in S_n}\sgn(\pi)\lambda_{1\pi(1)}\cdots\lambda_{n\pi(n)}\right)
|
2022-04-12 12:48:05 +02:00
|
|
|
\]
|
|
|
|
eine alternierende nicht ausgeartete n-Linearform.
|
|
|
|
\end{enumerate}
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{satz}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
|
|
|
\begin{enumerate}[label=\alph*)]
|
|
|
|
\item folgt aus dem Beweis von Lemma \ref{theo:1.2.4}.
|
2023-01-31 13:30:38 +01:00
|
|
|
\item Man verifiziert leicht, dass $\varphi$ n-linear ist. Weiters ist $\varphi$
|
|
|
|
nicht ausgeartet, da
|
2022-06-08 23:25:28 +02:00
|
|
|
\[
|
|
|
|
\varphi(a_1, \ldots, a_n) =
|
2022-06-28 14:39:16 +02:00
|
|
|
c\left(\sum_{\pi\in S_n}\sgn(\pi)\delta_{1\pi(1)} \cdots \delta_{n\pi(n)}\right) = c \cdot 1 \neq 0
|
2022-06-08 23:25:28 +02:00
|
|
|
\]
|
|
|
|
z.Z.: $\varphi$ alternierend. Seien $b_1, \dots, b_n$ linear abhängig.\\
|
|
|
|
O.B.d.A. $b_1=\mu_2b_2+\cdots+\mu_nb_n$. Dann gilt
|
2022-06-15 11:32:12 +02:00
|
|
|
\[\varphi(b_1, \dots, b_n) = \sum_{j=2}^{n}\mu_j \varphi(b_j, b_2, \dots, b_n)\]
|
2023-01-31 13:30:38 +01:00
|
|
|
Es genügt also zu zeigen, dass $\varphi(b_1, \dots, b_n) = 0$ falls $b_1 = b_i,
|
|
|
|
i\in\{2, \dots, n\}$. Dann gilt aber $\lambda_{1j}=\lambda_{ij} \forall j$.
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{align*}
|
2023-01-31 13:30:38 +01:00
|
|
|
\varphi(b_i, \dots, b_i, \dots, b_n) & = c\cdot\sum_{\pi\in S_n} \sgn(\pi) \lambda_{i\pi(1)}\cdots\lambda_{i\pi(i)}\cdots\lambda_{n\pi(n)} \\
|
|
|
|
&
|
|
|
|
\begin{multlined}
|
|
|
|
=c\cdot \Bigg(\sum_{\pi\in A_n}\sgn(\pi)\lambda_{i\pi(i)}\cdots\lambda_{i\pi(i)}\cdots\lambda_{n\pi(n)} \\
|
|
|
|
+\sum_{\pi\in A_n}\underbrace{\sgn(\pi\circ(1i))}_{=-\sgn(\pi)}\lambda_{i\pi(i)}\cdots\lambda_{i\pi(i)}\cdots\lambda_{n\pi(n)}\Bigg)
|
|
|
|
\end{multlined}
|
|
|
|
\\
|
|
|
|
&
|
|
|
|
\begin{multlined}
|
|
|
|
= c\cdot\sum_{\pi\in A_n}(\sgn(\pi)-\sgn(\pi))
|
|
|
|
\cdot \lambda_{i\pi(i)} \cdot \\
|
|
|
|
\cdots\lambda_{i\pi(i)}\cdots\lambda_{n\pi(n)}=0
|
|
|
|
\end{multlined}
|
|
|
|
\end{align*}
|
2022-06-08 23:25:28 +02:00
|
|
|
\end{enumerate}
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
|
|
|
\subsubsection{Bemerkung}
|
2023-01-31 13:30:38 +01:00
|
|
|
Es gibt also zu jedem $\K$-VR V mit $\dim(V)=n$ eine nicht ausgeartete
|
|
|
|
alternierende n-Linearform.
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{satz}
|
|
|
|
\label{theo:1.2.6}
|
2022-05-07 19:59:06 +02:00
|
|
|
Sei V $\K$-VR mit $\dim(V)=n$ und $\varphi_1, \varphi_2$ nicht ausgeartete alternierende n-Linearformen.
|
|
|
|
Dann existiert $c\in\K\setminus\{0\}$ mit $\varphi_2=c\cdot\varphi_1$.
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{satz}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
|
|
|
Sei $a_1, \dots, a_n$ Basis von V. Nach Lemma \ref{theo:1.2.4} ist
|
|
|
|
$\varphi_i(a_1, \dots, a_n)\neq0, i=1, 2$.\\
|
2023-11-14 12:37:13 +01:00
|
|
|
Sei $c\coloneq\dfrac{\varphi_1(a_1, \dots, a_n)}{\varphi_2(a_1, \dots, a_n)} \in \K\setminus\{0\}$.\\
|
2022-06-08 23:25:28 +02:00
|
|
|
Sei $b_1, \dots, b_n$ mit $b_i=\sum\lambda_{ij}a_j$.\\
|
|
|
|
Dann gilt nach Satz \ref{theo:1.2.5}(a), dass für $i=1, 2$
|
|
|
|
\begin{align*}
|
|
|
|
& \varphi_i(b_1, \dots, b_n) =
|
|
|
|
\varphi_i(a_1, \dots, a_n)\underbrace{\sum_{\pi \in S_n}\lambda_{1\pi(1)}\cdots\lambda_{n\pi(n)}}_
|
|
|
|
{\text{unabhängig von $i$!}} \\
|
|
|
|
& \implies \frac{\varphi_1(b_1, \dots, b_n)}{\varphi_2(b_1, \dots, b_n)}=
|
|
|
|
\frac{\varphi_1(a_1, \dots, a_n)}{\varphi_2(a_1, \dots, a_n)}=c
|
|
|
|
\end{align*}
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
|
|
|
\section{Determinanten}
|
|
|
|
\begin{defin}
|
2022-04-28 10:33:22 +02:00
|
|
|
Sei $B=(a_1, \dots, a_n)$ Basis des \K-Vektorraums V.
|
2024-04-14 21:19:39 +02:00
|
|
|
Sei $\varphi$ nicht ausgeartete, alternierende n-Linearform und $\alpha \in \homkv$.
|
2022-04-27 16:18:26 +02:00
|
|
|
Dann ist die \underline{Determinante von $\alpha$} definiert durch \[
|
2023-11-14 12:37:13 +01:00
|
|
|
\det(\alpha)\coloneq\det{}_\K(\alpha)
|
|
|
|
\coloneq\frac{\varphi(\alpha(a_1), \dots, \alpha(a_n))}{\varphi(a_1, \dots, a_n)}
|
2022-04-27 16:18:26 +02:00
|
|
|
\]
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{defin}
|
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{satz}
|
|
|
|
\label{theo:1.3.2}
|
2022-06-22 10:05:40 +02:00
|
|
|
$\det(\alpha)$ ist unabhängig von der Wahl der Basis B und der Form $\varphi$.
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{satz}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
2022-06-10 00:29:02 +02:00
|
|
|
\leavevmode
|
|
|
|
\begin{enumerate}[label=\arabic *. Fall:]
|
|
|
|
\item $\alpha$ nicht bijektiv\\
|
2022-06-22 10:05:40 +02:00
|
|
|
$\implies \alpha(a_1), \dots, \alpha(a_n) \text{ linear abhängig} \implies \det(\alpha) = 0$
|
2022-06-10 00:29:02 +02:00
|
|
|
\item $\alpha$ bijektiv. Sei $B=(a_1, \dots, a_n)$.
|
|
|
|
|
2023-01-31 13:30:38 +01:00
|
|
|
Dann ist auch $\alpha(a_1), \dots, \alpha(a_n)$ Basis und, da $\varphi$ nicht
|
|
|
|
ausgeartet,
|
2022-06-10 00:29:02 +02:00
|
|
|
\[\varphi(\alpha(a_1), \dots, \alpha(a_n))\neq0\]
|
|
|
|
|
2023-11-14 12:37:13 +01:00
|
|
|
Sei $\varphi_\alpha(b_1, \dots, b_n) \coloneq \varphi(\alpha(b_1), \dots,
|
2023-01-31 13:30:38 +01:00
|
|
|
\alpha(b_n))$. Dann ist $\varphi_\alpha$ alternierend und nicht ausgeartet.
|
|
|
|
Wegen Satz \ref{theo:1.2.6} folgt, dass $c\in\K\setminus\{0\}$ existiert mit
|
|
|
|
\begin{equation}
|
|
|
|
\label{eq:constantphi}
|
2022-06-10 00:29:02 +02:00
|
|
|
\varphi_\alpha=c\cdot\varphi
|
|
|
|
\end{equation}
|
|
|
|
und (durch Einsetzen von $a_1, \dots, a_n$), dass $c=\det(\alpha)$.
|
|
|
|
Da \ref{eq:constantphi} unabhängig von B ist also $\det(\alpha)$ unabhängig von B.
|
|
|
|
|
|
|
|
Sei nun $\psi$ eine zweite alternierende, nicht ausgeartete n-Form und
|
2023-11-14 12:37:13 +01:00
|
|
|
$\psi_\alpha(b_1, \dots, b_n) \coloneq \psi(\alpha(b_1), \dots, \alpha(b_n))$.
|
|
|
|
Dann ist $\psi_\alpha$ alternierend und nicht ausgeartet. Nach Satz
|
|
|
|
\ref{theo:1.2.6} gibt es $d\in\K\setminus\{0\} \text{ mit }d=\frac\psi\varphi$.
|
|
|
|
Also gilt:
|
2022-06-10 00:29:02 +02:00
|
|
|
\[
|
|
|
|
\det(\alpha)=\frac{\varphi_\alpha(a_1, \dots, a_n)}{\varphi(a_1, \dots, a_n)}=
|
|
|
|
\frac{d\varphi_\alpha(a_1, \dots, a_n)}{d\varphi(a_1, \dots, a_n)}=
|
|
|
|
\frac{\psi_\alpha(a_1, \dots, a_n)}{\psi(a_1, \dots, a_n)}
|
|
|
|
\]
|
2022-06-08 23:25:28 +02:00
|
|
|
|
2022-06-10 00:29:02 +02:00
|
|
|
also ist $\det(\alpha)$ auch von der n-Form unabhängig.
|
|
|
|
\end{enumerate}
|
2022-06-08 23:25:28 +02:00
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{korollar}
|
|
|
|
\label{theo:1.3.3}
|
2022-04-28 10:33:22 +02:00
|
|
|
Sei V ein n-dimensionaler \K-Vektorraum. Dann gilt
|
2022-04-12 12:48:05 +02:00
|
|
|
\begin{enumerate}[label=\alph*)]
|
2022-04-28 10:33:22 +02:00
|
|
|
\item $\alpha\in \homkv \text{ bijektiv } \iff \det(\alpha)\neq0$
|
2022-06-18 18:20:57 +02:00
|
|
|
\item $\alpha, \beta \in \homkv \implies \det(\alpha \beta) = \det(\alpha) \det(\beta)$
|
2022-04-12 12:48:05 +02:00
|
|
|
\item $\det(\id)=1$
|
2023-01-31 13:30:38 +01:00
|
|
|
\item Ist $\alpha\in \homkv$ invertierbar, so gilt
|
|
|
|
$\det(\alpha^{-1})=\det(\alpha)^{-1}$.
|
2022-04-12 12:48:05 +02:00
|
|
|
\end{enumerate}
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{korollar}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
|
|
|
Sei $B=(a_1, \dots, a_n)$ Basis und $\varphi$ n-Form mit \[
|
|
|
|
\det(\alpha) = \frac{\varphi(\alpha(a_1), \dots, \alpha(a_n))}{\varphi(a_1, \dots, a_n)}
|
|
|
|
\text{[ unabhängig von $B$ und $\varphi$ nach Satz \ref{theo:1.3.2}]}
|
|
|
|
\]
|
|
|
|
\begin{enumerate}[label=\alph*)]
|
|
|
|
\item $\alpha$ bijektiv $\iff \alpha(a_1), \dots, \alpha(a_n) \text{ linear unabhängig}$\\
|
|
|
|
$\underbrace{\iff}_{\mathclap{\text{Lemma \ref{theo:1.2.4}}}}
|
|
|
|
\varphi(\alpha(a_1), \dots, \alpha(a_n))\neq0\iff \det(\alpha)\neq0$
|
2023-01-31 13:30:38 +01:00
|
|
|
\item 2 Fälle:
|
|
|
|
\begin{enumerate}[label=\arabic*. Fall:]
|
2022-06-10 00:29:02 +02:00
|
|
|
\item $\alpha$ oder $\beta$ ist nicht bijektiv: o.B.d.A $\alpha$ nicht bijektiv.\\
|
2022-06-28 20:39:01 +02:00
|
|
|
$\implies \det(\alpha)=0\implies \det(\alpha)\det(\beta)=0$\\
|
2022-06-10 00:29:02 +02:00
|
|
|
Weiters folgt, dass $\alpha\beta$ nicht bijektiv, also $\det(\alpha\beta)=0$.
|
|
|
|
\item $\alpha, \beta$ bijektiv.
|
|
|
|
Dann ist auch $(\beta(a_1), \dots, \beta(a_n))$ Basis und
|
|
|
|
\begin{align*}
|
|
|
|
\det(\alpha\beta) & = \frac{\varphi(\alpha(\beta(a_1)), \dots, \alpha(\beta(a_n)))}
|
|
|
|
{\varphi(a_1, \dots, a_n)} \\
|
2023-01-31 13:30:38 +01:00
|
|
|
&
|
|
|
|
\begin{multlined}
|
|
|
|
=\frac{\varphi(\alpha(\beta(a_1)), \dots, \alpha(\beta(a_n)))}
|
|
|
|
{\varphi(\beta(a_1), \dots, \beta(a_n))}\cdot
|
|
|
|
\frac{\varphi(\beta(a_1), \dots, \beta(a_n))}
|
|
|
|
{\varphi(a_1, \dots, a_n)}
|
|
|
|
\end{multlined}
|
|
|
|
\\
|
2022-06-18 18:20:57 +02:00
|
|
|
& \underbrace{=}_{\mathclap{\text{Satz \ref{theo:1.3.2}}}}
|
2022-06-10 00:29:02 +02:00
|
|
|
\det(\alpha)\det(\beta)
|
|
|
|
\end{align*}
|
2022-06-08 23:25:28 +02:00
|
|
|
\end{enumerate}
|
|
|
|
\item $\det(\id)=\frac{\varphi(a_1, \dots, a_n)}{\varphi(a_1, \dots, a_n)}=1$
|
|
|
|
\item $1\underbrace{=}_{\text{c)}}\det(\id)=\det(\alpha\alpha^{-1})\underbrace{=}_{\text{b)}}
|
|
|
|
\det(\alpha)\det(\alpha^{-1})$
|
|
|
|
\end{enumerate}
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{satz}
|
|
|
|
\label{theo:1.3.4}
|
2022-05-07 19:59:06 +02:00
|
|
|
Sei $\alpha\in \homkv, B=(b_1, \dots, b_n)$ Basis und $A=(a_{ij}) = {}_B M(\alpha)_B\in\K^{n\times n}$.
|
|
|
|
Dann gilt
|
2022-04-12 12:48:05 +02:00
|
|
|
\[\det(\alpha)=\sum_{\pi\in S_n}\sgn(\pi)a_{1\pi(1)}\cdots a_{n\pi(n)}\]
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{satz}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{proof}
|
|
|
|
Es gilt $\alpha(b_i)=\sum\limits_{j=1}^na_{ij}b_j \text{ für }i=1, \dots, n$.
|
|
|
|
Nach Satz \ref{theo:1.2.5}(a) gilt
|
|
|
|
\[
|
|
|
|
\varphi(\alpha(b_1), \dots, \alpha(b_n)) =
|
|
|
|
\varphi(b_1, \dots, b_n)\cdot\sum_{\pi\in S_n}\sgn(\pi)a_{1\pi(1)}\cdots a_{n\pi(n)}
|
|
|
|
\]
|
|
|
|
und daraus folgt die Behauptung direkt.
|
|
|
|
\end{proof}
|
2022-03-30 20:19:11 +02:00
|
|
|
|
|
|
|
\begin{defin}
|
2022-04-28 10:33:22 +02:00
|
|
|
Für $A=(a_{ij})\in\K^{n\times n}$ definieren wir die \underline{Determinante von A} als
|
2022-04-12 12:48:05 +02:00
|
|
|
\[
|
2022-04-28 10:33:22 +02:00
|
|
|
\det(A)=\sum_{\pi\in S_n} \sgn(\pi)a_{1\pi(1)}\cdots a_{n\pi(n)}\in\K
|
2022-04-12 12:48:05 +02:00
|
|
|
\]
|
2022-03-30 20:19:11 +02:00
|
|
|
\end{defin}
|
|
|
|
|
|
|
|
\subsubsection{Bemerkung}
|
|
|
|
Schreibweise für $A=(a_{ij})$:
|
2022-04-04 22:25:02 +02:00
|
|
|
\[
|
2023-01-31 13:30:38 +01:00
|
|
|
\det(A)=
|
|
|
|
\begin{vmatrix}
|
2022-04-12 12:48:05 +02:00
|
|
|
a_{11} & \dots & a_{1n} \\
|
|
|
|
\vdots & \ddots & \vdots \\
|
|
|
|
a_{n1} & \dots & a_{nn}
|
|
|
|
\end{vmatrix}
|
2022-04-04 22:25:02 +02:00
|
|
|
\]
|
2022-03-30 20:19:11 +02:00
|
|
|
|
|
|
|
\section{Rechenregeln}
|
2022-06-08 23:25:28 +02:00
|
|
|
\begin{satz}
|
|
|
|
\label{theo:1.4.1}
|
2022-04-28 10:33:22 +02:00
|
|
|
Sei $A=(a_1, \dots, a_n)\in\K^{n\times n}$. Dann gilt
|
2022-04-12 12:48:05 +02:00
|
|
|
\begin{enumerate}[label=\alph*)]
|
|
|
|
\item $\det(A)=\det(A^T)$
|
2023-03-28 11:46:57 +02:00
|
|
|
\item $\forall i, j\in[n]\colon i<j\colon
|
2022-06-17 11:22:23 +02:00
|
|
|
\det((a_1, \dots, \underbrace{a_j}_{i}, \dots, \underbrace{a_i}_{j}, \dots, a_n))=-\det(A)$
|
2023-03-28 11:46:57 +02:00
|
|
|
\item $\forall i\in[n]\colon \lambda_1, \dots, \lambda_n\in\K\colon \det((a_1, \dots, a_i+
|
2022-05-07 19:59:06 +02:00
|
|
|
\sum\limits_{\substack{j=1\\j\neq i}}^n\lambda_ja_j, \dots, a_n))=\det(A)$
|
2023-03-28 11:46:57 +02:00
|
|
|
\item $\forall i\in[n]\colon \lambda\in\K\colon \det((a_1, \dots, \lambda a_i, \dots, a_n)) = \lambda \det(A)$
|
|
|
|
\item $\exists i, j\in[n]\colon i\neq j\land a_i=a_j \implies \det(A)=0$
|
|
|
|
\item $\forall \lambda \in \K\colon \det(\lambda A)=\lambda^n \det(A)$
|
2022-04-12 12:48:05 +02:00
|
|
|
\item $A$ invertierbar $\implies \det(A^{-1})=\det(A)^{-1}$
|
2023-03-28 11:46:57 +02:00
|
|
|
\item $\forall B \in \K^{n\times n}\colon \det(AB)=\det(A)\det(B)$
|
2022-04-12 12:48:05 +02:00
|
|
|
\item $\det(I_n) |