Fix layout

This commit is contained in:
Anton Mosich 2022-04-22 11:19:10 +02:00
parent ac1b434baa
commit 2ff283fb08
Signed by: Flugschwein
GPG key ID: 9303E1C32E3A14A0

View file

@ -1530,7 +1530,7 @@ Angenommen \(\alpha - \lambda \id: V \to V\) nilpotent. Dann besitzt \(\alpha\)
$\implies (\alpha - \lambda \id)(v) = (\alpha - \lambda \id)^k (\alpha - \lambda \id)(w) \in \im(\alpha - \lambda \id)^k \checkmark$
\end{itemize}
\item Es gilt $\dim(V) = \dim(V_1) + \dim(V_2)$ nach der Dimensionsformel. Es genügt also zu zeigen, dass
$V_1 \cap V_2 = \{0\}$. Sei $v\in V_1 \cap V_2$
$V_1 \cap V_2 = \{0\}$. \\ Sei $v\in V_1 \cap V_2$
\begin{align*}
& \underbrace{\implies}_{v\in V_2} \exists w\in V: v = (\alpha - \lambda \id)^k(w) \\
& \underbrace{\implies}_{v\in V_1} (\alpha - \lambda \id)^{2k}(w) = 0 \\