Add command for linear span

This commit is contained in:
Anton Mosich 2022-06-13 11:29:12 +02:00
parent 29a2223b3e
commit a0b1aab4da
Signed by: Flugschwein
GPG Key ID: 9303E1C32E3A14A0
1 changed files with 43 additions and 42 deletions

View File

@ -81,6 +81,7 @@
\newcommand\homkv{\Hom_\K(V, V)}
\newcommand\homk{\Hom_\K}
\newcommand\linspan[1]{\left\langle #1 \right\rangle}
\newcommand\inner[2]{\left\langle #1, #2 \right\rangle}
\newcommand\norm[1]{\left\lVert #1 \right\rVert}
\newcommand\ontop[2]{\genfrac{}{}{0pt}{0}{#1}{#2}}
@ -1030,7 +1031,7 @@ $\le\genfrac{}{}{0pt}{0}{\dim(V)}{n}$, da
\bar1 & \bar4 & \bar0 \\
\bar0 & \bar0 & \bar0
\end{array}\right) \\
& \implies \eig_{\bar2}(A) = \left\langle\begin{pmatrix}\bar1 \\ \bar1\end{pmatrix} \right\rangle \\
& \implies \eig_{\bar2}(A) = \linspan{\begin{pmatrix}\bar1 \\ \bar1\end{pmatrix}} \\
& \implies A \mathrlap{\text{ nicht diagonalisierbar [Lemma \ref{theo:2.1.4} (b)]}}
\end{alignat*}
@ -1254,15 +1255,15 @@ $A = \begin{pmatrix}
& \sim \left( \begin{array}{c c c | c} -1 & 1 & 1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & 0 \end{array} \right)
\sim \left( \begin{array}{c c c | c} 1 & -1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)
\sim \left( \begin{array}{c c c | c} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \\
& \implies \eig_A(3) = \left\langle \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \right\rangle
& \implies \eig_A(3) = \linspan{\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}}
\end{align*}
$\lambda = -3$
\begin{align*}
& \left( \begin{array}{c c c | c} 1+3 & 2 & 2 & 0 \\ 2 & -2+3 & 1 & 0 \\ 2 & 1 & -2+3 & 0 \end{array} \right)
= \left( \begin{array}{c c c | c} 4 & 2 & 2 & 0 \\ 2 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 \end{array} \right) \\
& \sim \left( \begin{array}{c c c | c} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \\
& \implies \eig_A(-3) = \left\langle \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} \right\rangle
= \left( \begin{array}{c c c | c} 4 & 2 & 2 & 0 \\ 2 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 \end{array} \right) \\
& \sim \left( \begin{array}{c c c | c} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \\
& \implies \eig_A(-3) = \linspan {\begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}}
\end{align*}
\item \begin{align*}
@ -1475,10 +1476,10 @@ $\underset{\mathrlap{\text{\dq fast alle Matrizen sind diagonalisierbar\dq}}}
\lambda_1 & a_{12} & \dots & a_{1n} \\
0 & \tl & & \\
\vdots & & \tilde{A} & \\
0 & & & \br\end{pmatrix} \\
0 & & & \br\end{pmatrix} \\
& \text{Sei }\beta: \begin{cases}
\overbrace{\langle b_2, \dots, b_n\rangle}^{V}
& \to \langle b_2, \dots, b_n\rangle \\
\overbrace{\linspan {b_2, \dots, b_n}}^{V}
& \to \linspan{ b_2, \dots, b_n} \\
b_i
& \mapsto \Phi^{-1}_{\tilde{B}}(C\cdot
{}_{\tilde{B}}v)
@ -1501,17 +1502,17 @@ $\underset{\mathrlap{\text{\dq fast alle Matrizen sind diagonalisierbar\dq}}}
Wegen \ref{eq:2.2.22.1} gilt
\begin{equation}
\beta(\tilde{b}_i) \in
\langle \tilde{b}_1, \dots, \tilde{b}_i \rangle
\linspan{ \tilde{b}_1, \dots, \tilde{b}_i }
\label{eq:2.2.22.2}
\end{equation}
Wir zeigen nun, dass für die Basis $C=(c_1, \dots, c_n)$ mit
$c_1 = b_1, c_2 = \tilde{b}_2, \dots, c_n = \tilde{b}_i $
die Matrix ${}_C M(\alpha)_C$ obere Dreiecksgestalt hat.
Dies ist äquivalent zu
\[\alpha(c_i)\in \langle c_1, \dots, c_n \rangle \forall i=1, \dots, n \]
\[\alpha(c_i)\in \linspan{ c_1, \dots, c_n } \forall i=1, \dots, n \]
\begin{itemize}
\item [$i=1$:] $\alpha(c_1) = \alpha(b_1) = \lambda_1 b_1
\in \langle b_1 \rangle = \langle c_1 \rangle$
\in \linspan{ b_1 } = \linspan{c_1}$
\item [$i>1$:]
\begin{align*}
& \alpha(c_i) = \alpha(\tilde{b}_i) =
@ -1524,8 +1525,8 @@ $\underset{\mathrlap{\text{\dq fast alle Matrizen sind diagonalisierbar\dq}}}
& = \sigma_i b_1+ \beta(\sum_{j=2}^n \mu_{ij} b_j)
= \sigma_i b_1 + \beta(\tilde{b}_i) \\
& \underbrace{\in}_{\text{\ref{eq:2.2.22.2}}}
\langle b_1,\tilde{b}_2,\dots,\tilde{b}_i\rangle
= \langle c_1, \dots, c_i \rangle
\linspan{ b_1,\tilde{b}_2,\dots,\tilde{b}_i}
= \linspan{ c_1, \dots, c_i }
\end{align*}
\end{itemize}
\end{itemize}
@ -1630,7 +1631,7 @@ Wir wollen zeigen, dass $\alpha/A$ genau dann eine Jordan-Normalform besitzt, we
\begin{enumerate} [label=\arabic*)]
\item $\alpha(C^m) \subseteq V_{m-1}$
\item $\alpha(C^m)$ linear unabhängig
\item $\langle \alpha(C^m) \rangle \cap V_{m-2} = \{0\}$
\item $\linspan{ \alpha(C^m) } \cap V_{m-2} = \{0\}$
\end{enumerate}
\begin{proof}[Zwischenbeweis]
\begin{itemize}
@ -1650,16 +1651,16 @@ Wir wollen zeigen, dass $\alpha/A$ genau dann eine Jordan-Normalform besitzt, we
\end{proof}
Es folgt, dass
\[
\underbrace{V_{m-2} \oplus \langle \alpha(C^m) \rangle \oplus
\overset{\langle D^{m-1} \rangle}{\langle C^{m-1} \rangle}}_{V_{m-1}} \oplus
\overset{\langle D^m \rangle}{\langle C^m \rangle} = V
\underbrace{V_{m-2} \oplus \linspan{ \alpha(C^m) } \oplus
\overset{\linspan{ D^{m-1} }}{\linspan{C^{m-1}}}}_{V_{m-1}} \oplus
\overset{\linspan{ D^m }}{\linspan{C^m}} = V
\]
Setze $D^m := C^m$ und definiere induktiv für $D^i \subseteq V_i$ die Menge
$D^{i-1} := \alpha(D^i) \cup C^{i-1} \subseteq V_{i-1}$ sodass mit einer Basis $B^{i-2}$ von
$V_{i-2}$ die Menge $B^{i-2} \cup D^{i-1}$ Basis von $V_{i-1}$ ist, also
\[
V_{i-2} \oplus \underbrace{\langle \alpha(D^i) \rangle \oplus \langle C^{i-1} \rangle}_
{\langle D^i \rangle}
V_{i-2} \oplus \underbrace{\linspan{ \alpha(D^i) } \oplus \linspan {C^{i-1}}}_
{\linspan{ D^i }}
= V_{i-1} \text{$\leftarrow$ das geht nach obiger Behauptung}
\]
Nach Konstruktion ist $(D^1, \dots, D^m)$ Basis von $V$.
@ -1875,16 +1876,16 @@ Angenommen \(\alpha - \lambda \id: V \to V\) nilpotent. Dann besitzt \(\alpha\)
\item
\begin{enumerate}[label=\alph*)]
\item Setze zunächst $v_i^k = b_i^k, i = 1, \dots, r_k$. $D_k := (v_1^k, \dots, v_{r_k}^k)$ \\
Setze $v_i^{k-1} := (\alpha - \lambda \id)(v_i^k) \in \langle B_{k-1} \rangle,
Setze $v_i^{k-1} := (\alpha - \lambda \id)(v_i^k) \in \linspan{ B_{k-1} },
i = 1, \dots, r_k$ \\
Ergänze gegebenenfalls $(v_1^{k-1}, \dots, v_{r_k}^{k-1},
v_{r_{k+1}}^{k-1}, \dots, v_{r_{k-1}}^{k-1})=:D_{k-1}$, sodass \\
$\langle D_{k-1} \rangle = \langle B_{k-1} \rangle$
$\linspan{ D_{k-1} } = \linspan B_{k-1}$
\item Führe 3a) iterativ aus. \\
Setze $v_i^{l-1} := (\alpha - \lambda \id)(v_i^l), i = 1, \dots, r_l$ \\
Ergänze gegebenenfalls
$v_1^{l-1}, \dots, v_{r_l}^{l-1}, v_{r_{l+1}}^{l-1}, \dots, v_{r_{l-1}}^{l-1} =:D_{l-1}$,
sodass $\langle D_{l-1} \rangle = \langle B_{l-1} \rangle$
sodass $\linspan{ D_{l-1} } = \linspan{B_{l-1}}$
\end{enumerate}
\item Sei $B_\lambda = (D_1, \dots, D_k) \implies {}_{B_\lambda} M(\alpha|_{v_\lambda})_{B_\lambda}$ hat
Jordan-Normalform mit Eigenwert $\lambda$.
@ -1900,7 +1901,7 @@ Angenommen \(\alpha - \lambda \id: V \to V\) nilpotent. Dann besitzt \(\alpha\)
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
, \chi_A(\lambda) = (\lambda - 1)^5 \\
, \chi_A(\lambda) = (\lambda - 1)^5 \\
& (A - 1\cdot I) = \begin{pmatrix}
0 & 0 & 2 & 3 & 4 \\
0 & 0 & 0 & -2 & -3 \\
@ -1908,7 +1909,7 @@ Angenommen \(\alpha - \lambda \id: V \to V\) nilpotent. Dann besitzt \(\alpha\)
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\implies \ker(A - I) = \langle ( \underbrace{e_1, e_2}_{B_1} ) \rangle \\
\implies \ker(A - I) = \linspan{ ( \underbrace{e_1, e_2}_{B_1} ) } \\
& (A-I)^2 = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 \\
@ -1916,9 +1917,9 @@ Angenommen \(\alpha - \lambda \id: V \to V\) nilpotent. Dann besitzt \(\alpha\)
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\implies \ker((A-I)^2) = \langle (\underbrace{e_1, e_2}_{B_1}, \underbrace{e_3, e_4}_{B_2}) \rangle \\
\implies \ker((A-I)^2) = \linspan{ (\underbrace{e_1, e_2}_{B_1}, \underbrace{e_3, e_4}_{B_2}) } \\
& (A-I)^3 = 0 \implies \ker((A-I)^3) =
\langle(\underbrace{e_1, e_2}_{B_1}, \underbrace{e_3, e_4}_{B_2}, \underbrace{e_5}_{B_3}) \rangle \\
\linspan{(\underbrace{e_1, e_2}_{B_1}, \underbrace{e_3, e_4}_{B_2}, \underbrace{e_5}_{B_3}) } \\
& B_1 = (e_1, e_2), B_2 = (e_3, e_4), B_3 = (e_5)
\end{align*}
\begin{align*}
@ -2312,7 +2313,7 @@ Auch skalare Produkte können eindeutig fortgesetzt werden.
Sei $(a_1, a_2, \dots) \subseteq V$ linear unabhängig. Dann existiert genau ein Orthonormalsystem
$(b_1, b_2, \dots)$ mit
\begin{enumerate}[label=\roman*)]
\item $\forall k: \langle a_1, \dots, a_k \rangle = \langle b_1, \dots, b_k \rangle =: U_k$
\item $\forall k: \linspan{ a_1, \dots, a_k } = \linspan{b_1, \dots, b_k} =: U_k$
\item Die Basistransformationsmatrix $M_k$ zwischen der Basen $(a_1, \dots, a_k)$ und $(b_1, \dots, b_k)$
von $U_k$ hat positive Determinante.
\end{enumerate}
@ -2330,10 +2331,10 @@ Auch skalare Produkte können eindeutig fortgesetzt werden.
& \forall i \in [n]: \inner{c_{n+1}}{b_i} = \inner{a_{n+1}}{b_i} -
\sum\limits_{j=1}^n \inner{a_{n+1}}{b_j} \underbrace{\inner{b_j}{b_i}}_{\delta_{ij}} \\
& = \inner{a_{n+1}}{b_i}
- \inner{a_{n+1}}{b_i} = 0 \implies c_{n+1} \bot \langle b_1, \dots, b_n \rangle
- \inner{a_{n+1}}{b_i} = 0 \implies c_{n+1} \bot \linspan{ b_1, \dots, b_n }
\end{align*}
$b_{n+1} = \dfrac{c_{n+1}}{\norm{c_{n+1}}} \implies (b_1, \dots, b_{n+1})$ Orthonormalsystem mit \\
$\langle b_1, \dots, b_n \rangle = \langle a_1, \dots, a_n \rangle$
$\linspan{ b_1, \dots, b_n } = \linspan{a_1, \dots, a_n}$
\begin{align*}
& b_1 = \mu_{11} a_1 \\
& b_2 = \mu_{21} a_1 + \mu_{22} a_2 \\
@ -2447,13 +2448,13 @@ $M^\bot$ ist immer Unterraum von $V$, selbst wenn $M$ kein Unterraum ist.
\item $(b_1, \dots, b_r)$ Orthonormalbasis von $U$.\\
$(b_1, \dots, b_r, b_{r+1}, \dots, b_n)$ Orthonormalbasis von $V$. \newline
[die existiert laut Satz \ref{theo:3.1.17}] \\
Behauptung: $U^\bot = \langle b_{r+1}, \dots, b_n \rangle$ \\
Behauptung: $U^\bot = \linspan{ b_{r+1}, \dots, b_n }$ \\
Beweis: $\subseteq$: Sei $v\in U^\bot, v = \sum_{i=1}^n \lambda_i b_i$
\[
\forall i \in [r]: 0 = \inner v{b_i} = \inner{\sum_{j=1}^n \lambda_j b_j}{b_i} =
\sum_{j=1}^n \lambda_j \underbrace{\inner{b_j}{b_i}}_{\delta_{ij}} = \lambda_i
\]
$\supseteq: v\in \langle b_{r+1}, \dots, b_n \rangle \overset{!}{\implies} v \in U^\bot$ \\
$\supseteq: v\in \linspan{ b_{r+1}, \dots, b_n } \overset{!}{\implies} v \in U^\bot$ \\
$\implies \sum_{j=r+1}^n \lambda_j b_j, u = \sum_{i=1}^r \mu_i b_i \in U$ \\
$\implies \inner vu = \sum_{j=r+1}^n \lambda_j \sum_{i=1}^r \underbrace{\inner{b_j}{b_i}}_{=0}=0$ \\
$\implies$ a)
@ -2704,12 +2705,12 @@ Behauptung: $\inner fp > 0$
\item[$n=1$:] $\exists$ Eigenvektor $e_1 \in V \setminus\{0\}$ mit $\alpha(e_1) = \lambda e_1$.\\
o.B.d.A.: $\norm{e_1} = 1 \implies v$ ist Orthonormalbasis aus Eigenvektoren
\item[$n-1 \to n$:] $\exists$ Eigenvektor $e_1 \in V \setminus\{0\}$ mit $\alpha(e_1) = \lambda e_1$.\\
o.B.d.A.: $\norm{e_1} = 1 \; U= \langle e_1 \rangle ^\bot$
o.B.d.A.: $\norm{e_1} = 1 \; U= \linspan{ e_1 } ^\bot$
\begin{itemize}
\item $V = \langle e_1 \rangle \oplus U, \alpha(U) \overset{\text{!}}{\subseteq} U,
\alpha(\langle e_1 \rangle) \subseteq \overset{\checkmark}{\langle}e_1 \rangle$
\item $V = \linspan{ e_1 } \oplus U, \alpha(U) \overset{\text{!}}{\subseteq} U,
\alpha(\linspan{e_1}) \overset{\checkmark}{\subseteq} \linspan{e_1 }$
\end{itemize}
$\implies \alpha = \alpha|_{\langle e_1 \rangle} \oplus \alpha|_U$ \\
$\implies \alpha = \alpha|_{\linspan{ e_1 }} \oplus \alpha|_U$ \\
Sei $v \in U\implies 0 = \inner{v}{e_1}
\;\;\; [e_1 \in \eig_\alpha(\lambda) \iff e_1 \in \eig_{\alpha^*}(\overline\lambda)]$
\begin{align*}
@ -3031,8 +3032,8 @@ Das sind genau die Längen- und Winkelerhaltenden Abbildungen.
Sei $l := \frac{v}{\norm v} \overset{\text{d)}}{\implies} \alpha(l)$ ist ONS
$\implies \norm{\alpha(l)} = 1 \implies \norm{\alpha(v)} = \norm v$. \\
Es folgt $\inner{\alpha(v)}{\alpha(w)} = \inner vw \checkmark$.
\item $v, w$ linear unabhängig. Sei $(e_1, e_2)$ ONS mit $\langle\{e_1, e_2\}\rangle
= \langle\{ v, w \}\rangle$.
\item $v, w$ linear unabhängig. Sei $(e_1, e_2)$ ONS mit $\linspan{\{e_1, e_2\}}
= \linspan{\{ v, w \}}$.
(Gram-Schmidt liefert Existenz)
\begin{align}
\implies & (\alpha(e_1), \alpha(e_2)) \text{ ist ONS} \nonumber \\ \nonumber
@ -3857,8 +3858,8 @@ Sei ${}_B M(\alpha)_B = \begin{pmatrix}s_1 \\
& & & 0 \\
& & & & \ddots \\
& & & & & 0\end{pmatrix}$ \\
$\implies \ker(\alpha) = \langle b_{r+1}, \dots, b_n \rangle_V, \im(\alpha) = \langle b'_1, \dots b_r' \rangle_W,
\ker(\alpha)^\bot = \langle b_1, \dots, b_r \rangle_V$
$\implies \ker(\alpha) = \linspan{ b_{r+1}, \dots, b_n }_V, \im(\alpha) = \linspan{b'_1, \dots b_r'},
\ker(\alpha)^\bot = \linspan{ b_1, \dots, b_r }_V$
\begin{align*}
\alpha: V & \to
@ -3971,7 +3972,7 @@ Wir haben eine echte Verallgemeinerung.
& = \inner{\nu(v) - \nu(v)}{w} = 0
\end{align*}
\end{enumerate}
$\implies (b_1, \dots, b_n)$ ONB mit $\langle b_{r+1}, \dots, b_n \rangle_V = \ker(\nu) =
$\implies (b_1, \dots, b_n)$ ONB mit $\linspan{ b_{r+1}, \dots, b_n }_V = \ker(\nu) =
\ker(\alpha)$
\begin{align*}
& \sum_{i=1}^n \lambda_i b_i & & \overset{\nu}{\mapsto} \sum_{i=1}^r \lambda_i b_i
@ -4052,7 +4053,7 @@ Wir haben eine echte Verallgemeinerung.
\end{pmatrix}
\end{align*}
Es gilt $\ker(\alpha^\dagger) = \ker(\nu') = \im(\alpha)^\bot
= \langle b_{r+1}', \dots, b_r' \rangle \implies a^\dagger_{i\_} = 0 \forall i > r$
= \linspan{ b_{r+1}', \dots, b_r' } \implies a^\dagger_{i\_} = 0 \forall i > r$
\[
\implies {}_B M(\alpha^\dagger)_{B'} =
\begin{pmatrix}
@ -4102,7 +4103,7 @@ Sei $Ax = b$ Lineares Gleichungssystem mit $L(A,b) = \emptyset$. Versuche ein $x
$\norm{Ax-b}_{\K^m}$ minimal, $\norm{\alpha(v) - w}$ minimal.
Sei $b_1, \dots, b_n$ Orthonormalbasis von $V$, \\
$b_1', \dots, b_m'$ ONB von $W$.
$\langle b_1, \dots, b_r \rangle = \ker(\alpha)^\bot, \langle b_1', \dots b_r'\rangle = \im(\alpha)$
$\linspan{ b_1, \dots, b_r } = \ker(\alpha)^\bot, \linspan {b_1', \dots b_r'} = \im(\alpha)$
$v = \sum_{i=1}^n \lambda_i b_i \implies \alpha(v) = \sum_{i=1}^r s_i \lambda_i b_i'$
$w = \sum_{i=1}^n \mu_i b_i'$