diff --git a/LinAlg2.tex b/LinAlg2.tex index 89dc5ed..6326bdb 100644 --- a/LinAlg2.tex +++ b/LinAlg2.tex @@ -2038,7 +2038,7 @@ Auch skalare Produkte können eindeutig fortgesetzt werden. \begin{satz} Sei $B=(b_1, \dots, b_n)$ Orthonormalbasis von $V, n\in \mathbb{N}\cup \{\infty\}$. - Dan gilt für alle $v, w \in V$ und $(\lambda_1, \dots, \lambda_n) = {}_B \Phi(v), (\mu_1, \dots, \mu_n) + Dann gilt für alle $v, w \in V$ und $(\lambda_1, \dots, \lambda_n) = {}_B \Phi(v), (\mu_1, \dots, \mu_n) = {}_B\Phi(w)$: \[ \inner vw = \sum_{i=1}^n \lambda_i \overline{\mu_i} @@ -2057,4 +2057,80 @@ Auch skalare Produkte können eindeutig fortgesetzt werden. \end{proof} \end{satz} +\begin{satz}[Gram-Schmidt Orthonormalisierungsverfahren] + \label{theo:3.1.16} + Sei $(a_1, a_2, \dots) \subseteq V$ linear unabhängig. Dann existiert genau ein Orthonormalsystem + $(b_1, b_2, \dots)$ mit + \begin{enumerate}[label=\roman*)] + \item $\forall k: \langle a_1, \dots, a_k \rangle = \langle b_1, \dots b_k \rangle =: U_k$ + \item Die Basistransformationsmatrix $M_k$ zwischen der Basen $(a_1, \dots, a_k)$ und $(b_1, \dots, b_k)$ + von $U_k$ hat positive Determinante. + \end{enumerate} + \begin{proof} + $b_1, b_2, \dots$ werden induktiv definiert. + \begin{itemize} + \item $b_1 = \dfrac{a_1}{\norm{a_1}}, M_1 = \begin{pmatrix}\dfrac{1}{\norm{a_1}}\end{pmatrix}$ \\ + Eindeutigkeit: Sei $\tilde b_1$ mit i), ii) $\implies \tilde b_1 = c \cdot a_1, 1 = \norm{\tilde b_1} + = \norm{c \cdot a_1} = \lvert c \rvert \norm{a_1}$ \\ + $ \implies \lvert c \rvert = \dfrac{1}{\norm{a_1}} \implies \tilde M_k =(c)$ + \item $(b_1, \dots, b_n)$ schon konstruiert mit i), ii) \\ + Sei $c_{n+1} := a_{n+1} - \sum\limits_{j=1}^n \inner{a_{n+1}}{b_j} b_j$ + \begin{align*} + & \forall i \in [n]: \inner{c_{n+1}}{b_i} = \inner{a_{n+1}}{b_i} - + \sum\limits_{j=1}^n \inner{a_{n+1}}{b_j} \underbrace{\inner{b_j}{b_i}}_{\delta_{ij}} \\ + & = \inner{a_{n+1}}{b_i} + - \inner{a_{n+1}}{b_i} = 0 \implies c_{n+1} \bot \langle b_1, \dots, b_n \rangle + \end{align*} + $b_{n+1} = \dfrac{c_{n+1}}{\norm{c_{n+1}}} \implies (b_1, \dots, b_{n+1})$ Orthonormalsystem mit \\ + $\langle b_1, \dots, \rangle = \langle a_1, \dots, a_n \rangle$ + \begin{align*} + & b_1 = \mu_{11} a_1 \\ + & b_2 = \mu_{21} a_1 + \mu_{22} a_2 \\ + & b_3 = \mu_{31} a_1 + \mu_{32} a_2 + \mu_{33} a_3 \\ + & \vdots \\ + & b_n = \mu_{n1} a_1 + \dots + \mu_{nn} a_n \\ + & b_{n+1} = \mu_{n+1 1} a_1 + \dots + \mu_{n+1 n} a_n + \dfrac{1}{\norm{c_{n+1}}} a_{n+1} \\ + & \implies \det(\mu_{ij}) = \det(M_n) \cdot \dfrac{1}{\norm{c_{n+1}}} > 0 + \end{align*} + Eindeutigkeit: Sei $\tilde b_{n+1}$ ein weiterer Vektor mit i), ii) + \begin{align*} + & \implies \tilde b_{n+1} = \mu_1 b_1 + \dots + \mu_n b_n + \mu b_{n+1} \\ + & \forall i \in [n]: 0 = \inner{\tilde b_{n+1}}{b_i} = \mu_i \implies \tilde b_{n+1} = \mu b_{n+1} \\ + & 1 = \norm{\tilde b_{n+1}} = \lvert \mu \rvert \norm{b_{n+1}} = \lvert \mu \rvert \implies \lvert \mu + \rvert = 1 \\ + & \det(\tilde M_{n+1}) = \det(M_n) \cdot \mu > 0 \implies \mu = 1 \land \tilde b_{n+1} = b_{n+1} + \end{align*} + \end{itemize} + \end{proof} +\end{satz} + +\subsubsection{Beispiel} +$V = \R^4, a_1 = \begin{pmatrix} 4 \\ 2 \\ -2 \\ -1 \end{pmatrix}, + a_2 = \begin{pmatrix} 2 \\ 2 \\ -4 \\ -5 \end{pmatrix}, + a_3 = \begin{pmatrix} 0 \\ 8 \\ -2 \\ -5 \end{pmatrix}$ +\begin{align*} + & b_1 = \frac{1}{\norm{a_1}} a_1 ,\; \norm{a_1} = (4^2 + 2^2 + 2^2 + 1^2)^{\frac 12} = \sqrt{25} = 5 \\ + & = \frac 15 \begin{pmatrix} 4 \\ 2 \\ -2 \\ -1 \end{pmatrix} ,\; + \inner{a_2}{b_1} = \frac 15 \begin{pmatrix} 2 \\ 2 \\ -4 \\ -5 \end{pmatrix} \cdot + \begin{pmatrix} 4 \\ 2 \\ -2 \\ -1 \end{pmatrix} = \frac 15 (8 + 4 + 8 + 5)^\frac 12 = \frac{25}5 \\ + & c_2 = a_2 - \underbrace{\inner{a_2}{b_1}}_5 b_1 = \begin{pmatrix} 2 \\ 2 \\ -4 \\ -5 \end{pmatrix} - + \begin{pmatrix} 4 \\ 2 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ -2 \\ -4 \end{pmatrix} \\ + & \norm c_2 = (4 + 4 + 16) = \sqrt{24} \\ + & \implies b_2 = \frac{1}{\sqrt{24}} \begin{pmatrix} -2 \\ 0 \\ -2 \\ -4 \end{pmatrix} \\ + & c_3 = a_3 - \inner{a_3}{b_1} b_1 - \inner{a_3,b_2} b_2 = \dots = + \begin{pmatrix} -2 \\ 6 \\ 2 \\ 0\end{pmatrix} \\ + & \norm{c_3} = (4 + 36 + 4)^\frac 12 = \sqrt{44} \\ + & \implies b_3 = \frac 1{\sqrt{44}} \begin{pmatrix} -2 \\ 6 \\ 2 \\ 0 \end{pmatrix} +\end{align*} + +\begin{satz} + Sei $V$ euklidischer/unitärer Vektorraum mit höchstens abzählbarer Dimension. + Dann kann jedes Orthonormalsystem zu einer Orthogonalbasis von $V$ ergänzt werden. + \begin{proof} + Sei $(b_1, \dots, b_k)$ ein Orthonormalsystem, $(b_1, \dots, b_k, a_{k+1}, \dots)$ eine Basis. + Satz \ref{theo:3.1.16} $\implies \exists b_{k+1}, b_{k+2}, \dots$ mit $(b_1, \dots, b_k, b_{k+1}, \dots)$ + Orthonormalbasis. + \end{proof} +\end{satz} + \end{document}