version 0.1.4, WIF compatible new private keys, proper bitcoin address verification, worker killing does not drops hash error, private key saved confirmation on site create

This commit is contained in:
HelloZeroNet 2015-01-20 02:47:00 +01:00
parent e3c0a02ca0
commit 3bec738595
6 changed files with 481 additions and 12 deletions

View File

@ -3,7 +3,7 @@ import ConfigParser
class Config(object):
def __init__(self):
self.version = "0.1.3"
self.version = "0.1.4"
self.parser = self.createArguments()
argv = sys.argv[:] # Copy command line arguments
argv = self.parseConfig(argv) # Add arguments from config file
@ -47,7 +47,7 @@ class Config(object):
action.add_argument('peer_port', help='Peer port to publish (default: random peer port from tracker)', default=15441, nargs='?')
# SiteVerify
action = subparsers.add_parser("siteVerify", help='Verify site files using md5: address')
action = subparsers.add_parser("siteVerify", help='Verify site files using sha512: address')
action.add_argument('address', help='Site to verify')

View File

@ -1,11 +1,12 @@
from src.lib.BitcoinECC import BitcoinECC
import hashlib
def newPrivatekey(): # Return new private key
bitcoin = BitcoinECC.Bitcoin()
bitcoin.GeneratePrivateKey()
return bitcoin.PrivateEncoding()
def newPrivatekey(uncompressed=True): # Return new private key
from src.lib.BitcoinECC import newBitcoinECC # Use new lib to generate WIF compatible addresses, but keep using the old yet for backward compatiblility issues
bitcoin = newBitcoinECC.Bitcoin()
d = bitcoin.GenerateD()
bitcoin.AddressFromD(d, uncompressed)
return bitcoin.PrivFromD(d, uncompressed)
def privatekeyToAddress(privatekey): # Return address from private key

View File

@ -37,7 +37,7 @@ def load():
# Checks if its a valid address
def isAddress(address):
return re.match("^[A-Za-z0-9]{34}$", address)
return re.match("^[A-Za-z0-9]{26,35}$", address)
# Return site and start download site files

View File

@ -32,6 +32,9 @@ class Worker:
self.task = task
task["workers_num"] += 1
buff = self.peer.getFile(task["site"].address, task["inner_path"])
if self.running == False: # Worker no longer needed or got killed
self.manager.log.debug("%s: No longer needed, returning: %s" % (self.key, task["inner_path"]))
return None
if buff: # Download ok
correct = task["site"].verifyFile(task["inner_path"], buff)
else: # Download error

View File

@ -0,0 +1,460 @@
import random
import hashlib
import base64
class GaussInt:
def __init__(self,x,y,n,p=0):
if p:
self.x=x%p
self.y=y%p
self.n=n%p
else:
self.x=x
self.y=y
self.n=n
self.p=p
def __add__(self,b):
return GaussInt(self.x+b.x,self.y+b.y,self.n,self.p)
def __sub__(self,b):
return GaussInt(self.x-b.x,self.y-b.y,self.n,self.p)
def __mul__(self,b):
return GaussInt(self.x*b.x+self.n*self.y*b.y,self.x*b.y+self.y*b.x,self.n,self.p)
def __div__(self,b):
return GaussInt((self.x*b.x-self.n*self.y*b.y)/(b.x*b.x-self.n*b.y*b.y),(-self.x*b.y+self.y*b.x)/(b.x*b.x-self.n*b.y*b.y),self.n,self.p)
def __eq__(self,b):
return self.x==b.x and self.y==b.y
def __repr__(self):
if self.p:
return "%s+%s (%d,%d)"%(self.x,self.y,self.n,self.p)
else:
return "%s+%s (%d)"%(self.x,self.y,self.n)
def __pow__(self,n):
b=Base(n,2)
t=GaussInt(1,0,self.n)
while b:
t=t*t
if b.pop():
t=self*t
return t
def Inv(self):
return GaussInt(self.x/(self.x*self.x-self.n*self.y*self.y),-self.y/(self.x*self.x-self.n*self.y*self.y),self.n,self.p)
def Eval(self):
return self.x.Eval()+self.y.Eval()*math.sqrt(self.n)
def Cipolla(a,p):
b=0
while pow((b*b-a)%p,(p-1)/2,p)==1:
b+=1
return (GaussInt(b,1,b**2-a,p)**((p+1)/2)).x
def InvMod(a,n):
m=[]
s=n
while n:
m.append(a/n)
(a,n)=(n,a%n)
u=1
v=0
while m:
(u,v)=(v,u-m.pop()*v)
return u%s
def Base(n,b):
l=[]
while n:
l.append(n%b)
n/=b
return l
def MsgMagic(message):
return "\x18Bitcoin Signed Message:\n"+chr(len(message))+message
def Hash(m,method):
h=hashlib.new(method)
h.update(m)
return h.digest()
def b58encode(v):
#Encode a byte string to the Base58
digit="123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"
base=len(digit)
val=0
for c in v:
val*=256
val+=ord(c)
result=""
while val:
(val,mod)=divmod(val,base)
result=digit[mod]+result
pad=0
for c in v:
if c=="\x00":
pad+=1
else:
break
return (digit[0]*pad)+result
def b58decode(v):
#Decode a Base58 string to byte string
digit="123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"
base=len(digit)
val=0
for c in v:
val*=base
val+=digit.find(c)
result=""
while val:
(val,mod)=divmod(val,256)
result=chr(mod)+result
pad=0
for c in v:
if c==digit[0]:
pad+=1
else:
break
return "\x00"*pad+result
def Byte2Int(b):
n=0
for x in b:
n*=256
n+=ord(x)
return n
def Byte2Hex(b):
#Convert a byte string to hex number
out=""
for x in b:
y=hex(ord(x))[2:]
if len(y)==1:
y="0"+y
out+="%2s"%y
return out
def Int2Byte(n,b):
#Convert a integer to a byte string of length b
out=""
for _ in range(b):
(n,m)=divmod(n,256)
out=chr(m)+out
return out
class EllipticCurvePoint:
#Main class
#It's a point on an Elliptic Curve
def __init__(self,x,a,b,p,n=0):
#We store the coordinate in x and the elliptic curve parameter.
#x is of length 3. This is the 3 projective coordinates of the point.
self.x=x[:]
self.a=a
self.b=b
self.p=p
self.n=n
def __add__(self,y):
#The main function to add self and y
#It uses the formulas I derived in projective coordinates.
#Projectives coordinates are more efficient than the usual (x,y) coordinates
#because we don't need to compute inverse mod p, which is faster.
z=EllipticCurvePoint([0,0,0],self.a,self.b,self.p)
if self==y:
d=(2*self.x[1]*self.x[2])%self.p
d3=pow(d,3,self.p)
n=(3*pow(self.x[0],2,self.p)+self.a*pow(self.x[2],2,self.p))%self.p
z.x[0]=(pow(n,2,self.p)*d*self.x[2]-2*d3*self.x[0])%self.p
z.x[1]=(3*self.x[0]*n*pow(d,2,self.p)-pow(n,3,self.p)*self.x[2]-self.x[1]*d3)%self.p
z.x[2]=(self.x[2]*d3)%self.p
else:
d=(y.x[0]*self.x[2]-y.x[2]*self.x[0])%self.p
d3=pow(d,3,self.p)
n=(y.x[1]*self.x[2]-self.x[1]*y.x[2])%self.p
z.x[0]=(y.x[2]*self.x[2]*pow(n,2,self.p)*d-d3*(y.x[2]*self.x[0]+y.x[0]*self.x[2]))%self.p
z.x[1]=(pow(d,2,self.p)*n*(2*self.x[0]*y.x[2]+y.x[0]*self.x[2])-pow(n,3,self.p)*self.x[2]*y.x[2]-self.x[1]*d3*y.x[2])%self.p
z.x[2]=(self.x[2]*d3*y.x[2])%self.p
return z
def __mul__(self,n):
#The fast multiplication of point n times by itself.
b=Base(n,2)
t=EllipticCurvePoint(self.x,self.a,self.b,self.p)
b.pop()
while b:
t+=t
if b.pop():
t+=self
return t
def __repr__(self):
#print a point in (x,y) coordinate.
return "x=%d\ny=%d\n"%((self.x[0]*InvMod(self.x[2],self.p))%self.p,(self.x[1]*InvMod(self.x[2],self.p))%self.p)
def __eq__(self,y):
#Does self==y ?
#It computes self cross product with x and check if the result is 0.
return self.x[0]*y.x[1]==self.x[1]*y.x[0] and self.x[1]*y.x[2]==self.x[2]*y.x[1] and self.x[2]*y.x[0]==self.x[0]*y.x[2] and self.a==y.a and self.b==y.b and self.p==y.p
def __ne__(self,y):
#Does self!=x ?
return not (self == y)
def Normalize(self):
#Transform projective coordinates of self to the usual (x,y) coordinates.
if self.x[2]:
self.x[0]=(self.x[0]*InvMod(self.x[2],self.p))%self.p
self.x[1]=(self.x[1]*InvMod(self.x[2],self.p))%self.p
self.x[2]=1
elif self.x[1]:
self.x[0]=(self.x[0]*InvMod(self.x[1],self.p))%self.p
self.x[1]=1
elif self.x[0]:
self.x[0]=1
else:
raise Exception
def Check(self):
#Is self on the curve ?
return (self.x[0]**3+self.a*self.x[0]*self.x[2]**2+self.b*self.x[2]**3-self.x[1]**2*self.x[2])%self.p==0
def CryptAddr(self,filename,password,Address):
txt=""
for tag in Address:
(addr,priv)=Address[tag]
if priv:
txt+="%s\t%s\t%s\n"%(tag,addr,priv)
else:
txt+="%s\t%s\t\n"%(tag,addr)
txt+="\x00"*(15-(len(txt)-1)%16)
password+="\x00"*(15-(len(password)-1)%16)
crypt=twofish.Twofish(password).encrypt(txt)
f=open(filename,"wb")
f.write(crypt)
f.close()
def GenerateD(self):
#Generate a private key. It's just a random number between 1 and n-1.
#Of course, this function isn't cryptographically secure.
#Don't use it to generate your key. Use a cryptographically secure source of randomness instead.
#return random.randint(1,self.n-1)
return random.SystemRandom().randint(1,self.n-1) # Better random fix
def CheckECDSA(self,sig,message,Q):
#Check a signature (r,s) of the message m using the public key self.Q
# and the generator which is self.
#This is not the one used by Bitcoin because the public key isn't known;
# only a hash of the public key is known. See the function VerifyMessageFromAddress.
(r,s)=sig
if Q.x[2]==0:
return False
if not Q.Check():
return False
if (Q*self.n).x[2]!=0:
return False
if r<1 or r>self.n-1 or s<1 or s>self.n-1:
return False
z=Byte2Int(Hash(Hash(MsgMagic(message),"SHA256"),"SHA256"))
w=InvMod(s,self.n)
u1=(z*w)%self.n
u2=(r*w)%self.n
R=self*u1+Q*u2
R.Normalize()
return (R.x[0]-r)%self.n==0
def SignMessage(self,message,priv):
#Sign a message. The private key is self.d.
(d,uncompressed)=self.DFromPriv(priv)
z=Byte2Int(Hash(Hash(MsgMagic(message),"SHA256"),"SHA256"))
r=0
s=0
while not r or not s:
#k=random.randint(1,self.n-1)
k=random.SystemRandom().randint(1,self.n-1) # Better random fix
R=self*k
R.Normalize()
r=R.x[0]%self.n
s=(InvMod(k,self.n)*(z+r*d))%self.n
val=27
if not uncompressed:
val+=4
return base64.standard_b64encode(chr(val)+Int2Byte(r,32)+Int2Byte(s,32))
def VerifyMessageFromAddress(self,addr,message,sig):
#Check a signature (r,s) for the message m signed by the Bitcoin
# address "addr".
sign=base64.standard_b64decode(sig)
(r,s)=(Byte2Int(sign[1:33]),Byte2Int(sign[33:65]))
z=Byte2Int(Hash(Hash(MsgMagic(message),"SHA256"),"SHA256"))
val=ord(sign[0])
if val<27 or val>=35:
return False
if val>=31:
uncompressed=False
val-=4
else:
uncompressed=True
x=r
y2=(pow(x,3,self.p) + self.a*x + self.b) % self.p
y=Cipolla(y2,self.p)
for _ in range(2):
kG=EllipticCurvePoint([x,y,1],self.a,self.b,self.p,self.n)
mzG=self*((-z)%self.n)
Q=(kG*s+mzG)*InvMod(r,self.n)
if self.AddressFromPublicKey(Q,uncompressed)==addr:
return True
y=self.p-y
return False
def AddressFromPrivate(self,priv):
#Transform a private key to a bitcoin address.
(d,uncompressed)=self.DFromPriv(priv)
return self.AddressFromD(d,uncompressed)
def PrivFromD(self,d,uncompressed):
#Encode a private key self.d to base58 encoding.
p=Int2Byte(d,32)
p="\x80"+p
if not uncompressed:
p+=chr(1)
cs=Hash(Hash(p,"SHA256"),"SHA256")[:4]
return b58encode(p+cs)
def DFromPriv(self,priv):
uncompressed=(len(priv)==51)
priv=b58decode(priv)
if uncompressed:
priv=priv[:-4]
else:
priv=priv[:-5]
return (Byte2Int(priv[1:]),uncompressed)
def AddressFromPublicKey(self,Q,uncompressed):
#Find the bitcoin address from the public key self.Q
#We do normalization to go from the projective coordinates to the usual
# (x,y) coordinates.
Q.Normalize()
if uncompressed:
pk=chr(4)+Int2Byte(Q.x[0],32)+Int2Byte(Q.x[1],32)
else:
pk=chr(2+Q.x[1]%2)+Int2Byte(Q.x[0],32)
kh=chr(0)+Hash(Hash(pk,"SHA256"),"RIPEMD160")
cs=Hash(Hash(kh,"SHA256"),"SHA256")[:4]
return b58encode(kh+cs)
def AddressFromD(self,d,uncompressed):
#Computes a bitcoin address given the private key self.d.
return self.AddressFromPublicKey(self*d,uncompressed)
def IsValid(self,addr):
adr=b58decode(addr)
kh=adr[:-4]
cs=adr[-4:]
verif=Hash(Hash(kh,"SHA256"),"SHA256")[:4]
return cs==verif
def AddressGenerator(self,k,uncompressed=True):
#Generate Bitcoin address and write them in the multibit format.
#Change the date as you like.
liste={}
for i in range(k):
d=self.GenerateD()
addr=self.AddressFromD(d,uncompressed)
priv=self.PrivFromD(d,uncompressed)
liste[i]=[addr,priv]
print "%s %s"%(addr, priv)
return liste
def Bitcoin():
a=0
b=7
p=2**256-2**32-2**9-2**8-2**7-2**6-2**4-1
Gx=int("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",16)
Gy=int("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",16)
n=int("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141",16)
return EllipticCurvePoint([Gx,Gy,1],a,b,p,n)
def main():
bitcoin=Bitcoin()
#Generate an adress from the private key
privkey = "PrivatekeyinBase58"
adr = bitcoin.AddressFromPrivate(privkey)
print "Address : ", adr
#Sign a message with the current address
m="Hello World"
sig=bitcoin.SignMessage("Hello World", privkey)
#Verify the message using only the bitcoin adress, the signature and the message.
#Not using the public key as it is not needed.
if bitcoin.VerifyMessageFromAddress(adr,m,sig):
print "Message verified"
#Generate some addresses
print "Here are some adresses and associated private keys"
bitcoin.AddressGenerator(10)
if __name__ == "__main__": main()

View File

@ -73,11 +73,16 @@ def siteCreate():
logging.info("Generating new privatekey...")
from src.Crypt import CryptBitcoin
privatekey = CryptBitcoin.newPrivatekey()
logging.info("-----------------------------------------------------------")
logging.info("Site private key: %s (save it, required to modify the site)" % privatekey)
logging.info("----------------------------------------------------------------------")
logging.info("Site private key: %s" % privatekey)
logging.info(" !!! ^ Save it now, required to modify the site ^ !!!")
address = CryptBitcoin.privatekeyToAddress(privatekey)
logging.info("Site address: %s" % address)
logging.info("-----------------------------------------------------------")
logging.info("Site address: %s" % address)
logging.info("----------------------------------------------------------------------")
while True:
if raw_input("? Have you secured your private key? (yes, no) > ").lower() == "yes": break
else: logging.info("Please, secure it now, you going to need it to modify your site!")
logging.info("Creating directory structure...")
from Site import Site