""" This code is public domain. Everyone has the right to do whatever they want with it for any purpose. In case your jurisdiction does not consider the above disclaimer valid or enforceable, here's an MIT license for you: The MIT License (MIT) Copyright (c) 2013 Vitalik Buterin Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from ._util import inverse class JacobianCurve: def __init__(self, p, n, a, b, g): self.p = p self.n = n self.a = a self.b = b self.g = g self.n_length = len(bin(self.n).replace("0b", "")) def isinf(self, p): return p[0] == 0 and p[1] == 0 def to_jacobian(self, p): return p[0], p[1], 1 def jacobian_double(self, p): if not p[1]: return 0, 0, 0 ysq = (p[1] ** 2) % self.p s = (4 * p[0] * ysq) % self.p m = (3 * p[0] ** 2 + self.a * p[2] ** 4) % self.p nx = (m ** 2 - 2 * s) % self.p ny = (m * (s - nx) - 8 * ysq ** 2) % self.p nz = (2 * p[1] * p[2]) % self.p return nx, ny, nz def jacobian_add(self, p, q): if not p[1]: return q if not q[1]: return p u1 = (p[0] * q[2] ** 2) % self.p u2 = (q[0] * p[2] ** 2) % self.p s1 = (p[1] * q[2] ** 3) % self.p s2 = (q[1] * p[2] ** 3) % self.p if u1 == u2: if s1 != s2: return (0, 0, 1) return self.jacobian_double(p) h = u2 - u1 r = s2 - s1 h2 = (h * h) % self.p h3 = (h * h2) % self.p u1h2 = (u1 * h2) % self.p nx = (r ** 2 - h3 - 2 * u1h2) % self.p ny = (r * (u1h2 - nx) - s1 * h3) % self.p nz = (h * p[2] * q[2]) % self.p return (nx, ny, nz) def from_jacobian(self, p): z = inverse(p[2], self.p) return (p[0] * z ** 2) % self.p, (p[1] * z ** 3) % self.p def jacobian_multiply(self, a, n, secret=False): if a[1] == 0 or n == 0: return 0, 0, 1 if n == 1: return a if n < 0 or n >= self.n: return self.jacobian_multiply(a, n % self.n, secret) half = self.jacobian_multiply(a, n // 2, secret) half_sq = self.jacobian_double(half) if secret: # A constant-time implementation half_sq_a = self.jacobian_add(half_sq, a) if n % 2 == 0: result = half_sq if n % 2 == 1: result = half_sq_a return result else: if n % 2 == 0: return half_sq return self.jacobian_add(half_sq, a) def jacobian_shamir(self, a, n, b, m): ab = self.jacobian_add(a, b) if n < 0 or n >= self.n: n %= self.n if m < 0 or m >= self.n: m %= self.n res = 0, 0, 1 # point on infinity for i in range(self.n_length - 1, -1, -1): res = self.jacobian_double(res) has_n = n & (1 << i) has_m = m & (1 << i) if has_n: if has_m == 0: res = self.jacobian_add(res, a) if has_m != 0: res = self.jacobian_add(res, ab) else: if has_m == 0: res = self.jacobian_add(res, (0, 0, 1)) # Try not to leak if has_m != 0: res = self.jacobian_add(res, b) return res def fast_multiply(self, a, n, secret=False): return self.from_jacobian(self.jacobian_multiply(self.to_jacobian(a), n, secret)) def fast_add(self, a, b): return self.from_jacobian(self.jacobian_add(self.to_jacobian(a), self.to_jacobian(b))) def fast_shamir(self, a, n, b, m): return self.from_jacobian(self.jacobian_shamir(self.to_jacobian(a), n, self.to_jacobian(b), m)) def is_on_curve(self, a): x, y = a # Simple arithmetic check if (pow(x, 3, self.p) + self.a * x + self.b) % self.p != y * y % self.p: return False # nP = point-at-infinity return self.isinf(self.jacobian_multiply(self.to_jacobian(a), self.n))