LumixEngine/src/renderer/pipeline.cpp
2015-09-03 14:25:12 +02:00

1908 lines
50 KiB
C++

#include "pipeline.h"
#include "renderer/pipeline.h"
#include "core/array.h"
#include "core/associative_array.h"
#include "core/crc32.h"
#include "core/frustum.h"
#include "core/fs/ifile.h"
#include "core/fs/file_system.h"
#include "core/json_serializer.h"
#include "core/lifo_allocator.h"
#include "core/log.h"
#include "core/lua_wrapper.h"
#include "core/profiler.h"
#include "core/resource_manager.h"
#include "core/resource_manager_base.h"
#include "core/static_array.h"
#include "core/string.h"
#include "engine.h"
#include "plugin_manager.h"
#include "renderer/frame_buffer.h"
#include "renderer/geometry.h"
#include "renderer/material.h"
#include "renderer/model.h"
#include "renderer/model_instance.h"
#include "renderer/renderer.h"
#include "renderer/shader.h"
#include "renderer/terrain.h"
#include "renderer/texture.h"
#include "renderer/transient_geometry.h"
#include "universe/universe.h"
#include <bgfx.h>
namespace Lumix
{
struct PipelineImpl;
struct PipelineInstanceImpl;
static const uint32_t LIGHT_DIR_HASH = crc32("light_dir");
static const uint32_t TERRAIN_SCALE_HASH = crc32("terrain_scale");
static const uint32_t BONE_MATRICES_HASH = crc32("bone_matrices");
static const uint32_t CAMERA_POS_HASH = crc32("camera_pos");
static const uint32_t MAP_SIZE_HASH = crc32("map_size");
static const uint32_t POINT_LIGHT_HASH = crc32("point_light");
static const uint32_t BRUSH_SIZE_HASH = crc32("brush_size");
static const uint32_t BRUSH_POSITION_HASH = crc32("brush_position");
static const char* TEX_COLOR_UNIFORM = "u_texColor";
static float split_distances[] = {0.01f, 5, 20, 100, 300};
static const float SHADOW_CAM_NEAR = 0.1f;
static const float SHADOW_CAM_FAR = 10000.0f;
class InstanceData
{
public:
static const int MAX_INSTANCE_COUNT = 32;
public:
const bgfx::InstanceDataBuffer* m_buffer;
int m_instance_count;
RenderableMesh m_mesh;
};
class BaseVertex
{
public:
float m_x, m_y, m_z;
uint32_t m_rgba;
float m_u;
float m_v;
static bgfx::VertexDecl s_vertex_decl;
};
bgfx::VertexDecl BaseVertex::s_vertex_decl;
struct PipelineImpl : public Pipeline
{
PipelineImpl(const Path& path,
ResourceManager& resource_manager,
IAllocator& allocator)
: Pipeline(path, resource_manager, allocator)
, m_allocator(allocator)
, m_framebuffers(allocator)
, m_lua_state(nullptr)
{
}
Renderer& getRenderer()
{
return static_cast<PipelineManager*>(
m_resource_manager.get(ResourceManager::PIPELINE))
->getRenderer();
}
virtual ~PipelineImpl() override
{
if (m_lua_state)
{
lua_close(m_lua_state);
}
ASSERT(isEmpty());
}
virtual void doUnload(void) override
{
if (m_lua_state)
{
lua_close(m_lua_state);
m_lua_state = nullptr;
}
onEmpty();
}
void parseRenderbuffers(lua_State* L, FrameBuffer::Declaration& decl)
{
decl.m_renderbuffers_count = 0;
int len = (int)lua_rawlen(L, -1);
for (int i = 0; i < len; ++i)
{
if (lua_rawgeti(L, -1, 1 + i) == LUA_TTABLE)
{
FrameBuffer::RenderBuffer& buf =
decl.m_renderbuffers[decl.m_renderbuffers_count];
buf.parse(L);
++decl.m_renderbuffers_count;
}
lua_pop(L, 1);
}
}
void parseFramebuffers(lua_State* L)
{
if (lua_getglobal(L, "framebuffers") == LUA_TTABLE)
{
int len = (int)lua_rawlen(L, -1);
m_framebuffers.resize(len);
for (int i = 0; i < len; ++i)
{
if (lua_rawgeti(L, -1, 1 + i) == LUA_TTABLE)
{
FrameBuffer::Declaration& decl = m_framebuffers[i];
if (lua_getfield(L, -1, "name") == LUA_TSTRING)
{
copyString(decl.m_name,
sizeof(decl.m_name),
lua_tostring(L, -1));
}
lua_pop(L, 1);
if (lua_getfield(L, -1, "width") == LUA_TNUMBER)
{
decl.m_width = (int)lua_tointeger(L, -1);
}
lua_pop(L, 1);
if (lua_getfield(L, -1, "height") == LUA_TNUMBER)
{
decl.m_height = (int)lua_tointeger(L, -1);
}
lua_pop(L, 1);
if (lua_getfield(L, -1, "renderbuffers") == LUA_TTABLE)
{
parseRenderbuffers(L, decl);
}
lua_pop(L, 1);
}
lua_pop(L, 1);
}
}
lua_pop(L, 1);
}
void registerCFunction(const char* name, lua_CFunction function)
{
lua_pushcfunction(m_lua_state, function);
lua_setglobal(m_lua_state, name);
}
void registerCFunctions();
virtual void
loaded(FS::IFile& file, bool success, FS::FileSystem& fs) override
{
if (m_lua_state)
{
lua_close(m_lua_state);
m_lua_state = nullptr;
}
if (success)
{
m_lua_state = luaL_newstate();
luaL_openlibs(m_lua_state);
bool errors = luaL_loadbuffer(m_lua_state,
(const char*)file.getBuffer(),
file.size(),
"") != LUA_OK;
errors =
errors || lua_pcall(m_lua_state, 0, LUA_MULTRET, 0) != LUA_OK;
if (errors)
{
g_log_error.log("lua") << getPath().c_str() << ": "
<< lua_tostring(m_lua_state, -1);
lua_pop(m_lua_state, 1);
onFailure();
}
else
{
parseFramebuffers(m_lua_state);
registerCFunctions();
decrementDepCount();
}
}
else
{
onFailure();
}
}
lua_State* m_lua_state;
IAllocator& m_allocator;
Array<FrameBuffer::Declaration> m_framebuffers;
};
struct PipelineInstanceImpl : public PipelineInstance
{
PipelineInstanceImpl(Pipeline& pipeline, IAllocator& allocator)
: m_source(static_cast<PipelineImpl&>(pipeline))
, m_custom_commands_handlers(allocator)
, m_allocator(allocator)
, m_tmp_terrains(allocator)
, m_tmp_grasses(allocator)
, m_tmp_meshes(allocator)
, m_framebuffers(allocator)
, m_uniforms(allocator)
, m_global_textures(allocator)
, m_frame_allocator(allocator, 10 * 1024 * 1024)
, m_renderer(static_cast<PipelineImpl&>(pipeline).getRenderer())
, m_screen_space_material(nullptr)
, m_default_framebuffer(nullptr)
, m_debug_line_material(nullptr)
, m_debug_flags(BGFX_DEBUG_TEXT)
, m_point_light_shadowmaps(allocator)
{
m_terrain_scale_uniform =
bgfx::createUniform("u_terrainScale", bgfx::UniformType::Vec4);
m_rel_camera_pos_uniform =
bgfx::createUniform("u_relCamPos", bgfx::UniformType::Vec4);
m_terrain_params_uniform =
bgfx::createUniform("u_terrainParams", bgfx::UniformType::Vec4);
m_fog_color_density_uniform =
bgfx::createUniform("u_fogColorDensity", bgfx::UniformType::Vec4);
m_light_pos_radius_uniform =
bgfx::createUniform("u_lightPosRadius", bgfx::UniformType::Vec4);
m_light_color_uniform =
bgfx::createUniform("u_lightRgbInnerR", bgfx::UniformType::Vec4);
m_light_dir_fov_uniform =
bgfx::createUniform("u_lightDirFov", bgfx::UniformType::Vec4);
m_light_specular_uniform =
bgfx::createUniform("u_lightSpecular", bgfx::UniformType::Mat4, 64);
m_ambient_color_uniform =
bgfx::createUniform("u_ambientColor", bgfx::UniformType::Vec4);
m_shadowmap_matrices_uniform = bgfx::createUniform(
"u_shadowmapMatrices", bgfx::UniformType::Mat4, 4);
m_bone_matrices_uniform =
bgfx::createUniform("u_boneMatrices", bgfx::UniformType::Mat4, 64);
m_specular_shininess_uniform = bgfx::createUniform(
"u_materialSpecularShininess", bgfx::UniformType::Vec4);
m_terrain_matrix_uniform =
bgfx::createUniform("u_terrainMatrix", bgfx::UniformType::Mat4);
ResourceManagerBase* material_manager =
pipeline.getResourceManager().get(ResourceManager::MATERIAL);
m_screen_space_material = static_cast<Material*>(material_manager->load(
Lumix::Path("models/editor/screen_space.mat")));
m_debug_line_material = static_cast<Material*>(material_manager->load(
Lumix::Path("models/editor/debug_line.mat")));
m_scene = nullptr;
m_width = m_height = -1;
pipeline.onLoaded<PipelineInstanceImpl,
&PipelineInstanceImpl::sourceLoaded>(this);
}
~PipelineInstanceImpl()
{
ResourceManagerBase* material_manager =
m_source.getResourceManager().get(ResourceManager::MATERIAL);
material_manager->unload(*m_screen_space_material);
material_manager->unload(*m_debug_line_material);
bgfx::destroyUniform(m_terrain_matrix_uniform);
bgfx::destroyUniform(m_specular_shininess_uniform);
bgfx::destroyUniform(m_bone_matrices_uniform);
bgfx::destroyUniform(m_terrain_scale_uniform);
bgfx::destroyUniform(m_rel_camera_pos_uniform);
bgfx::destroyUniform(m_terrain_params_uniform);
bgfx::destroyUniform(m_fog_color_density_uniform);
bgfx::destroyUniform(m_light_pos_radius_uniform);
bgfx::destroyUniform(m_light_color_uniform);
bgfx::destroyUniform(m_light_dir_fov_uniform);
bgfx::destroyUniform(m_ambient_color_uniform);
bgfx::destroyUniform(m_shadowmap_matrices_uniform);
bgfx::destroyUniform(m_light_specular_uniform);
for (int i = 0; i < m_uniforms.size(); ++i)
{
bgfx::destroyUniform(m_uniforms[i]);
}
m_source.getObserverCb()
.unbind<PipelineInstanceImpl, &PipelineInstanceImpl::sourceLoaded>(
this);
m_source.getResourceManager()
.get(ResourceManager::PIPELINE)
->unload(m_source);
for (int i = 0; i < m_framebuffers.size(); ++i)
{
m_allocator.deleteObject(m_framebuffers[i]);
}
m_allocator.deleteObject(m_default_framebuffer);
}
virtual void setViewProjection(const Matrix& mtx, int width, int height) override
{
bgfx::setViewRect(m_view_idx, 0, 0, width, height);
bgfx::setViewTransform(m_view_idx, nullptr, &mtx.m11);
}
void finishInstances(int idx)
{
InstanceData& data = m_instances_data[idx];
if (!data.m_buffer) return;
const RenderableMesh& info = data.m_mesh;
const Mesh& mesh = *info.m_mesh;
const Model& model = *info.m_model;
const Geometry& geometry = model.getGeometry();
const Material* material = mesh.getMaterial();
const uint16_t stride = mesh.getVertexDefinition().getStride();
ShaderInstance& shader_instance =
info.m_mesh->getMaterial()->getShaderInstance();
setMaterial(material);
bgfx::setVertexBuffer(geometry.getAttributesArrayID(),
mesh.getAttributeArrayOffset() / stride,
mesh.getAttributeArraySize() / stride);
bgfx::setIndexBuffer(geometry.getIndicesArrayID(),
mesh.getIndicesOffset(),
mesh.getIndexCount());
bgfx::setState(m_render_state | material->getRenderStates());
bgfx::setInstanceDataBuffer(data.m_buffer, data.m_instance_count);
bgfx::submit(m_view_idx, shader_instance.m_program_handles[m_pass_idx]);
data.m_buffer = nullptr;
data.m_instance_count = 0;
data.m_mesh.m_mesh->setInstanceIdx(-1);
}
void applyCamera(const char* slot)
{
ComponentIndex cmp = getScene()->getCameraInSlot(slot);
if (cmp < 0) return;
getScene()->setCameraSize(cmp, m_width, m_height);
m_applied_camera = cmp;
m_camera_frustum = getScene()->getCameraFrustum(cmp);
Matrix projection_matrix;
float fov = getScene()->getCameraFOV(cmp);
float near_plane = getScene()->getCameraNearPlane(cmp);
float far_plane = getScene()->getCameraFarPlane(cmp);
float ratio = float(m_width) / m_height;
projection_matrix.setPerspective(
Math::degreesToRadians(fov), ratio, near_plane, far_plane);
Universe& universe = getScene()->getUniverse();
Matrix mtx = universe.getMatrix(getScene()->getCameraEntity(cmp));
mtx.fastInverse();
bgfx::setViewTransform(m_view_idx, &mtx.m11, &projection_matrix.m11);
bgfx::setViewRect(
m_view_idx, 0, 0, (uint16_t)m_width, (uint16_t)m_height);
}
void finishInstances()
{
for (int i = 0; i < lengthOf(m_instances_data); ++i)
{
finishInstances(i);
}
m_instance_data_idx = 0;
}
void setPass(const char* name)
{
m_global_textures.clear();
m_pass_idx = m_renderer.getPassIdx(name);
bool found = false;
for (int i = 0; i < m_view2pass_map.size(); ++i)
{
if (m_view2pass_map[i] == m_pass_idx)
{
m_view_idx = i;
found = true;
break;
}
}
if (!found)
{
beginNewView();
}
if (m_current_framebuffer)
{
bgfx::setViewFrameBuffer(m_view_idx,
m_current_framebuffer->getHandle());
}
else
{
bgfx::setViewFrameBuffer(m_view_idx, BGFX_INVALID_HANDLE);
}
}
CustomCommandHandler& addCustomCommandHandler(const char* name) override
{
return m_custom_commands_handlers[crc32(name)];
}
FrameBuffer* getFramebuffer(const char* framebuffer_name)
{
for (int i = 0, c = m_framebuffers.size(); i < c; ++i)
{
if (strcmp(m_framebuffers[i]->getName(), framebuffer_name) == 0)
{
return m_framebuffers[i];
}
}
return nullptr;
}
void setCurrentFramebuffer(const char* framebuffer_name)
{
if (strcmp(framebuffer_name, "default") == 0)
{
m_current_framebuffer = m_default_framebuffer;
if (m_current_framebuffer)
{
bgfx::setViewFrameBuffer(m_view_idx,
m_current_framebuffer->getHandle());
}
else
{
bgfx::setViewFrameBuffer(m_view_idx, BGFX_INVALID_HANDLE);
}
return;
}
m_current_framebuffer = getFramebuffer(framebuffer_name);
if (m_current_framebuffer)
{
bgfx::setViewFrameBuffer(m_view_idx,
m_current_framebuffer->getHandle());
}
else
{
g_log_warning.log("renderer") << "Framebuffer " << framebuffer_name
<< " not found";
}
}
void bindFramebufferTexture(const char* framebuffer_name,
int renderbuffer_idx,
int uniform_idx)
{
FrameBuffer* fb = getFramebuffer(framebuffer_name);
if (!fb) return;
GlobalTexture& t = m_global_textures.pushEmpty();
t.m_texture = fb->getRenderbufferHandle(renderbuffer_idx);
t.m_uniform = m_uniforms[uniform_idx];
}
virtual int getWidth() override { return m_width; }
virtual int getHeight() override { return m_height; }
void sourceLoaded(Resource::State old_state, Resource::State new_state)
{
if (old_state != Resource::State::READY &&
new_state == Resource::State::READY)
{
for (int i = 0; i < m_framebuffers.size(); ++i)
{
m_allocator.deleteObject(m_framebuffers[i]);
}
m_framebuffers.clear();
m_framebuffers.reserve(m_source.m_framebuffers.size());
for (int i = 0; i < m_source.m_framebuffers.size(); ++i)
{
FrameBuffer::Declaration& decl = m_source.m_framebuffers[i];
m_framebuffers.push(m_allocator.newObject<FrameBuffer>(decl));
}
if (lua_getglobal(m_source.m_lua_state, "init") == LUA_TFUNCTION)
{
lua_pushlightuserdata(m_source.m_lua_state, this);
if (lua_pcall(m_source.m_lua_state, 1, 0, 0) != LUA_OK)
{
g_log_error.log("lua")
<< lua_tostring(m_source.m_lua_state, -1);
lua_pop(m_source.m_lua_state, 1);
}
}
else
{
lua_pop(m_source.m_lua_state, 1);
}
}
}
void executeCustomCommand(uint32_t name)
{
CustomCommandHandler handler;
if (m_custom_commands_handlers.find(name, handler))
{
handler.invoke();
}
finishInstances();
}
void renderPointLightShadowmaps(ComponentIndex camera, ComponentIndex light)
{
Frustum light_frustum;
int64_t mask = 0;
mask = ~mask;
renderPointLightInfluencedGeometry(light_frustum, mask);
}
void beginNewView()
{
m_renderer.viewCounterAdd();
m_view_idx = m_renderer.getViewCounter();
m_view2pass_map[m_view_idx] = m_pass_idx;
}
void renderSpotLightShadowmap(FrameBuffer* fb,
ComponentIndex light,
int64_t layer_mask)
{
ASSERT(fb);
beginNewView();
m_current_framebuffer = fb;
bgfx::setViewFrameBuffer(m_view_idx,
m_current_framebuffer->getHandle());
Entity light_entity = m_scene->getPointLightEntity(light);
Matrix mtx = m_scene->getUniverse().getMatrix(light_entity);
float fov = m_scene->getLightFOV(light);
float range = m_scene->getLightRange(light);
uint16_t shadowmap_height = (uint16_t)m_current_framebuffer->getHeight();
uint16_t shadowmap_width = (uint16_t)m_current_framebuffer->getWidth();
Vec3 pos = mtx.getTranslation();
bgfx::setViewFrameBuffer(m_view_idx,
m_current_framebuffer->getHandle());
bgfx::setViewClear(m_view_idx, BGFX_CLEAR_DEPTH, 0, 1.0f, 0);
bgfx::touch(m_view_idx);
bgfx::setViewRect(m_view_idx, 0, 0, shadowmap_width, shadowmap_height);
Matrix projection_matrix;
projection_matrix.setPerspective(
Math::degreesToRadians(fov), 1, 0.01f, range);
Matrix view_matrix;
view_matrix.lookAt(pos, pos + mtx.getZVector(), mtx.getYVector());
bgfx::setViewTransform(
m_view_idx, &view_matrix.m11, &projection_matrix.m11);
PointLightShadowmap& s = m_point_light_shadowmaps.pushEmpty();
s.m_framebuffer = m_current_framebuffer;
s.m_light = light;
static const Matrix biasMatrix(
0.5, 0.0, 0.0, 0.0,
0.0, -0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0);
s.m_matrix = biasMatrix * (projection_matrix * view_matrix);
renderPointLightInfluencedGeometry(light, layer_mask);
}
void renderLocalLightShadowmaps(ComponentIndex camera,
FrameBuffer** fbs,
int framebuffers_count,
int64_t layer_mask)
{
Universe& universe = m_scene->getUniverse();
Entity camera_entity = m_scene->getCameraEntity(camera);
Vec3 camera_pos = universe.getPosition(camera_entity);
ComponentIndex lights[16];
int light_count = m_scene->getClosestPointLights(
camera_pos, lights, lengthOf(lights));
int fb_index = 0;
for (int i = 0; i < light_count; ++i)
{
if (!m_scene->getLightCastShadows(lights[i])) continue;
if (fb_index == framebuffers_count) break;
float fov = m_scene->getLightFOV(lights[i]);
if (fov < 180)
{
renderSpotLightShadowmap(fbs[fb_index], lights[i], layer_mask);
++fb_index;
continue;
}
ASSERT(false);
TODO("todo");
}
}
void renderShadowmap(ComponentIndex camera, int64_t layer_mask)
{
Universe& universe = m_scene->getUniverse();
ComponentIndex light_cmp = m_scene->getActiveGlobalLight();
if (light_cmp < 0 || camera < 0)
{
return;
}
Matrix light_mtx =
universe.getMatrix(m_scene->getGlobalLightEntity(light_cmp));
float shadowmap_height = (float)m_current_framebuffer->getHeight();
float shadowmap_width = (float)m_current_framebuffer->getWidth();
float viewports[] = {0, 0, 0.5f, 0, 0, 0.5f, 0.5f, 0.5f};
float camera_fov = m_scene->getCameraFOV(camera);
float camera_ratio = m_scene->getCameraWidth(camera) /
m_scene->getCameraHeight(camera);
for (int split_index = 0; split_index < 4; ++split_index)
{
if (split_index > 0)
{
beginNewView();
}
bgfx::setViewFrameBuffer(m_view_idx,
m_current_framebuffer->getHandle());
bgfx::setViewClear(m_view_idx, BGFX_CLEAR_DEPTH, 0, 1.0f, 0);
bgfx::touch(m_view_idx);
float* viewport = viewports + split_index * 2;
bgfx::setViewRect(m_view_idx,
(uint16_t)(1 + shadowmap_width * viewport[0]),
(uint16_t)(1 + shadowmap_height * viewport[1]),
(uint16_t)(0.5f * shadowmap_width - 2),
(uint16_t)(0.5f * shadowmap_height - 2));
Frustum frustum;
Matrix camera_matrix =
universe.getMatrix(m_scene->getCameraEntity(camera));
frustum.computePerspective(camera_matrix.getTranslation(),
camera_matrix.getZVector(),
camera_matrix.getYVector(),
camera_fov,
camera_ratio,
split_distances[split_index],
split_distances[split_index + 1]);
(&m_shadowmap_splits.x)[split_index] =
split_distances[split_index + 1];
Vec3 shadow_cam_pos = frustum.getCenter();
float bb_size = frustum.getRadius();
Matrix projection_matrix;
projection_matrix.setOrtho(-bb_size,
bb_size,
-bb_size,
bb_size,
SHADOW_CAM_NEAR,
SHADOW_CAM_FAR);
Vec3 light_forward = light_mtx.getZVector();
shadow_cam_pos -= light_forward * SHADOW_CAM_FAR * 0.5f;
Matrix view_matrix;
view_matrix.lookAt(shadow_cam_pos,
shadow_cam_pos + light_forward,
light_mtx.getYVector());
bgfx::setViewTransform(
m_view_idx, &view_matrix.m11, &projection_matrix.m11);
static const Matrix biasMatrix(0.5, 0.0, 0.0, 0.0,
0.0, -0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0);
m_shadow_modelviewprojection[split_index] =
biasMatrix * (projection_matrix * view_matrix);
Frustum shadow_camera_frustum;
shadow_camera_frustum.computeOrtho(shadow_cam_pos,
-light_forward,
light_mtx.getYVector(),
bb_size * 2,
bb_size * 2,
SHADOW_CAM_NEAR,
SHADOW_CAM_FAR);
renderAll(shadow_camera_frustum, layer_mask, true);
}
}
void renderDebugPoints()
{
const Array<DebugPoint>& points = m_scene->getDebugPoints();
if (points.empty() || !m_debug_line_material->isReady())
{
return;
}
bgfx::TransientVertexBuffer tvb;
bgfx::TransientIndexBuffer tib;
if (bgfx::allocTransientBuffers(&tvb,
BaseVertex::s_vertex_decl,
points.size(),
&tib,
points.size()))
{
BaseVertex* vertex = (BaseVertex*)tvb.data;
uint16_t* indices = (uint16_t*)tib.data;
for (int i = 0; i < points.size(); ++i)
{
const DebugPoint& point = points[i];
vertex[0].m_rgba = point.m_color;
vertex[0].m_x = point.m_pos.x;
vertex[0].m_y = point.m_pos.y;
vertex[0].m_z = point.m_pos.z;
vertex[0].m_u = vertex[0].m_v = 0;
indices[0] = i;
++vertex;
++indices;
}
bgfx::setVertexBuffer(&tvb);
bgfx::setIndexBuffer(&tib);
bgfx::setState(m_render_state |
m_debug_line_material->getRenderStates() |
BGFX_STATE_PT_POINTS);
bgfx::submit(m_view_idx,
m_debug_line_material->getShaderInstance()
.m_program_handles[m_pass_idx]);
}
}
void renderDebugLines()
{
const Array<DebugLine>& lines = m_scene->getDebugLines();
if (lines.empty() || !m_debug_line_material->isReady())
{
return;
}
bgfx::TransientVertexBuffer tvb;
bgfx::TransientIndexBuffer tib;
if (bgfx::allocTransientBuffers(&tvb,
BaseVertex::s_vertex_decl,
lines.size() * 2,
&tib,
lines.size() * 2))
{
BaseVertex* vertex = (BaseVertex*)tvb.data;
uint16_t* indices = (uint16_t*)tib.data;
for (int i = 0; i < lines.size(); ++i)
{
const DebugLine& line = lines[i];
vertex[0].m_rgba = line.m_color;
vertex[0].m_x = line.m_from.x;
vertex[0].m_y = line.m_from.y;
vertex[0].m_z = line.m_from.z;
vertex[0].m_u = vertex[0].m_v = 0;
vertex[1].m_rgba = line.m_color;
vertex[1].m_x = line.m_to.x;
vertex[1].m_y = line.m_to.y;
vertex[1].m_z = line.m_to.z;
vertex[1].m_u = vertex[0].m_v = 0;
indices[0] = i * 2;
indices[1] = i * 2 + 1;
vertex += 2;
indices += 2;
}
bgfx::setVertexBuffer(&tvb);
bgfx::setIndexBuffer(&tib);
bgfx::setState(m_render_state |
m_debug_line_material->getRenderStates() |
BGFX_STATE_PT_LINES);
bgfx::submit(m_view_idx,
m_debug_line_material->getShaderInstance()
.m_program_handles[m_pass_idx]);
}
}
void setPointLightUniforms(ComponentIndex light_cmp)
{
if (light_cmp < 0)
{
return;
}
Universe& universe = m_scene->getUniverse();
Entity entity = m_scene->getPointLightEntity(light_cmp);
Vec4 light_pos_radius(universe.getPosition(entity),
m_scene->getLightRange(light_cmp));
bgfx::setUniform(m_light_pos_radius_uniform, &light_pos_radius);
float innerRadius = 0;
Vec4 light_color(m_scene->getPointLightColor(light_cmp) *
m_scene->getPointLightIntensity(light_cmp),
innerRadius);
bgfx::setUniform(m_light_color_uniform, &light_color);
Vec4 light_dir_fov(
universe.getRotation(entity) * Vec3(0, 0, 1),
Math::degreesToRadians(m_scene->getLightFOV(light_cmp)));
bgfx::setUniform(m_light_dir_fov_uniform, &light_dir_fov);
Vec4 light_specular(
m_scene->getPointLightSpecularColor(light_cmp), 1.0);
bgfx::setUniform(m_light_specular_uniform, &light_specular);
if (m_scene->getLightCastShadows(light_cmp))
{
setShadowmapUniforms(light_cmp);
}
// bgfx::touch(m_view_idx);
}
void setShadowmapUniforms(ComponentIndex light)
{
for (auto& info : m_point_light_shadowmaps)
{
if (info.m_light == light)
{
bgfx::setUniform(m_shadowmap_matrices_uniform, &info.m_matrix.m11, 1);
GlobalTexture& t = m_global_textures.pushEmpty();
t.m_texture = info.m_framebuffer->getRenderbufferHandle(0);
static bgfx::UniformHandle u = bgfx::createUniform("u_texShadowmap", bgfx::UniformType::Int1);
t.m_uniform = u;
break;
}
}
}
void setDirectionalLightUniforms(ComponentIndex light_cmp) const
{
if (light_cmp < 0)
{
return;
}
Universe& universe = m_scene->getUniverse();
Entity entity = m_scene->getGlobalLightEntity(light_cmp);
Vec4 diffuse_light_color(
m_scene->getGlobalLightColor(light_cmp) *
m_scene->getGlobalLightIntensity(light_cmp),
1);
bgfx::setUniform(m_light_color_uniform, &diffuse_light_color);
Vec4 ambient_light_color(
m_scene->getLightAmbientColor(light_cmp) *
m_scene->getLightAmbientIntensity(light_cmp),
1);
bgfx::setUniform(m_ambient_color_uniform, &ambient_light_color);
Vec4 light_dir_fov(
universe.getRotation(entity) * Vec3(0, 0, 1), 0);
bgfx::setUniform(m_light_dir_fov_uniform, &light_dir_fov);
bgfx::setUniform(
m_shadowmap_matrices_uniform, &m_shadow_modelviewprojection, 4);
Vec4 fog_color_density(m_scene->getFogColor(light_cmp),
m_scene->getFogDensity(light_cmp));
fog_color_density.w *= fog_color_density.w * fog_color_density.w;
bgfx::setUniform(m_fog_color_density_uniform, &fog_color_density);
bgfx::touch(m_view_idx);
}
void enableBlending() { m_render_state |= BGFX_STATE_BLEND_ADD; }
void disableBlending() { m_render_state &= ~BGFX_STATE_BLEND_MASK; }
void renderPointLightInfluencedGeometry(ComponentIndex light,
int64_t layer_mask)
{
PROFILE_FUNCTION();
m_tmp_meshes.clear();
m_scene->getPointLightInfluencedGeometry(
light, m_tmp_meshes, layer_mask);
int global_textures_count = m_global_textures.size();
//setPointLightUniforms(light);
renderMeshes(m_tmp_meshes);
m_global_textures.resize(global_textures_count);
}
void renderPointLightInfluencedGeometry(const Frustum& frustum,
int64_t layer_mask)
{
PROFILE_FUNCTION();
Array<ComponentIndex> lights(m_allocator);
m_scene->getPointLights(frustum, lights);
for (int i = 0; i < lights.size(); ++i)
{
m_tmp_grasses.clear();
m_tmp_meshes.clear();
m_tmp_terrains.clear();
ComponentIndex light = lights[i];
m_current_light = light;
m_is_current_light_global = false;
m_scene->getPointLightInfluencedGeometry(
light, frustum, m_tmp_meshes, layer_mask);
m_scene->getTerrainInfos(
m_tmp_terrains,
layer_mask,
m_scene->getUniverse().getPosition(
m_scene->getCameraEntity(m_applied_camera)),
m_frame_allocator);
m_scene->getGrassInfos(
frustum, m_tmp_grasses, layer_mask, m_applied_camera);
int global_textures_count = m_global_textures.size();
renderMeshes(m_tmp_meshes);
renderTerrains(m_tmp_terrains);
renderGrasses(m_tmp_grasses);
m_global_textures.resize(global_textures_count);
}
m_current_light = -1;
}
void drawQuad(float x, float y, float w, float h)
{
if (!m_screen_space_material->isReady() ||
!bgfx::checkAvailTransientVertexBuffer(3,
BaseVertex::s_vertex_decl))
return;
Matrix projection_mtx;
projection_mtx.setOrtho(-1, 1, 1, -1, 0, 30);
bgfx::setViewTransform(
m_view_idx, &Matrix::IDENTITY.m11, &projection_mtx.m11);
bgfx::setViewRect(
m_view_idx, 0, 0, (uint16_t)m_width, (uint16_t)m_height);
bgfx::TransientVertexBuffer vb;
bgfx::allocTransientVertexBuffer(&vb, 6, BaseVertex::s_vertex_decl);
BaseVertex* vertex = (BaseVertex*)vb.data;
float x2 = x + w;
float y2 = y + h;
vertex[0].m_x = x;
vertex[0].m_y = y;
vertex[0].m_z = 0;
vertex[0].m_rgba = 0xffffffff;
vertex[0].m_u = 0;
vertex[0].m_v = 0;
vertex[1].m_x = x2;
vertex[1].m_y = y;
vertex[1].m_z = 0;
vertex[1].m_rgba = 0xffffffff;
vertex[1].m_u = 1;
vertex[1].m_v = 0;
vertex[2].m_x = x2;
vertex[2].m_y = y2;
vertex[2].m_z = 0;
vertex[2].m_rgba = 0xffffffff;
vertex[2].m_u = 1;
vertex[2].m_v = 1;
vertex[3].m_x = x;
vertex[3].m_y = y;
vertex[3].m_z = 0;
vertex[3].m_rgba = 0xffffffff;
vertex[3].m_u = 0;
vertex[3].m_v = 0;
vertex[4].m_x = x2;
vertex[4].m_y = y2;
vertex[4].m_z = 0;
vertex[4].m_rgba = 0xffffffff;
vertex[4].m_u = 1;
vertex[4].m_v = 1;
vertex[5].m_x = x;
vertex[5].m_y = y2;
vertex[5].m_z = 0;
vertex[5].m_rgba = 0xffffffff;
vertex[5].m_u = 0;
vertex[5].m_v = 1;
for (int i = 0; i < m_global_textures.size(); ++i)
{
const GlobalTexture& t = m_global_textures[i];
bgfx::setTexture(i, t.m_uniform, t.m_texture);
}
bgfx::setVertexBuffer(&vb);
bgfx::submit(m_view_idx,
m_screen_space_material->getShaderInstance()
.m_program_handles[m_pass_idx]);
}
void
renderAll(const Frustum& frustum, int64_t layer_mask, bool is_shadowmap)
{
PROFILE_FUNCTION();
if (m_applied_camera < 0) return;
m_tmp_grasses.clear();
m_tmp_meshes.clear();
m_tmp_terrains.clear();
m_scene->getRenderableInfos(frustum, m_tmp_meshes, layer_mask);
m_scene->getTerrainInfos(
m_tmp_terrains,
layer_mask,
m_scene->getUniverse().getPosition(
m_scene->getCameraEntity(m_applied_camera)),
m_frame_allocator);
m_is_current_light_global = true;
m_current_light = m_scene->getActiveGlobalLight();
setDirectionalLightUniforms(m_scene->getActiveGlobalLight());
renderMeshes(m_tmp_meshes);
renderTerrains(m_tmp_terrains);
if (!is_shadowmap)
{
m_scene->getGrassInfos(
frustum, m_tmp_grasses, layer_mask, m_applied_camera);
renderGrasses(m_tmp_grasses);
}
m_current_light = -1;
}
virtual void toggleStats() override
{
m_debug_flags ^= BGFX_DEBUG_STATS;
bgfx::setDebug(m_debug_flags);
}
virtual void setWindowHandle(void* data) override
{
m_default_framebuffer = m_allocator.newObject<FrameBuffer>(
"default", m_width, m_height, data);
}
virtual void renderModel(Model& model, const Matrix& mtx) override
{
RenderableMesh mesh;
mesh.m_matrix = &mtx;
mesh.m_model = &model;
mesh.m_pose = nullptr;
for (int i = 0; i < model.getMeshCount(); ++i)
{
mesh.m_mesh = &model.getMesh(i);
renderRigidMesh(mesh);
}
}
void setPoseUniform(const RenderableMesh& renderable_mesh) const
{
Matrix bone_mtx[64];
const Pose& pose = *renderable_mesh.m_pose;
const Model& model = *renderable_mesh.m_model;
Vec3* poss = pose.getPositions();
Quat* rots = pose.getRotations();
ASSERT(pose.getCount() <= lengthOf(bone_mtx));
for (int bone_index = 0, bone_count = pose.getCount();
bone_index < bone_count;
++bone_index)
{
rots[bone_index].toMatrix(bone_mtx[bone_index]);
bone_mtx[bone_index].translate(poss[bone_index]);
bone_mtx[bone_index] = bone_mtx[bone_index] *
model.getBone(bone_index).inv_bind_matrix;
}
bgfx::setUniform(m_bone_matrices_uniform, bone_mtx, pose.getCount());
}
void renderSkinnedMesh(const RenderableMesh& info)
{
if (!info.m_model->isReady())
{
return;
}
const Mesh& mesh = *info.m_mesh;
const Geometry& geometry = info.m_model->getGeometry();
const Material* material = mesh.getMaterial();
setPoseUniform(info);
setMaterial(material);
bgfx::setTransform(info.m_matrix);
bgfx::setVertexBuffer(geometry.getAttributesArrayID(),
mesh.getAttributeArrayOffset() /
mesh.getVertexDefinition().getStride(),
mesh.getAttributeArraySize() /
mesh.getVertexDefinition().getStride());
bgfx::setIndexBuffer(geometry.getIndicesArrayID(),
mesh.getIndicesOffset(),
mesh.getIndexCount());
bgfx::setState(m_render_state | material->getRenderStates());
bgfx::submit(m_view_idx,
info.m_mesh->getMaterial()
->getShaderInstance()
.m_program_handles[m_pass_idx]);
}
virtual void setScissor(int x, int y, int width, int height) override
{
bgfx::setScissor(x, y, width, height);
}
virtual void render(TransientGeometry& geom,
int first_index,
int num_indices,
const Material& material) override
{
bgfx::setState(m_render_state | material.getRenderStates());
bgfx::setTransform(nullptr);
setMaterial(&material);
bgfx::setVertexBuffer(&geom.getVertexBuffer(), 0, geom.getNumVertices());
bgfx::setIndexBuffer(&geom.getIndexBuffer(), first_index, num_indices);
bgfx::submit(
m_view_idx,
material.getShaderInstance().m_program_handles[m_pass_idx]);
}
void renderRigidMesh(const RenderableMesh& info)
{
if (!info.m_model->isReady())
{
return;
}
int instance_idx = info.m_mesh->getInstanceIdx();
if (instance_idx == -1)
{
instance_idx = m_instance_data_idx;
m_instance_data_idx =
(m_instance_data_idx + 1) % lengthOf(m_instances_data);
if (m_instances_data[instance_idx].m_buffer)
{
finishInstances(instance_idx);
}
info.m_mesh->setInstanceIdx(instance_idx);
}
InstanceData& data = m_instances_data[instance_idx];
if (!data.m_buffer)
{
data.m_buffer = bgfx::allocInstanceDataBuffer(
InstanceData::MAX_INSTANCE_COUNT, sizeof(Matrix));
data.m_instance_count = 0;
data.m_mesh = info;
}
Matrix* mtcs = (Matrix*)data.m_buffer->data;
mtcs[data.m_instance_count] = *info.m_matrix;
++data.m_instance_count;
if (data.m_instance_count == InstanceData::MAX_INSTANCE_COUNT)
{
const Mesh& mesh = *info.m_mesh;
const Geometry& geometry = info.m_model->getGeometry();
const Material* material = mesh.getMaterial();
setMaterial(material);
bgfx::setVertexBuffer(geometry.getAttributesArrayID(),
mesh.getAttributeArrayOffset() /
mesh.getVertexDefinition().getStride(),
mesh.getAttributeArraySize() /
mesh.getVertexDefinition().getStride());
bgfx::setIndexBuffer(geometry.getIndicesArrayID(),
mesh.getIndicesOffset(),
mesh.getIndexCount());
bgfx::setState(m_render_state | material->getRenderStates());
bgfx::setInstanceDataBuffer(data.m_buffer, data.m_instance_count);
bgfx::submit(m_view_idx,
info.m_mesh->getMaterial()
->getShaderInstance()
.m_program_handles[m_pass_idx]);
data.m_mesh.m_mesh->setInstanceIdx(-1);
data.m_buffer = nullptr;
data.m_instance_count = 0;
}
}
void setMaterial(const Material* material)
{
if (m_is_current_light_global)
setDirectionalLightUniforms(m_current_light);
else
setPointLightUniforms(m_current_light);
for (int i = 0; i < material->getUniformCount(); ++i)
{
const Material::Uniform& uniform = material->getUniform(i);
switch (uniform.m_type)
{
case Material::Uniform::FLOAT:
{
Vec4 v(uniform.m_float, 0, 0, 0);
bgfx::setUniform(uniform.m_handle, &v);
}
break;
case Material::Uniform::TIME:
{
Vec4 v(m_scene->getTime(), 0, 0, 0);
bgfx::setUniform(uniform.m_handle, &v);
}
break;
default:
ASSERT(false);
break;
}
}
Shader* shader = material->getShader();
for (int i = 0; i < material->getTextureCount(); ++i)
{
Texture* texture = material->getTexture(i);
if (texture)
{
bgfx::setTexture(
i,
shader->getTextureSlot(i).m_uniform_handle,
texture->getTextureHandle());
}
}
Vec4 specular_shininess(material->getSpecular(),
material->getShininess());
bgfx::setUniform(m_specular_shininess_uniform, &specular_shininess);
int global_texture_offset = shader->getTextureSlotCount();
for (int i = 0; i < m_global_textures.size(); ++i)
{
const GlobalTexture& t = m_global_textures[i];
bgfx::setTexture(
i + global_texture_offset, t.m_uniform, t.m_texture);
}
}
void renderTerrain(const TerrainInfo& info)
{
if (!info.m_terrain->getMaterial()->isReady())
{
return;
}
auto& inst = m_terrain_instances[info.m_index];
if ((inst.m_count > 0 &&
inst.m_infos[0]->m_terrain != info.m_terrain) ||
inst.m_count == lengthOf(inst.m_infos))
{
finishTerrainInstances(info.m_index);
}
inst.m_infos[inst.m_count] = &info;
++inst.m_count;
}
void finishTerrainInstances(int index)
{
if (m_terrain_instances[index].m_count == 0)
{
return;
}
const TerrainInfo& info = *m_terrain_instances[index].m_infos[0];
Material* material = info.m_terrain->getMaterial();
if (!material->isReady())
{
return;
}
Texture* detail_texture = info.m_terrain->getDetailTexture();
if (!detail_texture)
{
return;
}
Matrix inv_world_matrix;
inv_world_matrix = info.m_world_matrix;
inv_world_matrix.fastInverse();
Vec3 camera_pos = m_scene->getUniverse().getPosition(
m_scene->getCameraEntity(m_applied_camera));
Vec3 rel_cam_pos = inv_world_matrix.multiplyPosition(camera_pos) /
info.m_terrain->getXZScale();
const Geometry& geometry = *info.m_terrain->getGeometry();
const Mesh& mesh = *info.m_terrain->getMesh();
Vec4 terrain_params(info.m_terrain->getRootSize(),
(float)detail_texture->getWidth(),
(float)detail_texture->getDepth(),
0);
bgfx::setUniform(m_terrain_params_uniform, &terrain_params);
bgfx::setUniform(m_rel_camera_pos_uniform, &Vec4(rel_cam_pos, 0));
bgfx::setUniform(m_terrain_scale_uniform,
&Vec4(info.m_terrain->getScale(), 0));
bgfx::setUniform(m_terrain_matrix_uniform, &info.m_world_matrix.m11);
setMaterial(material);
struct TerrainInstanceData
{
Vec4 m_quad_min_and_size;
Vec4 m_morph_const;
};
const bgfx::InstanceDataBuffer* instance_buffer =
bgfx::allocInstanceDataBuffer(m_terrain_instances[index].m_count,
sizeof(TerrainInstanceData));
TerrainInstanceData* instance_data =
(TerrainInstanceData*)instance_buffer->data;
for (int i = 0; i < m_terrain_instances[index].m_count; ++i)
{
const TerrainInfo& info = *m_terrain_instances[index].m_infos[i];
instance_data[i].m_quad_min_and_size.set(
info.m_min.x, info.m_min.y, info.m_min.z, info.m_size);
instance_data[i].m_morph_const.set(info.m_morph_const.x,
info.m_morph_const.y,
info.m_morph_const.z,
0);
}
bgfx::setVertexBuffer(geometry.getAttributesArrayID(),
mesh.getAttributeArrayOffset() /
mesh.getVertexDefinition().getStride(),
mesh.getAttributeArraySize() /
mesh.getVertexDefinition().getStride());
int mesh_part_indices_count = mesh.getIndexCount() / 4;
bgfx::setIndexBuffer(geometry.getIndicesArrayID(),
info.m_index * mesh_part_indices_count,
mesh_part_indices_count);
bgfx::setState(m_render_state | mesh.getMaterial()->getRenderStates());
bgfx::setInstanceDataBuffer(instance_buffer,
m_terrain_instances[index].m_count);
bgfx::submit(
m_view_idx,
material->getShaderInstance().m_program_handles[m_pass_idx]);
m_terrain_instances[index].m_count = 0;
}
void renderGrass(const GrassInfo& grass)
{
const bgfx::InstanceDataBuffer* idb =
bgfx::allocInstanceDataBuffer(grass.m_matrix_count, sizeof(Matrix));
memcpy(idb->data,
&grass.m_matrices[0],
grass.m_matrix_count * sizeof(Matrix));
const Mesh& mesh = grass.m_model->getMesh(0);
const Geometry& geometry = grass.m_model->getGeometry();
const Material* material = mesh.getMaterial();
setMaterial(material);
bgfx::setVertexBuffer(geometry.getAttributesArrayID(),
mesh.getAttributeArrayOffset() /
mesh.getVertexDefinition().getStride(),
mesh.getAttributeArraySize() /
mesh.getVertexDefinition().getStride());
bgfx::setIndexBuffer(geometry.getIndicesArrayID(),
mesh.getIndicesOffset(),
mesh.getIndexCount());
bgfx::setState(m_render_state | material->getRenderStates());
bgfx::setInstanceDataBuffer(idb, grass.m_matrix_count);
bgfx::submit(m_view_idx, material->getShaderInstance().m_program_handles[m_pass_idx]);
}
void renderGrasses(const Array<GrassInfo>& grasses)
{
PROFILE_FUNCTION();
for (const auto& grass : grasses)
{
renderGrass(grass);
}
}
void renderTerrains(const Array<const TerrainInfo*>& terrains)
{
PROFILE_FUNCTION();
for (auto* info : terrains)
{
renderTerrain(*info);
}
for (int i = 0; i < lengthOf(m_terrain_instances); ++i)
{
finishTerrainInstances(i);
}
}
void renderMeshes(const Array<const RenderableMesh*>& meshes)
{
PROFILE_FUNCTION();
for (auto* mesh : meshes)
{
if (mesh->m_pose && mesh->m_pose->getCount() > 0)
{
renderSkinnedMesh(*mesh);
}
else
{
renderRigidMesh(*mesh);
}
}
finishInstances();
}
virtual void resize(int w, int h) override
{
if (m_width == w && m_height == h) return;
if (m_default_framebuffer)
{
m_default_framebuffer->resize(w, h);
}
else
{
bgfx::reset(w, h);
}
m_width = w;
m_height = h;
}
virtual void render() override
{
PROFILE_FUNCTION();
if (!m_source.isReady())
{
return;
}
m_render_state = BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE |
BGFX_STATE_DEPTH_WRITE | BGFX_STATE_MSAA;
m_view_idx = m_renderer.getViewCounter();
m_pass_idx = -1;
m_current_framebuffer = m_default_framebuffer;
m_global_textures.clear();
m_view2pass_map.assign(0xFF);
m_instance_data_idx = 0;
m_point_light_shadowmaps.clear();
for (int i = 0; i < lengthOf(m_terrain_instances); ++i)
{
m_terrain_instances[i].m_count = 0;
}
for (int i = 0; i < lengthOf(m_instances_data); ++i)
{
m_instances_data[i].m_buffer = nullptr;
m_instances_data[i].m_instance_count = 0;
}
if (lua_getglobal(m_source.m_lua_state, "render") == LUA_TFUNCTION)
{
lua_pushlightuserdata(m_source.m_lua_state, this);
if (lua_pcall(m_source.m_lua_state, 1, 0, 0) != LUA_OK)
{
g_log_error.log("lua")
<< lua_tostring(m_source.m_lua_state, -1);
lua_pop(m_source.m_lua_state, 1);
}
}
else
{
lua_pop(m_source.m_lua_state, 1);
}
finishInstances();
m_frame_allocator.clear();
}
virtual void setScene(RenderScene* scene) override { m_scene = scene; }
virtual RenderScene* getScene() override { return m_scene; }
virtual void setWireframe(bool wireframe) override
{
if (wireframe)
{
m_debug_flags = m_debug_flags | BGFX_DEBUG_WIREFRAME;
}
else
{
m_debug_flags = m_debug_flags & ~BGFX_DEBUG_WIREFRAME;
}
bgfx::setDebug(m_debug_flags);
}
struct GlobalTexture
{
bgfx::TextureHandle m_texture;
bgfx::UniformHandle m_uniform;
};
struct TerrainInstance
{
int m_count;
const TerrainInfo* m_infos[64];
};
struct PointLightShadowmap
{
ComponentIndex m_light;
FrameBuffer* m_framebuffer;
Matrix m_matrix;
};
TerrainInstance m_terrain_instances[4];
uint32_t m_debug_flags;
uint8_t m_view_idx;
int m_pass_idx;
StaticArray<uint8_t, 256> m_view2pass_map;
uint64_t m_render_state;
IAllocator& m_allocator;
Renderer& m_renderer;
LIFOAllocator m_frame_allocator;
PipelineImpl& m_source;
RenderScene* m_scene;
FrameBuffer* m_current_framebuffer;
FrameBuffer* m_default_framebuffer;
Array<FrameBuffer*> m_framebuffers;
Array<GlobalTexture> m_global_textures;
Array<bgfx::UniformHandle> m_uniforms;
Array<PointLightShadowmap> m_point_light_shadowmaps;
InstanceData m_instances_data[128];
int m_instance_data_idx;
ComponentIndex m_applied_camera;
ComponentIndex m_current_light;
bool m_is_current_light_global;
Frustum m_camera_frustum;
Matrix m_shadow_modelviewprojection[4];
Vec4 m_shadowmap_splits;
int m_width;
int m_height;
AssociativeArray<uint32_t, CustomCommandHandler> m_custom_commands_handlers;
Array<const RenderableMesh*> m_tmp_meshes;
Array<const TerrainInfo*> m_tmp_terrains;
Array<GrassInfo> m_tmp_grasses;
bgfx::UniformHandle m_specular_shininess_uniform;
bgfx::UniformHandle m_bone_matrices_uniform;
bgfx::UniformHandle m_terrain_scale_uniform;
bgfx::UniformHandle m_rel_camera_pos_uniform;
bgfx::UniformHandle m_terrain_params_uniform;
bgfx::UniformHandle m_fog_color_density_uniform;
bgfx::UniformHandle m_light_pos_radius_uniform;
bgfx::UniformHandle m_light_color_uniform;
bgfx::UniformHandle m_ambient_color_uniform;
bgfx::UniformHandle m_light_dir_fov_uniform;
bgfx::UniformHandle m_shadowmap_matrices_uniform;
bgfx::UniformHandle m_light_specular_uniform;
bgfx::UniformHandle m_terrain_matrix_uniform;
Material* m_screen_space_material;
Material* m_debug_line_material;
private:
void operator=(const PipelineInstanceImpl&);
PipelineInstanceImpl(const PipelineInstanceImpl&);
};
Pipeline::Pipeline(const Path& path,
ResourceManager& resource_manager,
IAllocator& allocator)
: Resource(path, resource_manager, allocator)
{
if (BaseVertex::s_vertex_decl.getStride() == 0)
{
BaseVertex::s_vertex_decl.begin();
BaseVertex::s_vertex_decl.add(
bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
BaseVertex::s_vertex_decl.add(
bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8);
BaseVertex::s_vertex_decl.add(
bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float);
BaseVertex::s_vertex_decl.end();
}
}
PipelineInstance* PipelineInstance::create(Pipeline& pipeline,
IAllocator& allocator)
{
return allocator.newObject<PipelineInstanceImpl>(pipeline, allocator);
}
void PipelineInstance::destroy(PipelineInstance* pipeline)
{
static_cast<PipelineInstanceImpl*>(pipeline)
->m_allocator.deleteObject(pipeline);
}
Resource* PipelineManager::createResource(const Path& path)
{
return m_allocator.newObject<PipelineImpl>(path, getOwner(), m_allocator);
}
void PipelineManager::destroyResource(Resource& resource)
{
m_allocator.deleteObject(static_cast<PipelineImpl*>(&resource));
}
namespace LuaAPI
{
void setPass(PipelineInstanceImpl* pipeline, const char* pass)
{
pipeline->setPass(pass);
}
void setFramebuffer(PipelineInstanceImpl* pipeline,
const char* framebuffer_name)
{
pipeline->setCurrentFramebuffer(framebuffer_name);
}
void enableBlending(PipelineInstanceImpl* pipeline)
{
pipeline->enableBlending();
}
void disableBlending(PipelineInstanceImpl* pipeline)
{
pipeline->disableBlending();
}
void applyCamera(PipelineInstanceImpl* pipeline, const char* slot)
{
pipeline->applyCamera(slot);
}
void clear(PipelineInstanceImpl* pipeline, const char* buffers)
{
uint16_t flags = 0;
if (strcmp(buffers, "all") == 0)
{
flags = BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH;
}
else if (strcmp(buffers, "depth") == 0)
{
flags = BGFX_CLEAR_DEPTH;
}
bgfx::setViewClear(pipeline->m_view_idx, flags, 0x303030ff, 1.0f, 0);
bgfx::touch(pipeline->m_view_idx);
}
void renderModels(PipelineInstanceImpl* pipeline,
int64_t layer_mask,
bool is_point_light_render)
{
if (is_point_light_render)
{
pipeline->renderPointLightInfluencedGeometry(pipeline->m_camera_frustum,
layer_mask);
}
else
{
pipeline->renderAll(pipeline->m_camera_frustum, layer_mask, false);
}
}
void bindFramebufferTexture(PipelineInstanceImpl* pipeline,
const char* framebuffer_name,
int renderbuffer_index,
int uniform_idx)
{
pipeline->bindFramebufferTexture(
framebuffer_name, renderbuffer_index, uniform_idx);
}
void executeCustomCommand(PipelineInstanceImpl* pipeline, const char* command)
{
pipeline->executeCustomCommand(crc32(command));
}
bool cameraExists(PipelineInstanceImpl* pipeline, const char* slot_name)
{
return pipeline->getScene()->getCameraInSlot(slot_name) != INVALID_ENTITY;
}
float getFPS(PipelineInstanceImpl* pipeline)
{
return pipeline->m_renderer.getEngine().getFPS();
}
void renderDebugShapes(PipelineInstanceImpl* pipeline)
{
pipeline->renderDebugLines();
pipeline->renderDebugPoints();
}
int renderLocalLightsShadowmaps(lua_State* L)
{
if (!LuaWrapper::isType<PipelineInstanceImpl*>(L, 1)
|| !LuaWrapper::isType<int>(L, 2)
|| !LuaWrapper::isType<const char*>(L, 4))
{
return 0;
}
FrameBuffer* fbs[16];
auto* pipeline = (PipelineInstanceImpl*)lua_touserdata(L, 1);
int len = Math::minValue((int)lua_rawlen(L, 3), lengthOf(fbs));
for (int i = 0; i < len; ++i)
{
if (lua_rawgeti(L, 3, 1 + i) == LUA_TSTRING)
{
const char* fb_name = lua_tostring(L, -1);
fbs[i] = pipeline->getFramebuffer(fb_name);
}
lua_pop(L, 1);
}
RenderScene* scene = pipeline->m_scene;
int64_t layer_mask = (int64_t)lua_tonumber(L, 2);
ComponentIndex camera = scene->getCameraInSlot(lua_tostring(L, 4));
pipeline->renderLocalLightShadowmaps(camera, fbs, len, layer_mask);
return 0;
}
void renderShadowmap(PipelineInstanceImpl* pipeline,
int64_t layer_mask,
const char* slot)
{
pipeline->renderShadowmap(pipeline->getScene()->getCameraInSlot(slot),
layer_mask);
}
int createUniform(PipelineInstanceImpl* pipeline, const char* name)
{
bgfx::UniformHandle handle =
bgfx::createUniform(name, bgfx::UniformType::Int1);
pipeline->m_uniforms.push(handle);
return pipeline->m_uniforms.size() - 1;
}
void drawQuad(
PipelineInstanceImpl* pipeline, float x, float y, float w, float h)
{
pipeline->drawQuad(x, y, w, h);
}
void print(int x, int y, const char* text)
{
bgfx::dbgTextPrintf(x, y, 0x4f, text);
}
} // namespace LuaAPI
void PipelineImpl::registerCFunctions()
{
registerCFunction(
"drawQuad",
LuaWrapper::wrap<decltype(&LuaAPI::drawQuad), LuaAPI::drawQuad>);
registerCFunction(
"print", LuaWrapper::wrap<decltype(&LuaAPI::print), LuaAPI::print>);
registerCFunction("createUniform",
LuaWrapper::wrap<decltype(&LuaAPI::createUniform),
LuaAPI::createUniform>);
registerCFunction("setFramebuffer",
LuaWrapper::wrap<decltype(&LuaAPI::setFramebuffer),
LuaAPI::setFramebuffer>);
registerCFunction("enableBlending",
LuaWrapper::wrap<decltype(&LuaAPI::enableBlending),
LuaAPI::enableBlending>);
registerCFunction("disableBlending",
LuaWrapper::wrap<decltype(&LuaAPI::disableBlending),
LuaAPI::disableBlending>);
registerCFunction(
"setPass",
LuaWrapper::wrap<decltype(&LuaAPI::setPass), LuaAPI::setPass>);
registerCFunction(
"applyCamera",
LuaWrapper::wrap<decltype(&LuaAPI::applyCamera), LuaAPI::applyCamera>);
registerCFunction(
"clear", LuaWrapper::wrap<decltype(&LuaAPI::clear), LuaAPI::clear>);
registerCFunction("renderModels",
LuaWrapper::wrap<decltype(&LuaAPI::renderModels),
LuaAPI::renderModels>);
registerCFunction("renderShadowmap",
LuaWrapper::wrap<decltype(&LuaAPI::renderShadowmap),
LuaAPI::renderShadowmap>);
registerCFunction("renderLocalLightsShadowmaps",
&LuaAPI::renderLocalLightsShadowmaps);
registerCFunction(
"bindFramebufferTexture",
LuaWrapper::wrap<decltype(&LuaAPI::bindFramebufferTexture),
LuaAPI::bindFramebufferTexture>);
registerCFunction("executeCustomCommand",
LuaWrapper::wrap<decltype(&LuaAPI::executeCustomCommand),
LuaAPI::executeCustomCommand>);
registerCFunction("renderDebugShapes",
LuaWrapper::wrap<decltype(&LuaAPI::renderDebugShapes),
LuaAPI::renderDebugShapes>);
registerCFunction(
"getFPS", LuaWrapper::wrap<decltype(&LuaAPI::getFPS), LuaAPI::getFPS>);
registerCFunction(
"cameraExists", LuaWrapper::wrap<decltype(&LuaAPI::cameraExists), LuaAPI::cameraExists>);
}
} // ~namespace Lumix