LumixEngine/src/renderer/pipeline.cpp
Mikulas Florek db6e4b30a7 cleanup
2018-10-27 03:08:34 +02:00

3077 lines
No EOL
95 KiB
C++

#include "draw2d.h"
#include "ffr/ffr.h"
#include "engine/blob.h"
#include "engine/crc32.h"
#include "engine/engine.h"
#include "engine/fs/disk_file_device.h"
#include "engine/fs/file_system.h"
#include "engine/fs/ifile_device.h"
#include "engine/geometry.h"
#include "engine/job_system.h"
#include "engine/log.h"
#include "engine/lua_wrapper.h"
#include "engine/math_utils.h"
#include "engine/mt/atomic.h"
#include "engine/mt/sync.h"
#include "engine/path.h"
#include "engine/profiler.h"
#include "engine/resource_manager.h"
#include "engine/simd.h"
#include "engine/timer.h"
#include "engine/universe/universe.h"
#include "engine/viewport.h"
#include "font_manager.h"
#include "material.h"
#include "model.h"
#include "particle_system.h"
#include "pipeline.h"
#include "pose.h"
#include "renderer.h"
#include "render_scene.h"
#include "shader.h"
#include "shader_manager.h"
#include "terrain.h"
#include "texture.h"
#include "texture_manager.h"
#include <algorithm>
#include <cmath>
#include <Windows.h> // TODO
namespace Lumix
{
template <typename T>
struct MTBucketArray
{
enum {
BUCKET_SIZE = 16384,
MAX_COUNT = BUCKET_SIZE / sizeof(T)
};
struct Bucket {
T* values;
int count = 0;
MTBucketArray* array;
void end() { array->end(*this); }
void push(const T& value)
{
values[count] = value;
++count;
if (count == MAX_COUNT) {
array->end(*this);
*this = array->begin();
}
}
};
MTBucketArray(IAllocator& allocator)
: m_counts(allocator)
{
m_mem = (u8*)VirtualAlloc(nullptr, 1024 * 1024 * 8, MEM_RESERVE, PAGE_READWRITE);
m_end = m_mem;
m_counts.reserve(1024 * 1024 * 8 / BUCKET_SIZE);
}
~MTBucketArray()
{
VirtualFree(m_mem, 0, MEM_RELEASE);
}
Bucket begin()
{
Bucket b;
b.array = this;
m_mutex.lock();
m_counts.emplace();
b.values = (T*)m_end;
m_end += BUCKET_SIZE;
m_mutex.unlock();
// TODO make sure BUCKET_SIZE is multiple of page size
VirtualAlloc(b.values, BUCKET_SIZE, MEM_COMMIT, PAGE_READWRITE);
return b;
}
void end(const Bucket& bucket)
{
const int bucket_idx = int(((u8*)bucket.values - m_mem) / BUCKET_SIZE);
MT::SpinLock lock(m_mutex);
m_counts[bucket_idx] = bucket.count;
}
void merge()
{
int b = 0, e = int((m_end - m_mem) / BUCKET_SIZE) - 1;
if (m_end == m_mem) return;
for(;;) {
while (b != e && m_counts[b] == MAX_COUNT) {
++b;
}
if (b == e) {
for(int i = 0; i <= e; ++i) m_total_count += m_counts[i];
break;
}
const int s = Math::minimum(m_counts[e], MAX_COUNT - m_counts[b]);
memcpy(&m_mem[b * BUCKET_SIZE + m_counts[b] * sizeof(T)], &m_mem[e * BUCKET_SIZE + (m_counts[e] - s) * sizeof(T)], s * sizeof(T));
m_counts[b] += s;
m_counts[e] -= s;
if (m_counts[e] == 0) --e;
}
}
int size() const { return m_total_count; }
T* ptr() const { return (T*)m_mem; }
MT::SpinMutex m_mutex;
u8* m_mem;
u8* m_end;
Array<int> m_counts;
int m_total_count = 0;
};
static const float SHADOW_CAM_NEAR = 50.0f;
static const float SHADOW_CAM_FAR = 5000.0f;
ResourceType PipelineResource::TYPE("pipeline");
void PipelineResource::unload()
{
content.clear();
}
bool PipelineResource::load(FS::IFile& file)
{
content.resize((int)file.size());
file.read(content.begin(), content.size());
return true;
}
PipelineResourceManager::PipelineResourceManager(IAllocator& allocator)
: ResourceManager(allocator)
, m_allocator(allocator)
{}
Resource* PipelineResourceManager::createResource(const Path& path)
{
return LUMIX_NEW(m_allocator, PipelineResource)(path, *this, m_allocator);
}
void PipelineResourceManager::destroyResource(Resource& resource)
{
return LUMIX_DELETE(m_allocator, static_cast<PipelineResource*>(&resource));
}
PipelineResource::PipelineResource(const Path& path, ResourceManager& owner, IAllocator& allocator)
: Resource(path, owner, allocator)
, content(allocator)
{}
struct PipelineImpl final : Pipeline
{
struct CommandSet
{
CommandSet(IAllocator& allocator) : cmds(allocator) {}
Array<Array<u8>> cmds;
};
PipelineImpl(Renderer& renderer, PipelineResource* resource, const char* define, IAllocator& allocator)
: m_allocator(allocator)
, m_renderer(renderer)
, m_resource(resource)
, m_lua_state(nullptr)
, m_custom_commands_handlers(allocator)
, m_define(define)
, m_scene(nullptr)
, m_is_first_render(true)
, m_draw2d(allocator)
, m_output(-1)
, m_renderbuffers(allocator)
, m_shaders(allocator)
, m_command_sets(allocator)
{
m_timer = Timer::create(m_allocator);
m_viewport.w = m_viewport.h = 800;
ResourceManagerHub& rm = renderer.getEngine().getResourceManager();
m_draw2d_shader = rm.load<Shader>(Path("pipelines/draw2d.shd"));
m_debug_shape_shader = rm.load<Shader>(Path("pipelines/debug_shape.shd"));
m_text_mesh_shader = rm.load<Shader>(Path("pipelines/text_mesh.shd"));
TextureManager& texture_manager = renderer.getTextureManager();
m_default_cubemap = rm.load<Texture>(Path("textures/common/default_probe.dds"));
FontAtlas& font_atlas = m_renderer.getFontManager().getFontAtlas();
m_draw2d.FontTexUvWhitePixel = font_atlas.TexUvWhitePixel;
m_draw2d.Clear();
m_draw2d.PushClipRectFullScreen();
m_draw2d.PushTextureID(font_atlas.TexID);
m_splatmap_uniform = ffr::allocUniform("u_splatmap", ffr::UniformType::INT, 1);
m_detail_textures_uniform = ffr::allocUniform("u_detail_textures", ffr::UniformType::INT, 1);
m_position_uniform = ffr::allocUniform("u_position", ffr::UniformType::VEC3, 1);
m_lod_uniform = ffr::allocUniform("u_lod", ffr::UniformType::INT, 1);
m_position_radius_uniform = ffr::allocUniform("u_pos_radius", ffr::UniformType::VEC4, 1);
m_terrain_params_uniform = ffr::allocUniform("u_terrain_params", ffr::UniformType::VEC4, 1);
m_rel_camera_pos_uniform = ffr::allocUniform("u_rel_camera_pos", ffr::UniformType::VEC3, 1);
m_terrain_scale_uniform = ffr::allocUniform("u_terrain_scale", ffr::UniformType::VEC4, 1);
m_terrain_matrix_uniform = ffr::allocUniform("u_terrain_matrix", ffr::UniformType::MAT4, 1);
m_model_uniform = ffr::allocUniform("u_model", ffr::UniformType::MAT4, 1);
m_bones_uniform = ffr::allocUniform("u_bones", ffr::UniformType::MAT4, 196);
m_canvas_size_uniform = ffr::allocUniform("u_canvas_size", ffr::UniformType::VEC2, 1);
m_texture_uniform = ffr::allocUniform("u_texture", ffr::UniformType::INT, 1);
m_irradiance_map_uniform = ffr::allocUniform("u_irradiancemap", ffr::UniformType::INT, 1);
m_radiance_map_uniform = ffr::allocUniform("u_radiancemap", ffr::UniformType::INT, 1);
m_material_params_uniform = ffr::allocUniform("u_material_params", ffr::UniformType::VEC4, 1);
m_material_color_uniform = ffr::allocUniform("u_material_color", ffr::UniformType::VEC4, 1);
float cube_verts[] = {
-1, -1, -1,
1, -1, -1,
1, -1, 1,
-1, -1, 1,
-1, 1, -1,
1, 1, -1,
1, 1, 1,
-1, 1, 1
};
const Renderer::MemRef vb_mem = m_renderer.copy(cube_verts, sizeof(cube_verts));
m_cube_vb = m_renderer.createBuffer(vb_mem);
u16 cube_indices[] = {
0, 1, 2,
0, 2, 3,
4, 6, 5,
4, 7, 6,
0, 4, 5,
0, 5, 1,
2, 6, 7,
2, 7, 3,
0, 3, 7,
0, 7, 4,
1, 6, 2,
1, 5, 6
};
const Renderer::MemRef ib_mem = m_renderer.copy(cube_indices, sizeof(cube_indices));
m_cube_ib = m_renderer.createBuffer(ib_mem);
m_resource->onLoaded<PipelineImpl, &PipelineImpl::onStateChanged>(this);
}
~PipelineImpl()
{
freeCommandSets();
m_draw2d_shader->getResourceManager().unload(*m_draw2d_shader);
m_debug_shape_shader->getResourceManager().unload(*m_debug_shape_shader);
m_text_mesh_shader->getResourceManager().unload(*m_text_mesh_shader);
m_default_cubemap->getResourceManager().unload(*m_default_cubemap);
for(ShaderRef& shader : m_shaders) {
shader.res->getResourceManager().unload(*shader.res);
}
Timer::destroy(m_timer);
if (m_resource) m_resource->getResourceManager().unload(*m_resource);
}
void callInitScene()
{
lua_rawgeti(m_lua_state, LUA_REGISTRYINDEX, m_lua_env);
lua_getfield(m_lua_state, -1, "initScene");
if (lua_type(m_lua_state, -1) == LUA_TFUNCTION)
{
lua_pushlightuserdata(m_lua_state, this);
if (lua_pcall(m_lua_state, 1, 0, 0) != 0)
{
g_log_error.log("lua") << lua_tostring(m_lua_state, -1);
lua_pop(m_lua_state, 1);
}
}
else
{
lua_pop(m_lua_state, 1);
}
}
void cleanup()
{
if (m_lua_state)
{
luaL_unref(m_renderer.getEngine().getState(), LUA_REGISTRYINDEX, m_lua_thread_ref);
luaL_unref(m_lua_state, LUA_REGISTRYINDEX, m_lua_env);
m_lua_state = nullptr;
}
}
void setDefine()
{
if (m_define == "") return;
StaticString<256> tmp(m_define, " = true");
bool errors = luaL_loadbuffer(m_lua_state, tmp, stringLength(tmp.data), m_resource->getPath().c_str()) != 0;
if (errors)
{
g_log_error.log("Renderer") << m_resource->getPath().c_str() << ": " << lua_tostring(m_lua_state, -1);
lua_pop(m_lua_state, 1);
return;
}
lua_rawgeti(m_lua_state, LUA_REGISTRYINDEX, m_lua_env);
lua_setfenv(m_lua_state, -2);
errors = lua_pcall(m_lua_state, 0, 0, 0) != 0;
if (errors)
{
g_log_error.log("Renderer") << m_resource->getPath().c_str() << ": " << lua_tostring(m_lua_state, -1);
lua_pop(m_lua_state, 1);
}
}
void executeCustomCommand(const char* name)
{
u32 name_hash = crc32(name);
for(CustomCommandHandler& handler : m_custom_commands_handlers)
{
if(handler.hash == name_hash)
{
handler.callback.invoke();
break;
}
}
}
void exposeCustomCommandToLua(const CustomCommandHandler& handler)
{
if (!m_lua_state) return;
char tmp[1024];
copyString(tmp, "function ");
catString(tmp, handler.name);
catString(tmp, "() executeCustomCommand(\"");
catString(tmp, handler.name);
catString(tmp, "\") end");
bool errors = luaL_loadbuffer(m_lua_state, tmp, stringLength(tmp), "exposeCustomCommandToLua") != 0;
lua_rawgeti(m_lua_state, LUA_REGISTRYINDEX, m_lua_env);
lua_setfenv(m_lua_state, -2);
errors = errors || lua_pcall(m_lua_state, 0, 0, 0) != 0;
if (errors)
{
g_log_error.log("Renderer") << lua_tostring(m_lua_state, -1);
lua_pop(m_lua_state, 1);
}
}
void onStateChanged(Resource::State, Resource::State new_state, Resource&)
{
if (new_state != Resource::State::READY) return;
cleanup();
m_lua_state = lua_newthread(m_renderer.getEngine().getState());
m_lua_thread_ref = luaL_ref(m_renderer.getEngine().getState(), LUA_REGISTRYINDEX);
lua_newtable(m_lua_state);
lua_pushvalue(m_lua_state, -1);
m_lua_env = luaL_ref(m_lua_state, LUA_REGISTRYINDEX);
lua_pushvalue(m_lua_state, -1);
lua_setmetatable(m_lua_state, -2);
lua_pushvalue(m_lua_state, LUA_GLOBALSINDEX);
lua_setfield(m_lua_state, -2, "__index");
if (m_renderer.getEngine().getDiskFileDevice())
{
lua_rawgeti(m_lua_state, LUA_REGISTRYINDEX, m_lua_env);
lua_pushstring(m_lua_state, m_renderer.getEngine().getDiskFileDevice()->getBasePath());
lua_setfield(m_lua_state, -2, "LUA_PATH");
}
lua_rawgeti(m_lua_state, LUA_REGISTRYINDEX, m_lua_env);
lua_pushlightuserdata(m_lua_state, this);
lua_setfield(m_lua_state, -2, "this");
registerLuaAPI(m_lua_state);
for (auto& handler : m_custom_commands_handlers)
{
exposeCustomCommandToLua(handler);
}
setDefine();
const char* content = m_resource->content.begin();
const int content_size = m_resource->content.size();
bool errors =
luaL_loadbuffer(m_lua_state, content, content_size, m_resource->getPath().c_str()) != 0;
if (errors)
{
g_log_error.log("Renderer") << m_resource->getPath().c_str() << ": " << lua_tostring(m_lua_state, -1);
lua_pop(m_lua_state, 1);
return;
}
lua_rawgeti(m_lua_state, LUA_REGISTRYINDEX, m_lua_env);
lua_setfenv(m_lua_state, -2);
errors = lua_pcall(m_lua_state, 0, 0, 0) != 0;
if (errors)
{
g_log_error.log("Renderer") << m_resource->getPath().c_str() << ": " << lua_tostring(m_lua_state, -1);
lua_pop(m_lua_state, 1);
return;
}
m_viewport.w = m_viewport.h = 800;
if (m_scene) callInitScene();
}
void clearBuffers()
{
for (Renderbuffer& rb : m_renderbuffers) {
++rb.frame_counter;
}
for(int i = m_renderbuffers.size() - 1; i >= 0; --i) {
if (m_renderbuffers[i].frame_counter > 1) {
m_renderer.destroy(m_renderbuffers[i].handle);
m_renderbuffers.eraseFast(i);
}
}
}
virtual void setViewport(const Viewport& viewport) override
{
m_viewport = viewport;
}
void resetState()
{
struct Cmd : Renderer::RenderJob {
void setup() override {}
void execute() override {
ffr::setStencil(0xff, ffr::StencilFuncs::DISABLE, 0, 0, ffr::StencilOps::KEEP, ffr::StencilOps::KEEP, ffr::StencilOps::KEEP);
}
};
Cmd* cmd = LUMIX_NEW(m_allocator, Cmd);
m_renderer.push(cmd);
}
bool render() override
{
PROFILE_FUNCTION();
if (!isReady() || !m_scene || m_viewport.w <= 0 || m_viewport.h <= 0) {
m_is_first_render = true;
return false;
}
if (m_is_first_render) {
// m_draw2d might accumulate too much data to render while pipeline was not ready
// so we clear it on the first frame
m_is_first_render = false;
m_draw2d.Clear();
}
m_stats = {};
clearBuffers();
for(Renderbuffer& rb : m_renderbuffers) {
if(!rb.use_realtive_size) continue;
const uint w = uint(rb.relative_size.x * m_viewport.w + 0.5f);
const uint h = uint(rb.relative_size.y * m_viewport.h + 0.5f);
if(rb.width != w || rb.height != h) {
rb.width = w;
rb.height = h;
m_renderer.destroy(rb.handle);
rb.handle = m_renderer.createTexture(w, h, 1, rb.format, 0, {0, 0});
}
}
Renderer::GlobalState state;
const Matrix view = m_viewport.getViewRotation();
const Matrix projection = m_viewport.getProjection(ffr::isHomogenousDepth());
state.camera_projection = projection;
state.camera_inv_projection = projection;
state.camera_inv_projection.inverse();
state.camera_view = view;
state.camera_inv_view = view.fastInverted();
state.camera_view_projection = projection * view;
state.camera_inv_view_projection = state.camera_view_projection;
state.camera_inv_view_projection.inverse();
state.time = m_timer->getTimeSinceStart();
state.framebuffer_size.x = m_viewport.w;
state.framebuffer_size.y = m_viewport.h;
const EntityPtr global_light = m_scene->getActiveGlobalLight();
if(global_light.isValid()) {
EntityRef gl = (EntityRef)global_light;
state.light_direction = Vec4(m_scene->getUniverse().getRotation(gl).rotate(Vec3(0, 0, -1)), 456);
state.light_color = m_scene->getGlobalLightColor(gl);
state.light_intensity = m_scene->getGlobalLightIntensity(gl);
state.light_indirect_intensity = m_scene->getGlobalLightIndirectIntensity(gl);
}
resetState();
m_renderer.setGlobalState(state);
LuaWrapper::DebugGuard lua_debug_guard(m_lua_state);
lua_rawgeti(m_lua_state, LUA_REGISTRYINDEX, m_lua_env);
lua_getfield(m_lua_state, -1, "main");
if (lua_type(m_lua_state, -1) != LUA_TFUNCTION) {
lua_pop(m_lua_state, 2);
return false;
}
LuaWrapper::pcall(m_lua_state, 0);
lua_pop(m_lua_state, 1);
freeCommandSets();
return true;
}
void renderDebugLines()
{
struct Cmd : Renderer::RenderJob
{
Cmd(IAllocator& allocator) : lines(allocator) {}
void setup() override
{
const Array<DebugLine>& src_lines = pipeline->m_scene->getDebugLines();
lines.resize(src_lines.size());
copyMemory(&lines[0], &src_lines[0], lines.size() * sizeof(lines[0]));
render_data = pipeline->m_debug_shape_shader->m_render_data;
}
void execute() override {
ffr::pushDebugGroup("debug lines");
const Shader::Program& shader = Shader::getProgram(render_data, 0);
struct BaseVertex {
Vec3 pos;
u32 color;
};
Array<BaseVertex> vertices(pipeline->m_allocator);
vertices.resize(lines.size() * 2);
for (int j = 0, n = lines.size(); j < n; ++j) {
const DebugLine& line = lines[j];
vertices[j * 2].color = line.color;
vertices[j * 2].pos = (line.from - viewport_pos).toFloat();
vertices[j * 2 + 1].color = line.color;
vertices[j * 2 + 1].pos = (line.to - viewport_pos).toFloat();
}
ffr::VertexDecl vertex_decl;
vertex_decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
vertex_decl.addAttribute(4, ffr::AttributeType::U8, true, false);
ffr::setUniformMatrix4f(pipeline->m_model_uniform, &Matrix::IDENTITY.m11);
ffr::setState(0);
ffr::useProgram(shader.handle);
const Renderer::TransientSlice vb = pipeline->m_renderer.allocTransient(vertices.byte_size());
ffr::update(vb.buffer, vertices.begin(), vb.offset, vb.size);
ffr::setVertexBuffer(&vertex_decl, vb.buffer, vb.offset, nullptr);
ffr::setIndexBuffer(ffr::INVALID_BUFFER);
ffr::drawArrays(0, lines.size() * 2, ffr::PrimitiveType::LINES);
ffr::popDebugGroup();
}
Array<DebugLine> lines;
PipelineImpl* pipeline;
DVec3 viewport_pos;
ShaderRenderData* render_data;
};
const Array<DebugLine>& lines = m_scene->getDebugLines();
if (lines.empty() || !m_debug_shape_shader->isReady()) return;
IAllocator& allocator = m_renderer.getAllocator();
Cmd* cmd = LUMIX_NEW(allocator, Cmd)(allocator);
cmd->pipeline = this;
cmd->viewport_pos = m_viewport.pos;
m_renderer.push(cmd);
}
void renderDebugShapes()
{
renderDebugLines();
/*renderDebugTriangles();
renderDebugPoints();*/
}
void render2D()
{
auto resetDraw2D = [this](){
m_draw2d.Clear();
m_draw2d.PushClipRectFullScreen();
FontAtlas& atlas = m_renderer.getFontManager().getFontAtlas();
m_draw2d.FontTexUvWhitePixel = atlas.TexUvWhitePixel;
m_draw2d.PushTextureID(atlas.TexID);
};
if (!m_draw2d_shader->isReady()) {
resetDraw2D();
return;
}
if (m_draw2d.IdxBuffer.size() == 0) {
resetDraw2D();
return;
}
struct Cmd : Renderer::RenderJob
{
Renderer::MemRef idx_buffer_mem;
Renderer::MemRef vtx_buffer_mem;
int num_indices;
int num_vertices;
Array<Draw2D::DrawCmd> cmd_buffer;
Cmd(IAllocator& allocator) : cmd_buffer(allocator) {}
void setup()
{
size.set((float)pipeline->m_viewport.w, (float)pipeline->m_viewport.h);
Draw2D& draw2d = pipeline->m_draw2d;
num_indices = draw2d.IdxBuffer.size();
num_vertices = draw2d.VtxBuffer.size();
idx_buffer_mem = pipeline->m_renderer.copy(&draw2d.IdxBuffer[0], num_indices * sizeof(ImDrawIdx));
vtx_buffer_mem = pipeline->m_renderer.copy(&draw2d.VtxBuffer[0], num_vertices * sizeof(ImDrawVert));
cmd_buffer.resize(draw2d.CmdBuffer.size());
copyMemory(&cmd_buffer[0], draw2d.CmdBuffer.begin(), sizeof(cmd_buffer[0]) * cmd_buffer.size());
draw2d.Clear();
draw2d.PushClipRectFullScreen();
FontAtlas& atlas = pipeline->m_renderer.getFontManager().getFontAtlas();
draw2d.FontTexUvWhitePixel = atlas.TexUvWhitePixel;
draw2d.PushTextureID(atlas.TexID);
shader = pipeline->m_draw2d_shader->m_render_data;
}
void execute()
{
ffr::VertexDecl vertex_decl;
vertex_decl.addAttribute(2, ffr::AttributeType::FLOAT, false, false);
vertex_decl.addAttribute(2, ffr::AttributeType::FLOAT, false, false);
vertex_decl.addAttribute(4, ffr::AttributeType::U8, true, false);
ffr::BufferHandle vb = ffr::allocBufferHandle();
ffr::BufferHandle ib = ffr::allocBufferHandle();
ffr::createBuffer(vb, vtx_buffer_mem.size, vtx_buffer_mem.data);
ffr::createBuffer(ib, idx_buffer_mem.size, idx_buffer_mem.data);
pipeline->m_renderer.free(idx_buffer_mem);
pipeline->m_renderer.free(vtx_buffer_mem);
ffr::pushDebugGroup("draw2d");
ffr::ProgramHandle prg = Shader::getProgram(shader, 0).handle;
ffr::setUniform2f(pipeline->m_canvas_size_uniform, &size.x);
ffr::setVertexBuffer(&vertex_decl, vb, 0, nullptr);
ffr::setIndexBuffer(ib);
u32 elem_offset = 0;
const Draw2D::DrawCmd* pcmd_begin = cmd_buffer.begin();
const Draw2D::DrawCmd* pcmd_end = cmd_buffer.end();
ffr::setState(0);
ffr::setUniform1i(pipeline->m_texture_uniform, 0);
ffr::useProgram(prg);
ASSERT(pcmd_begin <= pcmd_end - 1); // TODO compute correct offsets
for (const Draw2D::DrawCmd* pcmd = pcmd_begin; pcmd != pcmd_end; pcmd++) {
if (0 == pcmd->ElemCount) continue;
ffr::scissor(uint(Math::maximum(pcmd->ClipRect.x, 0.0f)),
uint(Math::maximum(pcmd->ClipRect.y, 0.0f)),
uint(Math::minimum(pcmd->ClipRect.z, 65535.0f) - Math::maximum(pcmd->ClipRect.x, 0.0f)),
uint(Math::minimum(pcmd->ClipRect.w, 65535.0f) - Math::maximum(pcmd->ClipRect.y, 0.0f)));
const Texture* atlas_texture = pipeline->m_renderer.getFontManager().getAtlasTexture();
ffr::TextureHandle texture_id = atlas_texture->handle;
if (pcmd->TextureId) texture_id = *(ffr::TextureHandle*)pcmd->TextureId;
if(!texture_id.isValid()) texture_id = atlas_texture->handle;
ffr::bindTexture(0, texture_id);
ffr::blending(1);
ffr::drawTriangles(num_indices);
elem_offset += pcmd->ElemCount;
}
ffr::popDebugGroup();
ffr::destroy(vb);
ffr::destroy(ib);
}
Vec2 size;
PipelineImpl* pipeline;
ShaderRenderData* shader;
};
IAllocator& allocator = m_renderer.getAllocator();
Cmd* cmd = LUMIX_NEW(allocator, Cmd)(allocator);
cmd->pipeline = this;
m_renderer.push(cmd);
}
void setScene(RenderScene* scene) override
{
m_scene = scene;
if (m_lua_state && m_scene) callInitScene();
}
RenderScene* getScene() const override { return m_scene; }
CustomCommandHandler& addCustomCommandHandler(const char* name) override
{
auto& handler = m_custom_commands_handlers.emplace();
copyString(handler.name, name);
handler.hash = crc32(name);
exposeCustomCommandToLua(handler);
return handler;
}
static ffr::TextureFormat getFormat(const char* name)
{
static const struct
{
const char* name;
ffr::TextureFormat value;
} FORMATS[] = {
{"depth32", ffr::TextureFormat::D32},
{"depth24", ffr::TextureFormat::D24},
{"depth24stencil8", ffr::TextureFormat::D24S8},
{"rgba8", ffr::TextureFormat::RGBA8},
{"srgba", ffr::TextureFormat::SRGBA},
{"srgb", ffr::TextureFormat::SRGB},
{"rgba16", ffr::TextureFormat::RGBA16},
{"rgba16f", ffr::TextureFormat::RGBA16F},
{"r16f", ffr::TextureFormat::R16F},
{"r16", ffr::TextureFormat::R16},
{"r32f", ffr::TextureFormat::R32F},
};
for (auto& i : FORMATS)
{
if (equalStrings(i.name, name)) return i.value;
}
g_log_error.log("Renderer") << "Uknown texture format " << name;
return ffr::TextureFormat::RGBA8;
}
int createRenderbuffer(float w, float h, bool relative, const char* format_str)
{
const uint rb_w = uint(relative ? w * m_viewport.w + 0.5f : w);
const uint rb_h = uint(relative ? h * m_viewport.h + 0.5f : h);
const ffr::TextureFormat format = getFormat(format_str);
for (int i = 0, n = m_renderbuffers.size(); i < n; ++i)
{
Renderbuffer& rb = m_renderbuffers[i];
if (rb.frame_counter == 0) continue;
if (rb.width != rb_w) continue;
if (rb.height != rb_h) continue;
if (rb.format != format) continue;
rb.frame_counter = 0;
return i;
}
Renderbuffer& rb = m_renderbuffers.emplace();
rb.use_realtive_size = relative;
rb.relative_size.set(w, h);
rb.frame_counter = 0;
rb.width = rb_w;
rb.height = rb_h;
rb.format = format;
rb.handle = m_renderer.createTexture(rb_w, rb_h, 1, format, 0, {0, 0});
return m_renderbuffers.size() - 1;
}
static int renderTerrains(lua_State* L)
{
PROFILE_FUNCTION();
const int pipeline_idx = lua_upvalueindex(1);
if (lua_type(L, pipeline_idx) != LUA_TLIGHTUSERDATA) {
LuaWrapper::argError<PipelineImpl*>(L, pipeline_idx);
}
PipelineImpl* pipeline = LuaWrapper::toType<PipelineImpl*>(L, pipeline_idx);
const char* define = LuaWrapper::checkArg<const char*>(L, 1);
const CameraParams cp = checkCameraParams(L, 2);
IAllocator& allocator = pipeline->m_renderer.getAllocator();
RenderTerrainsCommand* cmd = LUMIX_NEW(allocator, RenderTerrainsCommand)(allocator);
if (lua_gettop(L) > 3 && lua_istable(L, 3)) {
lua_pushnil(L);
while (lua_next(L, 3) != 0) {
if(lua_type(L, -1) != LUA_TNUMBER) {
g_log_error.log("Renderer") << "Incorrect global textures arguments of renderTerrains";
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
lua_pop(L, 2);
return 0;
}
if(lua_type(L, -2) != LUA_TSTRING) {
g_log_error.log("Renderer") << "Incorrect global textures arguments of renderTerrains";
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
lua_pop(L, 2);
return 0;
}
if (cmd->m_global_textures_count > lengthOf(cmd->m_global_textures)) {
g_log_error.log("Renderer") << "Too many textures in renderTerrains call";
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
lua_pop(L, 2);
return 0;
}
const char* uniform = lua_tostring(L, -2);
const int rb_idx = (int)lua_tointeger(L, -1);
auto& t = cmd->m_global_textures[cmd->m_global_textures_count];
t.texture = pipeline->m_renderbuffers[rb_idx].handle;
t.uniform = ffr::allocUniform(uniform, ffr::UniformType::INT, 1);
++cmd->m_global_textures_count;
lua_pop(L, 1);
}
}
cmd->m_pipeline = pipeline;
cmd->m_camera_params = cp;
cmd->m_shader_define = define;
pipeline->m_renderer.push(cmd);
return 0;
}
static int renderParticles(lua_State* L)
{
const int pipeline_idx = lua_upvalueindex(1);
if (lua_type(L, pipeline_idx) != LUA_TLIGHTUSERDATA) {
LuaWrapper::argError<PipelineImpl*>(L, pipeline_idx);
}
const CameraParams cp = checkCameraParams(L ,1);
PipelineImpl* pipeline = LuaWrapper::toType<PipelineImpl*>(L, pipeline_idx);
PROFILE_FUNCTION();
struct Cmd : Renderer::RenderJob
{
Cmd(IAllocator& allocator)
: m_data(allocator)
{}
void setup() override
{
const auto& emitters = m_pipeline->m_scene->getParticleEmitters();
int byte_size = 0;
for (ParticleEmitter* emitter : emitters) {
byte_size += emitter->getInstanceDataSizeBytes();
}
m_data.reserve(sizeof(int) * emitters.size() + byte_size);
for (ParticleEmitter* emitter : emitters) {
if (!emitter->getResource() || !emitter->getResource()->isReady()) continue;
const int size = emitter->getInstanceDataSizeBytes();
if (size == 0) continue;
const Material* material = emitter->getResource()->getMaterial();
m_data.write(material->getShader()->m_render_data);
m_data.write(size);
m_data.write(emitter->getInstancesCount());
float* instance_data = (float*)m_data.skip(size);
emitter->fillInstanceData(m_camera_params.pos, instance_data);
}
}
void execute() override
{
ffr::pushDebugGroup("particles");
InputBlob blob(m_data);
ffr::VertexDecl instance_decl;
instance_decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
while(blob.getPosition() < blob.getSize()) {
ShaderRenderData* shader_data = blob.read<ShaderRenderData*>();
const int byte_size = blob.read<int>();
const int instances_count = blob.read<int>();
const Renderer::TransientSlice transient = m_pipeline->m_renderer.allocTransient(byte_size);
if ((int)transient.size < byte_size) {
g_log_warning.log("Renderer") << "Not enough memory reserved to render all particles.";
break;
}
const void* mem = blob.skip(byte_size);
ffr::update(transient.buffer, mem, transient.offset, byte_size);
const Shader::Program& prog = Shader::getProgram(shader_data, 0);
ffr::blending(0);
ffr::useProgram(prog.handle);
ffr::setInstanceBuffer(instance_decl, transient.buffer, transient.offset, 0, nullptr);
ffr::drawTriangleStripArraysInstanced(0, 4, instances_count);
}
ffr::popDebugGroup();
}
OutputBlob m_data;
PipelineImpl* m_pipeline;
CameraParams m_camera_params;
};
Cmd* cmd = LUMIX_NEW(pipeline->m_allocator, Cmd)(pipeline->m_allocator);
cmd->m_pipeline = pipeline;
cmd->m_camera_params = cp;
pipeline->m_renderer.push(cmd);
return 0;
}
struct CameraParams
{
ShiftedFrustum frustum;
DVec3 pos;
float lod_multiplier;
};
static CameraParams checkCameraParams(lua_State* L, int idx)
{
CameraParams cp;
lua_getfield(L, idx, "frustum");
if (!lua_istable(L, -1)) {
lua_pop(L, 1);
luaL_error(L, "Frustum is not a table");
}
float* points = cp.frustum.xs;
if(!LuaWrapper::checkField(L, -1, "origin", &cp.frustum.origin)) {
lua_pop(L, 1);
luaL_error(L, "Frustum without origin");
}
for (int i = 0; i < 32 + 24; ++i) {
lua_rawgeti(L, -1, i + 1);
if(!LuaWrapper::isType<float>(L, -1)) {
lua_pop(L, 2);
luaL_error(L, "Frustum must contain exactly 24 floats");
}
points[i] = LuaWrapper::toType<float>(L, -1);
lua_pop(L, 1);
}
lua_pop(L, 1);
cp.frustum.setPlanesFromPoints();
if(!LuaWrapper::checkField(L, idx, "lod_multiplier", &cp.lod_multiplier)) {
luaL_error(L, "Missing lod_multiplier in camera params");
}
if(!LuaWrapper::checkField(L, idx, "position", &cp.pos)) {
luaL_error(L, "Missing position in camera params");
}
return cp;
}
static int bindTextures(lua_State* L)
{
struct Cmd : Renderer::RenderJob {
void setup() override {}
void execute() override
{
for(int i = 0; i < m_textures_count; ++i) {
ffr::bindTexture(m_offset + i, m_textures[i].handle);
ffr::setUniform1i(m_textures[i].uniform, i + m_offset);
}
}
struct {
ffr::TextureHandle handle;
ffr::UniformHandle uniform;
} m_textures[16];
int m_offset = 0;
int m_textures_count = 0;
};
const int pipeline_idx = lua_upvalueindex(1);
if (lua_type(L, pipeline_idx) != LUA_TLIGHTUSERDATA) {
LuaWrapper::argError<PipelineImpl*>(L, pipeline_idx);
}
PipelineImpl* pipeline = LuaWrapper::toType<PipelineImpl*>(L, pipeline_idx);
LuaWrapper::checkTableArg(L, 1);
const int offset = lua_gettop(L) > 1 ? LuaWrapper::checkArg<int>(L, 2) : 0;
Cmd* cmd = LUMIX_NEW(pipeline->m_renderer.getAllocator(), Cmd);
cmd->m_offset = offset;
lua_pushnil(L);
while (lua_next(L, 1) != 0) {
if(lua_type(L, -1) != LUA_TNUMBER) {
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
return luaL_error(L, "%s", "Incorrect texture arguments of bindTextures");
}
if(lua_type(L, -2) != LUA_TSTRING) {
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
return luaL_error(L, "%s", "Incorrect texture arguments of bindTextures");
}
if (cmd->m_textures_count > lengthOf(cmd->m_textures)) {
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
return luaL_error(L, "%s", "Too many texture in bindTextures call");
}
const char* uniform_name = lua_tostring(L, -2);
cmd->m_textures[cmd->m_textures_count].uniform = ffr::allocUniform(uniform_name, ffr::UniformType::INT, 1);
const int rb_idx = (int)lua_tointeger(L, -1);
cmd->m_textures[cmd->m_textures_count].handle = pipeline->m_renderbuffers[rb_idx].handle;
++cmd->m_textures_count;
lua_pop(L, 1);
}
pipeline->m_renderer.push(cmd);
return 0;
};
static int renderEnvProbeVolumes(lua_State* L)
{
const int pipeline_idx = lua_upvalueindex(1);
if (lua_type(L, pipeline_idx) != LUA_TLIGHTUSERDATA) {
LuaWrapper::argError<PipelineImpl*>(L, pipeline_idx);
}
PipelineImpl* pipeline = LuaWrapper::toType<PipelineImpl*>(L, pipeline_idx);
const int shader_id = LuaWrapper::checkArg<int>(L, 1);
const Shader* shader = [&] {
for (const ShaderRef& s : pipeline->m_shaders) {
if(s.id == shader_id) {
return s.res;
}
}
return (Shader*)nullptr;
}();
if (!shader) {
return luaL_error(L, "Unknown shader id %d in renderEnvProbeVolumes.", shader_id);
}
const CameraParams cp = checkCameraParams(L, 2);
struct Cmd : public Renderer::RenderJob
{
struct Probe
{
Vec3 pos;
ffr::TextureHandle texture;
};
Cmd(IAllocator& allocator) : m_probes(allocator) {}
void setup() override
{
m_pipeline->getScene()->getEnvironmentProbes(m_probes);
}
void execute() override
{
PROFILE_FUNCTION();
if(m_probes.empty()) return;
ffr::pushDebugGroup("environment");
const Shader::Program& prog = Shader::getProgram(m_shader, 0);
if(!prog.handle.isValid()) return;
const int pos_radius_uniform_loc = ffr::getUniformLocation(prog.handle, m_pos_radius_uniform);
ffr::VertexDecl decl;
decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
ffr::setVertexBuffer(&decl, m_vb, 0, nullptr);
ffr::setIndexBuffer(m_ib);
ffr::useProgram(prog.handle);
ffr::setState(u64(ffr::StateFlags::DEPTH_TEST) | u64(ffr::StateFlags::CULL_BACK));
ffr::blending(2);
const int irradiance_map_loc = ffr::getUniformLocation(prog.handle, m_irradiance_map_uniform);
const int radiance_map_loc = ffr::getUniformLocation(prog.handle, m_radiance_map_uniform);
const DVec3 cam_pos = m_camera_params.pos;
for (const EnvProbeInfo& probe : m_probes) {
const Vec4 pos_radius((probe.position - cam_pos).toFloat(), probe.radius);
ffr::bindTexture(0, probe.radiance);
ffr::applyUniform1i(irradiance_map_loc, 0);
ffr::bindTexture(1, probe.radiance);
ffr::applyUniform1i(radiance_map_loc, 1);
ffr::applyUniform4f(pos_radius_uniform_loc, &pos_radius.x);
ffr::drawTriangles(36);
}
ffr::blending(0);
ffr::popDebugGroup();
}
ffr::BufferHandle m_ib;
ffr::BufferHandle m_vb;
ffr::UniformHandle m_pos_radius_uniform;
ffr::UniformHandle m_irradiance_map_uniform;
ffr::UniformHandle m_radiance_map_uniform;
CameraParams m_camera_params;
PipelineImpl* m_pipeline;
Array<EnvProbeInfo> m_probes;
ShaderRenderData* m_shader;
};
if(shader->isReady()) {
IAllocator& allocator = pipeline->m_renderer.getAllocator();
Cmd* cmd = LUMIX_NEW(allocator, Cmd)(allocator);
cmd->m_pipeline = pipeline;
cmd->m_shader = shader->m_render_data;
cmd->m_ib = pipeline->m_cube_ib;
cmd->m_vb = pipeline->m_cube_vb;
cmd->m_camera_params = cp;
cmd->m_irradiance_map_uniform = pipeline->m_irradiance_map_uniform;
cmd->m_radiance_map_uniform = pipeline->m_radiance_map_uniform;
cmd->m_pos_radius_uniform = pipeline->m_position_radius_uniform;
pipeline->m_renderer.push(cmd);
}
return 0;
}
static int prepareCommands(lua_State* L)
{
PROFILE_FUNCTION();
const int pipeline_idx = lua_upvalueindex(1);
if (lua_type(L, pipeline_idx) != LUA_TLIGHTUSERDATA) {
LuaWrapper::argError<PipelineImpl*>(L, pipeline_idx);
}
PipelineImpl* pipeline = LuaWrapper::toType<PipelineImpl*>(L, pipeline_idx);
LuaWrapper::checkTableArg(L, 1);
const CameraParams cp = checkCameraParams(L, 1);
IAllocator& allocator = pipeline->m_renderer.getAllocator();
PrepareCommandsRenderJob* cmd = LUMIX_NEW(allocator, PrepareCommandsRenderJob)(allocator);
LuaWrapper::checkTableArg(L, 2);
lua_pushnil(L);
cmd->m_bucket_count = 0;
while (lua_next(L, 2) != 0) {
if(lua_type(L, -1) != LUA_TNUMBER || lua_type(L, -2) != LUA_TSTRING) {
LUMIX_DELETE(allocator, cmd);
luaL_argerror(L, 3, "Incorrect view mapping");
}
const char* key = lua_tostring(L, -2);
const int value = (int)lua_tointeger(L, -1);
const int layer = pipeline->m_renderer.getLayerIdx(key);
cmd->m_bucket_map[layer] = value;
cmd->m_bucket_count = Math::maximum(value + 1, cmd->m_bucket_count);
lua_pop(L, 1);
}
/*
if (lua_gettop(L) > 4 && lua_istable(L, 4)) {
lua_pushnil(L);
while (lua_next(L, 4) != 0) {
if(lua_type(L, -1) != LUA_TNUMBER) {
g_log_error.log("Renderer") << "Incorrect global textures arguments of renderMeshes";
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
lua_pop(L, 2);
return 0;
}
if(lua_type(L, -2) != LUA_TSTRING) {
g_log_error.log("Renderer") << "Incorrect global textures arguments of renderMeshes";
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
lua_pop(L, 2);
return 0;
}
if (cmd->m_global_textures_count > lengthOf(cmd->m_global_textures)) {
g_log_error.log("Renderer") << "Too many textures in renderMeshes call";
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
lua_pop(L, 2);
return 0;
}
const char* uniform = lua_tostring(L, -2);
const int rb_idx = (int)lua_tointeger(L, -1);
auto& t = cmd->m_global_textures[cmd->m_global_textures_count];
t.texture = pipeline->m_renderbuffers[rb_idx].handle;
t.uniform = ffr::allocUniform(uniform, ffr::UniformType::INT, 1);
++cmd->m_global_textures_count;
lua_pop(L, 1);
}
}*/
for(int i = 0; i < cmd->m_bucket_count; ++i) {
CommandSet* cmd_set = LUMIX_NEW(allocator, CommandSet)(allocator);
pipeline->m_command_sets.push(cmd_set);
cmd->m_command_sets[i] = cmd_set;
LuaWrapper::push(L, cmd_set);
}
cmd->m_camera_params = cp;
cmd->m_pipeline = pipeline;
const int num_cmd_sets = cmd->m_bucket_count;
pipeline->m_renderer.push(cmd);
return num_cmd_sets;
}
static int drawArray(lua_State* L)
{
struct Cmd : Renderer::RenderJob {
void setup() override { m_render_data = m_shader->isReady() ? m_shader->m_render_data : nullptr; }
void execute() override
{
if (!m_render_data) return;
ffr::ProgramHandle prg = Shader::getProgram(m_render_data, m_define_mask).handle;
for(int i = 0; i < m_textures_count; ++i) {
ffr::bindTexture(i, m_textures[i].handle);
ffr::setUniform1i(m_textures[i].uniform, i);
}
for(int i = 0; i < m_uniforms_count; ++i) {
ffr::setUniform4f(m_uniforms[i].handle, &m_uniforms[i].value.x);
}
ffr::setVertexBuffer(nullptr, ffr::INVALID_BUFFER, 0, nullptr);
ffr::useProgram(prg);
ffr::setState(0);
ffr::setIndexBuffer(ffr::INVALID_BUFFER);
ffr::drawArrays(m_indices_offset, m_indices_count, ffr::PrimitiveType::TRIANGLE_STRIP);
}
struct {
ffr::TextureHandle handle;
ffr::UniformHandle uniform;
} m_textures[16];
int m_textures_count = 0;
struct {
Vec4 value;
ffr::UniformHandle handle;
} m_uniforms[16];
int m_uniforms_count = 0;
Shader* m_shader;
int m_indices_count;
int m_indices_offset;
u32 m_define_mask = 0;
ShaderRenderData* m_render_data = nullptr;
};
const int pipeline_idx = lua_upvalueindex(1);
if (lua_type(L, pipeline_idx) != LUA_TLIGHTUSERDATA) {
LuaWrapper::argError<PipelineImpl*>(L, pipeline_idx);
}
PipelineImpl* pipeline = LuaWrapper::toType<PipelineImpl*>(L, pipeline_idx);
const int indices_offset = LuaWrapper::checkArg<int>(L, 1);
const int indices_count = LuaWrapper::checkArg<int>(L, 2);
int shader_id = LuaWrapper::checkArg<int>(L, 3);
if(lua_gettop(L) > 3) {
LuaWrapper::checkTableArg(L, 4);
}
if(lua_gettop(L) > 4) {
LuaWrapper::checkTableArg(L, 5);
}
Shader* shader = nullptr;
for (const ShaderRef& s : pipeline->m_shaders) {
if(s.id == shader_id) {
shader = s.res;
break;
}
}
if (!shader) {
return luaL_error(L, "Unknown shader id %d in drawArrays.", shader_id);
}
if (shader->isFailure()) {
return luaL_error(L, "Shader %s failed to load. `drawArrays` has no effect.", shader->getPath().c_str());
}
if (!shader->isReady()) return 0;
Cmd* cmd = LUMIX_NEW(pipeline->m_renderer.getAllocator(), Cmd);
if(lua_gettop(L) > 3) {
lua_pushnil(L);
while (lua_next(L, 4) != 0) {
if(lua_type(L, -1) != LUA_TNUMBER) {
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
return luaL_error(L, "%s", "Incorrect texture arguments of drawArrays");
}
if(lua_type(L, -2) != LUA_TSTRING) {
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
return luaL_error(L, "%s", "Incorrect texture arguments of drawArrays");
}
if (cmd->m_textures_count > lengthOf(cmd->m_textures)) {
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
return luaL_error(L, "%s", "Too many texture in drawArray call");
}
const char* uniform_name = lua_tostring(L, -2);
cmd->m_textures[cmd->m_textures_count].uniform = ffr::allocUniform(uniform_name, ffr::UniformType::INT, 1);
const int rb_idx = (int)lua_tointeger(L, -1);
cmd->m_textures[cmd->m_textures_count].handle = pipeline->m_renderbuffers[rb_idx].handle;
++cmd->m_textures_count;
lua_pop(L, 1);
}
if (lua_istable(L, 5)) {
lua_pushnil(L);
while (lua_next(L, 5) != 0) {
if(lua_type(L, -1) != LUA_TTABLE) {
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
return luaL_error(L, "%s", "Incorrect uniform arguments of drawArrays");
}
if(lua_type(L, -2) != LUA_TSTRING) {
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
return luaL_error(L, "%s", "Incorrect uniform arguments of drawArrays");
}
const char* uniform_name = lua_tostring(L, -2);
cmd->m_uniforms[cmd->m_uniforms_count].handle = ffr::allocUniform(uniform_name, ffr::UniformType::VEC4, 1);
float* value = &cmd->m_uniforms[cmd->m_uniforms_count].value.x;
for(int i = 0; i < 4; ++i) {
lua_rawgeti(L, -1, 1 + i);
if (lua_type(L, -1) != LUA_TNUMBER) {
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
return luaL_error(L, "%s", "Incorrect uniform arguments of drawArrays. Uniforms can only be Vec4.");
}
value[i] = (float)lua_tonumber(L, -1);
lua_pop(L, 1);
}
++cmd->m_uniforms_count;
lua_pop(L, 1);
}
}
if (lua_isstring(L, 6)) {
const char* define = lua_tostring(L, 6);
cmd->m_define_mask = 1 << pipeline->m_renderer.getShaderDefineIdx(define);
}
else if (lua_istable(L, 6)) {
lua_pushnil(L);
while (lua_next(L, 6) != 0) {
if(lua_type(L, -1) != LUA_TSTRING) {
LUMIX_DELETE(pipeline->m_renderer.getAllocator(), cmd);
return luaL_error(L, "%s", "Incorrect uniform arguments of drawArrays");
}
const char* define = lua_tostring(L, -1);
cmd->m_define_mask |= 1 << pipeline->m_renderer.getShaderDefineIdx(define);
lua_pop(L, 1);
}
}
}
cmd->m_shader = shader;
cmd->m_indices_count = indices_count;
cmd->m_indices_offset = indices_offset;
pipeline->m_renderer.push(cmd);
return 0;
}
static void pushCameraParams(lua_State* L, const CameraParams& params)
{
lua_createtable(L, 0, 4);
lua_createtable(L, 32+24, 0);
const float* frustum = params.frustum.xs;
for(int i = 0; i < 32+24; ++i) {
LuaWrapper::push(L, frustum[i]);
lua_rawseti(L, -2, i + 1);
}
LuaWrapper::push(L, params.frustum.origin);
lua_setfield(L, -2, "origin");
lua_setfield(L, -2, "frustum");
LuaWrapper::setField(L, -2, "position", params.pos);
LuaWrapper::setField(L, -2, "lod_multiplier", params.lod_multiplier);
}
static int getCameraParams(lua_State* L)
{
const int pipeline_idx = lua_upvalueindex(1);
if (lua_type(L, pipeline_idx) != LUA_TLIGHTUSERDATA) {
LuaWrapper::argError<PipelineImpl*>(L, pipeline_idx);
}
PipelineImpl* pipeline = LuaWrapper::toType<PipelineImpl*>(L, pipeline_idx);
RenderScene* scene = pipeline->m_scene;
CameraParams cp;
cp.pos = pipeline->m_viewport.pos;
cp.frustum = pipeline->m_viewport.getFrustum();
cp.lod_multiplier = scene->getCameraLODMultiplier(pipeline->m_viewport.fov, pipeline->m_viewport.is_ortho);
pushCameraParams(L, cp);
return 1;
}
static void findExtraShadowcasterPlanes(const Vec3& light_forward, const Frustum& camera_frustum, const DVec3& camera_position, Frustum* shadow_camera_frustum)
{
/*static const Frustum::Planes planes[] = {
Frustum::Planes::LEFT, Frustum::Planes::TOP, Frustum::Planes::RIGHT, Frustum::Planes::BOTTOM };
bool prev_side = dotProduct(light_forward, camera_frustum.getNormal(planes[lengthOf(planes) - 1])) < 0;
int out_plane = (int)Frustum::Planes::EXTRA0;
Vec3 camera_frustum_center = camera_frustum.computeBoundingSphere().position;
for (int i = 0; i < lengthOf(planes); ++i)
{
bool side = dotProduct(light_forward, camera_frustum.getNormal(planes[i])) < 0;
if (prev_side != side)
{
Vec3 n0 = camera_frustum.getNormal(planes[i]);
Vec3 n1 = camera_frustum.getNormal(planes[(i + lengthOf(planes) - 1) % lengthOf(planes)]);
Vec3 line_dir = crossProduct(n1, n0);
Vec3 n = crossProduct(light_forward, line_dir);
float d = -dotProduct(camera_position, n);
if (dotProduct(camera_frustum_center, n) + d < 0)
{
n = -n;
d = -dotProduct(camera_position, n);
}
shadow_camera_frustum->setPlane((Frustum::Planes)out_plane, n, d);
++out_plane;
if (out_plane >(int)Frustum::Planes::EXTRA1) break;
}
prev_side = side;
}*/
// TODO
ASSERT(false);
}
static Vec3 shadowmapTexelAlign(const Vec3& shadow_cam_pos,
float shadowmap_width,
float frustum_radius,
const Matrix& light_mtx)
{
Matrix inv = light_mtx;
inv.fastInverse();
Vec3 out = inv.transformPoint(shadow_cam_pos);
float align = 2 * frustum_radius / (shadowmap_width * 0.5f - 2);
out.x -= fmodf(out.x, align);
out.y -= fmodf(out.y, align);
out = light_mtx.transformPoint(out);
return out;
}
void renderTextMeshes()
{
if (!m_text_mesh_shader->isReady()) return;
if (m_text_mesh_shader->m_texture_slot_count < 1) return;
struct RenderJob : Renderer::RenderJob
{
RenderJob(IAllocator& allocator) : m_vertices(allocator) {}
void setup() override
{
const Quat& rot = m_pipeline->m_viewport.rot;
const DVec3& pos = m_pipeline->m_viewport.pos;
m_pipeline->m_scene->getTextMeshesVertices(m_vertices, pos, rot);
Renderer& renderer = m_pipeline->m_renderer;
Texture* atlas = renderer.getFontManager().getAtlasTexture();
m_atlas = atlas ? atlas->handle : ffr::INVALID_TEXTURE;
}
void execute() override
{
const Shader::Program& p = Shader::getProgram(m_shader, 0);
if(!p.handle.isValid()) return;
Renderer& renderer = m_pipeline->m_renderer;
const Renderer::TransientSlice transient = renderer.allocTransient(m_vertices.byte_size());
ffr::update(transient.buffer, m_vertices.begin(), transient.offset, transient.size);
ffr::setUniform1i(m_texture_uniform, 0);
ffr::useProgram(p.handle);
ffr::VertexDecl decl;
ffr::blending(1);
ffr::setState((u64)ffr::StateFlags::DEPTH_WRITE | (u64)ffr::StateFlags::DEPTH_TEST);
ffr::bindTexture(0, m_atlas);
decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
decl.addAttribute(4, ffr::AttributeType::U8, true, false);
decl.addAttribute(2, ffr::AttributeType::FLOAT, false, false);
ffr::setVertexBuffer(&decl, transient.buffer, transient.offset, nullptr);
ffr::drawArrays(0, m_vertices.size(), ffr::PrimitiveType::TRIANGLES);
}
ffr::TextureHandle m_atlas;
ShaderRenderData* m_shader;
PipelineImpl* m_pipeline;
ffr::UniformHandle m_texture_uniform;
Array<TextMeshVertex> m_vertices;
};
IAllocator& allocator = m_renderer.getAllocator();
RenderJob* job = LUMIX_NEW(allocator, RenderJob)(allocator);
job->m_pipeline = this;
job->m_shader = m_text_mesh_shader->m_render_data;
job->m_texture_uniform = m_text_mesh_shader->m_texture_slots[0].uniform_handle;
m_renderer.push(job);
}
void renderLocalLights(const char* define, int shader_idx, CommandSet* cmd_set)
{
struct RenderJob : Renderer::RenderJob
{
void setup() override {}
void execute() override
{
// inline in debug
#define READ(T, N) \
T N = *(T*)cmd; \
cmd += sizeof(T); \
do {} while(false)
PROFILE_FUNCTION();
if(m_cmd_set->cmds.empty()) return;
ffr::VertexDecl instance_decl;
instance_decl.addAttribute(4, ffr::AttributeType::FLOAT, false, false);
instance_decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
instance_decl.addAttribute(1, ffr::AttributeType::FLOAT, false, false);
ffr::VertexDecl decl;
decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
for (const Array<u8>& cmds : m_cmd_set->cmds) {
const u8* cmd = cmds.begin();
const u8* cmd_end = cmds.end();
while (cmd != cmd_end) {
const RenderableTypes type = *(RenderableTypes*)cmd;
cmd += sizeof(type);
switch(type) {
case RenderableTypes::LOCAL_LIGHT: {
READ(u16, instances_count);
const u8* instance_data = cmd;
cmd += instance_decl.size * instances_count;
const Shader::Program& prog = Shader::getProgram(m_shader, m_define_mask);
if (prog.handle.isValid()) {
ffr::blending(0);
ffr::useProgram(prog.handle);
ffr::setState((u64)ffr::StateFlags::DEPTH_TEST);
ffr::setIndexBuffer(m_pipeline->m_cube_ib);
ffr::setVertexBuffer(&decl, m_pipeline->m_cube_vb, 0, nullptr);
const Renderer::TransientSlice instance_buffer = m_pipeline->m_renderer.allocTransient(instances_count * instance_decl.size);
ffr::update(instance_buffer.buffer, instance_data, instance_buffer.offset, instance_buffer.size);
ffr::setInstanceBuffer(instance_decl, instance_buffer.buffer, instance_buffer.offset, 1, nullptr);
ffr::drawTrianglesInstanced(0, 36, instances_count);
}
break;
}
default: ASSERT(false); return;
}
}
}
#undef READ
}
ShaderRenderData* m_shader;
PipelineImpl* m_pipeline;
CommandSet* m_cmd_set;
u32 m_define_mask;
};
ShaderRenderData* shader = [&]() -> ShaderRenderData* {
for (const ShaderRef& s : m_shaders) {
if(s.id == shader_idx) {
return ((Shader*)s.res)->m_render_data;
}
}
return nullptr;
}();
if(!shader) return;
RenderJob* job = LUMIX_NEW(m_renderer.getAllocator(), RenderJob);
job->m_define_mask = define[0] ? 1 << m_renderer.getShaderDefineIdx(define) : 0;
job->m_pipeline = this;
job->m_cmd_set = cmd_set;
job->m_shader = shader;
m_renderer.push(job);
}
void renderBucket(const char* define, CommandSet* cmd_set)
{
struct RenderJob : Renderer::RenderJob
{
void setup() override {}
void execute() override
{
// inline in debug
#define READ(T, N) \
T N = *(T*)cmd; \
cmd += sizeof(T); \
do {} while(false)
PROFILE_FUNCTION();
if(m_cmd_set->cmds.empty()) return;
ffr::VertexDecl instance_decl;
instance_decl.addAttribute(4, ffr::AttributeType::FLOAT, false, false);
instance_decl.addAttribute(4, ffr::AttributeType::FLOAT, false, false);
ffr::VertexDecl decal_decl;
decal_decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
ffr::VertexDecl decal_instance_decl;
decal_instance_decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
decal_instance_decl.addAttribute(4, ffr::AttributeType::FLOAT, false, false);
decal_instance_decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
Renderer& renderer = m_pipeline->m_renderer;
int drawcalls_count = 0;
const u32 instanced_mask = m_define_mask | (1 << m_pipeline->m_renderer.getShaderDefineIdx("INSTANCED"));
const u32 skinned_mask = m_define_mask | (1 << m_pipeline->m_renderer.getShaderDefineIdx("SKINNED"));
for (const Array<u8>& cmds : m_cmd_set->cmds) {
const u8* cmd = cmds.begin();
const u8* cmd_end = cmds.end();
while (cmd != cmd_end) {
const RenderableTypes type = *(RenderableTypes*)cmd;
cmd += sizeof(type);
switch(type) {
case RenderableTypes::MESH:
case RenderableTypes::MESH_GROUP: {
READ(const Mesh::RenderData*, mesh);
READ(const Material::RenderData*, material);
READ(const u16, instances_count);
const float* instance_data = (const float*)cmd;
cmd += sizeof(Vec4) * 2 * instances_count;
ShaderRenderData* shader = material->shader;
for (int i = 0; i < material->textures_count; ++i) {
const ffr::TextureHandle handle = material->textures[i];
const ffr::UniformHandle uniform = shader->texture_uniforms[i];
if (handle.isValid()) {
ffr::bindTexture(i, handle);
ffr::setUniform1i(uniform, i);
}
}
const Shader::Program& prog = Shader::getProgram(shader, instanced_mask);
if(prog.handle.isValid()) {
ffr::setState(material->render_states | u64(ffr::StateFlags::DEPTH_TEST) | u64(ffr::StateFlags::DEPTH_WRITE));
const Vec4 params(material->roughness, material->metallic, material->emission, 0);
ffr::setUniform4f(m_pipeline->m_material_params_uniform, &params.x);
ffr::setUniform4f(m_pipeline->m_material_color_uniform, &material->color.x);
ffr::useProgram(prog.handle);
int attribute_map[16];
for (uint i = 0; i < mesh->vertex_decl.attributes_count; ++i) {
attribute_map[i] = prog.attribute_by_semantics[(int)mesh->attributes_semantic[i]];
}
ffr::setVertexBuffer(&mesh->vertex_decl, mesh->vertex_buffer_handle, 0, prog.use_semantics ? attribute_map : nullptr);
ffr::setIndexBuffer(mesh->index_buffer_handle);
const Renderer::TransientSlice instance_buffer = m_pipeline->m_renderer.allocTransient(instances_count * sizeof(Vec4) * 2);
ffr::update(instance_buffer.buffer, instance_data, instance_buffer.offset, instance_buffer.size);
int instance_map[16];
for (uint i = 0; i < instance_decl.attributes_count; ++i) {
instance_map[i] = prog.attribute_by_semantics[(int)Mesh::AttributeSemantic::INSTANCE0 + i];
}
ffr::setInstanceBuffer(instance_decl, instance_buffer.buffer, instance_buffer.offset, mesh->vertex_decl.attributes_count, instance_map);
ffr::drawTrianglesInstanced(0, mesh->indices_count, instances_count);
++drawcalls_count;
}
break;
}
case RenderableTypes::SKINNED: {
READ(const Mesh::RenderData*, mesh);
READ(const Material::RenderData*, material);
const float* model_mtx = (const float*)cmd;
cmd += sizeof(Matrix);
READ(const int, bones_count);
const float* bones = (const float*)cmd;
cmd += sizeof(Matrix) * bones_count;
ShaderRenderData* shader = material->shader;
for (int i = 0; i < material->textures_count; ++i) {
const ffr::TextureHandle handle = material->textures[i];
const ffr::UniformHandle uniform = shader->texture_uniforms[i];
ffr::bindTexture(i, handle);
ffr::setUniform1i(uniform, i);
}
const Shader::Program& prog = Shader::getProgram(shader, skinned_mask);
if(prog.handle.isValid()) {
ffr::setState(material->render_states | u64(ffr::StateFlags::DEPTH_TEST) | u64(ffr::StateFlags::DEPTH_WRITE));
const Vec4 params(material->roughness, material->metallic, material->emission, 0);
ffr::setUniform4f(m_pipeline->m_material_params_uniform, &params.x);
ffr::setUniform4f(m_pipeline->m_material_color_uniform, &material->color.x);
ffr::setUniformMatrix4f(m_pipeline->m_model_uniform, model_mtx);
ffr::useProgram(prog.handle);
const int loc = ffr::getUniformLocation(prog.handle, m_pipeline->m_bones_uniform);
if (loc >= 0) ffr::applyUniformMatrix4fv(loc, bones_count, bones);
int attribute_map[16];
for (uint i = 0; i < mesh->vertex_decl.attributes_count; ++i) {
attribute_map[i] = prog.attribute_by_semantics[(int)mesh->attributes_semantic[i]];
}
ffr::setVertexBuffer(&mesh->vertex_decl, mesh->vertex_buffer_handle, 0, prog.use_semantics ? attribute_map : nullptr);
ffr::setIndexBuffer(mesh->index_buffer_handle);
ffr::drawTriangles(mesh->indices_count);
++drawcalls_count;
}
break;
}
case RenderableTypes::DECAL: {
READ(Material::RenderData*, material);
READ(u16, instances_count);
ShaderRenderData* shader = material->shader;
for (int i = 0; i < material->textures_count; ++i) {
const ffr::TextureHandle handle = material->textures[i];
const ffr::UniformHandle uniform = shader->texture_uniforms[i];
ffr::bindTexture(i, handle);
ffr::setUniform1i(uniform, i);
}
const u8* instance_data = cmd;
cmd += decal_instance_decl.size * instances_count;
const Shader::Program& prog = Shader::getProgram(shader, m_define_mask);
if (prog.handle.isValid()) {
ffr::blending(0);
ffr::useProgram(prog.handle);
ffr::setState(material->render_states | (u64)ffr::StateFlags::DEPTH_TEST);
ffr::setIndexBuffer(m_pipeline->m_cube_ib);
ffr::setVertexBuffer(&decal_decl, m_pipeline->m_cube_vb, 0, nullptr);
const Renderer::TransientSlice instance_buffer = m_pipeline->m_renderer.allocTransient(instances_count * decal_instance_decl.size);
ffr::update(instance_buffer.buffer, instance_data, instance_buffer.offset, instance_buffer.size);
ffr::setInstanceBuffer(decal_instance_decl, instance_buffer.buffer, instance_buffer.offset, 1, nullptr);
ffr::drawTrianglesInstanced(0, 36, instances_count);
++drawcalls_count;
}
break;
}
default: ASSERT(false); break;
}
}
}
#undef READ
}
u32 m_define_mask;
PipelineImpl* m_pipeline;
CommandSet* m_cmd_set;
};
RenderJob* job = LUMIX_NEW(m_renderer.getAllocator(), RenderJob);
job->m_define_mask = define[0] ? 1 << m_renderer.getShaderDefineIdx(define) : 0;
job->m_pipeline = this;
job->m_cmd_set = cmd_set;
m_renderer.push(job);
}
static int getShadowCameraParams(lua_State* L)
{
/*const int pipeline_idx = lua_upvalueindex(1);
if (lua_type(L, pipeline_idx) != LUA_TLIGHTUSERDATA) {
LuaWrapper::argError<PipelineImpl*>(L, pipeline_idx);
}
PipelineImpl* pipeline = LuaWrapper::toType<PipelineImpl*>(L, pipeline_idx);
const int slice = LuaWrapper::checkArg<int>(L, 1);
const int shadowmap_width = LuaWrapper::checkArg<int>(L, 2);
RenderScene* scene = pipeline->m_scene;
const Universe& universe = scene->getUniverse();
const EntityPtr light = scene->getActiveGlobalLight();
const Vec4 cascades = light.isValid() ? scene->getShadowmapCascades((EntityRef)light) : Vec4(3, 10, 60, 150);
const Matrix light_mtx = light.isValid() ? universe.getMatrix((EntityRef)light) : Matrix::IDENTITY;
const float camera_height = (float)pipeline->m_viewport.h;
const float camera_fov = pipeline->m_viewport.fov;
const float camera_ratio = pipeline->m_viewport.w / camera_height;
const float split_distances[] = {0.1f, cascades.x, cascades.y, cascades.z, cascades.w};
Frustum camera_frustum;
camera_frustum.computePerspective(pipeline->m_viewport.pos,
pipeline->m_viewport.rot * Vec3(0, 0, -1),
pipeline->m_viewport.rot * Vec3(0, 1, 0),
camera_fov,
camera_ratio,
split_distances[slice],
split_distances[slice + 1]);
const Sphere frustum_bounding_sphere = camera_frustum.computeBoundingSphere();
const float bb_size = frustum_bounding_sphere.radius;
const Vec3 light_forward = light_mtx.getZVector();
Vec3 shadow_cam_pos = frustum_bounding_sphere.position;
shadow_cam_pos = shadowmapTexelAlign(shadow_cam_pos, 0.5f * shadowmap_width - 2, bb_size, light_mtx);
Renderer::GlobalState global_state = pipeline->m_renderer.getGlobalState();
Matrix projection_matrix;
projection_matrix.setOrtho(-bb_size, bb_size, -bb_size, bb_size, SHADOW_CAM_NEAR, SHADOW_CAM_FAR, ffr::isHomogenousDepth(), true);
shadow_cam_pos -= light_forward * SHADOW_CAM_FAR * 0.5f;
Matrix view_matrix;
view_matrix.lookAt(shadow_cam_pos, shadow_cam_pos + light_forward, light_mtx.getYVector());
const float ymul = ffr::isOriginBottomLeft() ? 0.5f : -0.5f;
const Matrix bias_matrix(
0.5, 0.0, 0.0, 0.0,
0.0, ymul, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.5, 0.5, 0.0, 1.0);
global_state.shadowmap_matrices[slice] = bias_matrix * projection_matrix * view_matrix;
global_state.shadow_view_projection = projection_matrix * view_matrix;
pipeline->m_renderer.setGlobalState(global_state);
CameraParams cp;
cp.lod_multiplier = 1;
cp.pos = pipeline->m_viewport.pos;
cp.frustum.computeOrtho(shadow_cam_pos
, -light_forward
, light_mtx.getYVector()
, bb_size
, bb_size
, SHADOW_CAM_NEAR
, SHADOW_CAM_FAR);
findExtraShadowcasterPlanes(light_forward, camera_frustum, pipeline->m_viewport.pos, &cp.frustum);
pushCameraParams(L, cp);
return 1;*/
// TODO
ASSERT(false);
return 0;
}
static int setRenderTargets(lua_State* L)
{
const int pipeline_idx = lua_upvalueindex(1);
if (lua_type(L, pipeline_idx) != LUA_TLIGHTUSERDATA) {
LuaWrapper::argError<PipelineImpl*>(L, pipeline_idx );
}
PipelineImpl* pipeline = LuaWrapper::toType<PipelineImpl*>(L, pipeline_idx);
const int rb_count = lua_gettop(L);
int rbs[16];
if(rb_count > lengthOf(rbs)) {
g_log_error.log("Renderer") << "Too many render buffers in " << pipeline->getPath();
return 0;
}
if(rb_count <= 0) {
g_log_error.log("Renderer") << "createFramebuffer without arguments in " << pipeline->getPath();
return 0;
}
struct Cmd : Renderer::RenderJob
{
void setup() override { }
void execute() override
{
PROFILE_FUNCTION();
const ffr::FramebufferHandle fb = pipeline->m_renderer.getFramebuffer();
ffr::update(fb, count, rbs);
ffr::setFramebuffer(fb, true);
ffr::viewport(0, 0, w, h);
}
PipelineImpl* pipeline;
ffr::TextureHandle rbs[16];
uint count;
uint w;
uint h;
};
Cmd* cmd = LUMIX_NEW(pipeline->m_renderer.getAllocator(), Cmd);
for(int i = 0; i < rb_count; ++i) {
const int rb_idx = LuaWrapper::checkArg<int>(L, i + 1);
cmd->rbs[i] = pipeline->m_renderbuffers[rb_idx].handle;
}
cmd->pipeline = pipeline;
cmd->count = rb_count;
cmd->w = pipeline->m_viewport.w;
cmd->h = pipeline->m_viewport.h;
pipeline->m_renderer.push(cmd);
return 0;
}
void prepareTerrainTextures(int shader_idx)
{
struct RenderJob : Renderer::RenderJob
{
void setup() override
{
Terrain* terrain = m_pipeline->m_scene->getTerrain(m_entity);
m_framebuffer = ffr::INVALID_FRAMEBUFFER;
if (!terrain) return;
if (!terrain->getSplatmap()) return;
if (!terrain->getDetailTexture()) return;
m_framebuffer = m_pipeline->m_renderer.getFramebuffer();
m_rel_camera_pos_uniform = m_pipeline->m_rel_camera_pos_uniform;
m_splatmap = terrain->getSplatmap()->handle;
m_detail_textures = terrain->getDetailTexture()->handle;
m_output = terrain->m_textures;
m_splatmap_uniform = m_pipeline->m_splatmap_uniform;
m_lod_uniform = m_pipeline->m_lod_uniform;
m_detail_textures_uniform = m_pipeline->m_detail_textures_uniform;
Universe& universe = m_pipeline->m_scene->getUniverse();
m_rel_cam_pos = universe.getRotation(m_entity).rotate((m_pipeline->m_viewport.pos - universe.getPosition(m_entity)).toFloat());
}
void execute() override
{
if (!m_framebuffer.isValid()) return;
const Shader::Program& p = Shader::getProgram(m_shader, 0);
if (!p.handle.isValid()) return;
for (int i = 0; i < Terrain::TEXTURES_COUNT; ++i) {
ffr::bindLayer(m_framebuffer, m_output, i);
ffr::setFramebuffer(m_framebuffer, true);
const float clear_color[] = { 0, 0, 0, 0};
ffr::viewport(0, 0, 1024, 1024);
ffr::clear((uint)ffr::ClearFlags::COLOR, clear_color, 0);
ffr::setUniform3f(m_rel_camera_pos_uniform, &m_rel_cam_pos.x);
ffr::bindTexture(0, m_splatmap);
ffr::bindTexture(1, m_detail_textures);
ffr::setUniform1i(m_splatmap_uniform, 0);
ffr::setUniform1i(m_detail_textures_uniform, 1);
ffr::setUniform1i(m_lod_uniform, i);
ffr::useProgram(p.handle);
ffr::drawArrays(0, 4, ffr::PrimitiveType::TRIANGLE_STRIP);
}
ffr::generateMipmaps(m_output);
}
ffr::FramebufferHandle m_framebuffer;
ffr::TextureHandle m_splatmap;
ffr::TextureHandle m_detail_textures;
ffr::UniformHandle m_splatmap_uniform;
ffr::UniformHandle m_detail_textures_uniform;
ffr::UniformHandle m_rel_camera_pos_uniform;
ffr::UniformHandle m_lod_uniform;
ffr::TextureHandle m_output;
Vec3 m_rel_cam_pos;
EntityRef m_entity;
ShaderRenderData* m_shader;
PipelineImpl* m_pipeline;
};
const Shader* shader = [&] {
for (const ShaderRef& s : m_shaders) {
if(s.id == shader_idx) return s.res;
}
return (Shader*)nullptr;
}();
if (!shader || !shader->isReady()) return;
const EntityPtr e = m_scene->getFirstTerrain();
if (!e.isValid()) return;
RenderJob* job = LUMIX_NEW(m_renderer.getAllocator(), RenderJob);
job->m_pipeline = this;
job->m_shader = shader->m_render_data;
job->m_entity = (EntityRef)e;
m_renderer.push(job);
}
void renderModel(Model& model, const Matrix& mtx) override
{
for(int i = 0; i < model.getMeshCount(); ++i) {
const Mesh& mesh = model.getMesh(i);
const Material* material = mesh.material;
ShaderRenderData* shader_rd = material->getShader()->m_render_data;
const Shader::Program& prog = Shader::getProgram(shader_rd, 0); // TODO define
const int textures_count = material->getTextureCount();
if(!prog.handle.isValid()) continue;
for(int i = 0; i < textures_count; ++i) {
ffr::bindTexture(i, material->getTexture(i)->handle);
ffr::setUniform1i(material->getTextureUniform(i), i);
}
int attribute_map[16];
const Mesh::RenderData* rd = mesh.render_data;
for(uint i = 0; i < rd->vertex_decl.attributes_count; ++i) {
attribute_map[i] = prog.attribute_by_semantics[(int)rd->attributes_semantic[i]];
}
ffr::setUniformMatrix4f(m_model_uniform, &mtx.m11);
ffr::useProgram(prog.handle);
ffr::setVertexBuffer(&rd->vertex_decl, rd->vertex_buffer_handle, 0, prog.use_semantics ? attribute_map : nullptr);
ffr::setIndexBuffer(rd->index_buffer_handle);
ffr::setState(u64(ffr::StateFlags::DEPTH_TEST) | u64(ffr::StateFlags::DEPTH_WRITE) | material->getRenderStates());
ffr::drawTriangles(rd->indices_count);
}
}
struct RenderTerrainsCommand : Renderer::RenderJob
{
RenderTerrainsCommand(IAllocator& allocator)
: m_allocator(allocator)
, m_instance_data(allocator)
, m_batches(allocator)
{
}
void setup() override
{
/*PROFILE_FUNCTION();
Array<TerrainInfo> infos(m_allocator);
m_pipeline->m_scene->getTerrainInfos(m_camera_params.frustum, m_camera_params.pos, infos);
if (infos.empty()) return;
m_define_mask = m_shader_define.empty()
? 0
: 1 << m_pipeline->m_renderer.getShaderDefineIdx(m_shader_define);
std::sort(infos.begin(), infos.end(), [](const TerrainInfo& a, const TerrainInfo& b) {
if (a.terrain == b.terrain) return a.index < b.index;
return a.terrain < b.terrain;
});
m_instance_data.resize(infos.size());
Terrain* prev_terrain = nullptr;
int prev_idx = -1;
int prev_submesh = -1;
for (int i = 0, c = infos.size(); i < c; ++i) {
const TerrainInfo& info = infos[i];
if (info.terrain != prev_terrain || prev_submesh != info.index) {
if (prev_terrain) {
Batch& b = m_batches.emplace();
b.terrain = prev_terrain;
b.shader = infos[prev_idx].shader->m_render_data;
b.matrix = infos[prev_idx].rot.toMatrix();
b.matrix.setTranslation((infos[prev_idx].position - m_camera_params.pos).toFloat());
b.submesh = infos[prev_idx].index;
b.from = prev_idx;
b.to = i - 1;
}
prev_idx = i;
prev_terrain = info.terrain;
prev_submesh = info.index;
}
m_instance_data[i].size = info.size;
m_instance_data[i].quad_min = info.min;
m_instance_data[i].morph_consts = info.morph_const;
}
Batch& b = m_batches.emplace();
b.terrain = prev_terrain;
b.shader = infos[prev_idx].shader->m_render_data;
b.matrix = infos[prev_idx].rot.toMatrix();
b.matrix.setTranslation((infos[prev_idx].position - m_camera_params.pos).toFloat());
b.submesh = infos[prev_idx].index;
b.from = prev_idx;
b.to = infos.size() - 1;*/
// TODO
//ASSERT(false);
}
void execute() override
{
Array<TerrainInfo> infos(m_allocator);
m_pipeline->m_scene->getTerrainInfos(m_camera_params.frustum, m_camera_params.pos, infos);
if(infos.empty()) return;
auto* rd = infos[0].shader->m_render_data;
const u32 deferred_define_mask = 1 << m_pipeline->m_renderer.getShaderDefineIdx("DEFERRED");
const u8 edge_define_idx = m_pipeline->m_renderer.getShaderDefineIdx("EDGE");
auto& p = Shader::getProgram(rd, deferred_define_mask);
auto& p_edge = Shader::getProgram(rd, deferred_define_mask | (1 << edge_define_idx));
const Vec3 pos = (infos[0].position - m_camera_params.pos).toFloat();
Vec3 lpos = (m_camera_params.pos - infos[0].position).toFloat();
lpos = infos[0].rot.conjugated().rotate(lpos);
ffr::setUniform3f(m_pipeline->m_position_uniform, &pos.x);
ffr::setUniform3f(m_pipeline->m_rel_camera_pos_uniform, &lpos.x);
ffr::blending(0);
/*for(int i = 0; i < infos[0].terrain->m_material->getTextureCount(); ++i) {
Texture* t = infos[0].terrain->m_material->getTexture(i);
if (t) {
ffr::UniformHandle uniform = infos[0].terrain->m_material->getTextureUniform(i);
ffr::bindTexture(i, t->handle);
ffr::setUniform1i(uniform, i);
}
}*/
Material* material = infos[0].terrain->m_material;
Texture* texture = infos[0].terrain->m_heightmap;
if (texture && texture->isReady()) {
ffr::bindTexture(1, infos[0].terrain->m_textures);
ffr::bindTexture(0, infos[0].terrain->m_heightmap->handle);
ffr::setUniform1i(ffr::allocUniform("u_satellite", ffr::UniformType::INT, 1), 1);
ffr::setUniform1i(ffr::allocUniform("u_hm", ffr::UniformType::INT, 1), 0);
u64 state = (u64)ffr::StateFlags::DEPTH_TEST | (u64)ffr::StateFlags::DEPTH_WRITE;
static bool wireframe = false;
if (wireframe) state |= (u64)ffr::StateFlags::WIREFRAME;
if(p.handle.isValid()) {
ffr::useProgram(p.handle);
ffr::setState(state);
const int loc = ffr::getUniformLocation(p.handle, m_pipeline->m_lod_uniform);
for(int i = 0; i < 6; ++i) {
ffr::applyUniform1i(loc, i);
ffr::drawArrays(0, 126 * 126, ffr::PrimitiveType::POINTS);
}
}
if (p_edge.handle.isValid()) {
ffr::useProgram(p_edge.handle);
ffr::setState(state);
const int loc = ffr::getUniformLocation(p_edge.handle, m_pipeline->m_lod_uniform);
for(int i = 0; i < 6; ++i) {
ffr::applyUniform1i(loc, i);
ffr::drawArrays(0, 64, ffr::PrimitiveType::POINTS);
}
}
}
/*if(m_instance_data.empty()) return;
ffr::pushDebugGroup("terrains");
Renderer::TransientSlice instance_buffer = m_pipeline->m_renderer.allocTransient(m_instance_data.byte_size());
ffr::update(instance_buffer.buffer, m_instance_data.begin(), 0, m_instance_data.byte_size());
ffr::VertexDecl decl;
decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
decl.addAttribute(2, ffr::AttributeType::FLOAT, false, false);
ffr::VertexDecl instance_decl;
instance_decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
instance_decl.addAttribute(1, ffr::AttributeType::FLOAT, false, false);
instance_decl.addAttribute(3, ffr::AttributeType::FLOAT, false, false);
const DVec3 camera_pos = m_camera_params.pos;
for (const Batch& batch : m_batches) {
Texture* detail_texture = batch.terrain->getDetailTexture();
if (!detail_texture) continue;
Texture* splat_texture = batch.terrain->getSplatmap();
if (!splat_texture) continue;
const Matrix inv_world_matrix = batch.matrix.fastInverted();
const Vec4 rel_cam_pos(inv_world_matrix.transformPoint(camera_pos) / batch.terrain->getXZScale(), 1);
const Vec4 terrain_scale(batch.terrain->getScale(), 0);
const Vec4 terrain_params(batch.terrain->getRootSize()
, (float)detail_texture->width
, (float)splat_texture->width
, 0);
ffr::setUniform4f(m_pipeline->m_terrain_params_uniform, &terrain_params.x);
ffr::setUniform4f(m_pipeline->m_rel_camera_pos_uniform, &rel_cam_pos.x);
ffr::setUniform4f(m_pipeline->m_terrain_scale_uniform, &terrain_scale.x);
ffr::setUniformMatrix4f(m_pipeline->m_terrain_matrix_uniform, &batch.matrix.m11);
const ffr::ProgramHandle prg = Shader::getProgram(batch.shader, m_define_mask).handle;
ffr::useProgram(prg);
/*
for (int i = 0; i < m_global_textures_count; ++i) {
const auto& t = m_global_textures[i];
ffr::bindTexture(i, t.texture);
ffr::setUniform1i(t.uniform, i);
}
*//*
const Material* material = batch.terrain->m_material;
const int textures_count = material->getTextureCount();
for (int i = 0; i < textures_count; ++i) {
ffr::bindTexture(i + 0, material->getTexture(i)->handle);
ffr::setUniform1i(material->getTextureUniform(i), i + 0);
}
const Mesh& mesh = *batch.terrain->getMesh();
ffr::setVertexBuffer(&decl, mesh.vertex_buffer_handle, 0, nullptr);
ffr::setInstanceBuffer(instance_decl, instance_buffer.buffer, instance_buffer.offset + batch.from * sizeof(m_instance_data[0]), 2);
ffr::setIndexBuffer(mesh.index_buffer_handle);
ffr::setState(u64(ffr::StateFlags::DEPTH_WRITE) | u64(ffr::StateFlags::DEPTH_TEST) | batch.terrain->m_material->getRenderStates());
const int submesh_indices_count = mesh.indices_count / 4;
ffr::drawTrianglesInstanced(batch.submesh * submesh_indices_count * sizeof(u16), submesh_indices_count , 1 + batch.to - batch.from);
}
ffr::popDebugGroup();*/
// TODO
//ASSERT(false);
}
struct InstanceData
{
Vec3 quad_min;
float size;
Vec3 morph_consts;
};
struct Batch
{
Terrain* terrain;
ShaderRenderData* shader;
Matrix matrix;
uint submesh;
uint from;
uint to;
};
IAllocator& m_allocator;
PipelineImpl* m_pipeline;
CameraParams m_camera_params;
StaticString<32> m_shader_define;
u32 m_define_mask;
Array<InstanceData> m_instance_data;
Array<Batch> m_batches;
struct {
ffr::TextureHandle texture;
ffr::UniformHandle uniform;
} m_global_textures[16];
int m_global_textures_count = 0;
};
struct PrepareCommandsRenderJob : Renderer::RenderJob
{
PrepareCommandsRenderJob(IAllocator& allocator)
: m_allocator(allocator)
{
memset(m_bucket_map, 0xff, sizeof(m_bucket_map));
}
void radixSort(u64* _keys, u64* _values, int size)
{
PROFILE_FUNCTION();
PROFILE_INT("count", size);
if(size == 0) return;
// from https://github.com/bkaradzic/bx
enum {
RADIXSORT_BITS = 11,
RADIXSORT_HISTOGRAM_SIZE = 1 << RADIXSORT_BITS,
RADIXSORT_BIT_MASK = RADIXSORT_HISTOGRAM_SIZE - 1
};
Array<u64> tmp_keys(m_allocator); // TODO more suitable allocator
Array<u64> tmp_values(m_allocator);
tmp_keys.resize(size);
tmp_values.resize(size);
u64* keys = _keys;
u64* tempKeys = tmp_keys.begin();
u64* values = _values;
u64* tempValues = tmp_values.begin();
u32 histogram[RADIXSORT_HISTOGRAM_SIZE];
u16 shift = 0;
for (int pass = 0; pass < 6; ++pass) {
memset(histogram, 0, sizeof(u32) * RADIXSORT_HISTOGRAM_SIZE);
bool sorted = true;
u64 key = keys[0];
u64 prevKey = key;
for (int i = 0; i < size; ++i, prevKey = key) {
key = keys[i];
const u16 index = (key >> shift) & RADIXSORT_BIT_MASK;
++histogram[index];
sorted &= prevKey <= key;
}
if (sorted) {
if (pass & 1) {
// Odd number of passes needs to do copy to the destination.
memcpy(_keys, tmp_keys.begin(), tmp_keys.byte_size());
memcpy(_values, tmp_values.begin(), tmp_values.byte_size());
}
return;
}
u32 offset = 0;
for (int i = 0; i < RADIXSORT_HISTOGRAM_SIZE; ++i) {
const u32 count = histogram[i];
histogram[i] = offset;
offset += count;
}
for (int i = 0; i < size; ++i) {
const u64 key = keys[i];
const u16 index = (key >> shift) & RADIXSORT_BIT_MASK;
const u32 dest = histogram[index]++;
tempKeys[dest] = key;
tempValues[dest] = values[i];
}
u64* const swapKeys = tempKeys;
tempKeys = keys;
keys = swapKeys;
u64* const swapValues = tempValues;
tempValues = values;
values = swapValues;
shift += RADIXSORT_BITS;
}
}
struct CreateSortKeys
{
static void execute(void* data)
{
PROFILE_BLOCK("sort_keys");
CreateSortKeys* ctx = (CreateSortKeys*)data;
PROFILE_INT("num", ctx->count);
const u8* bucket_map = ctx->cmd->m_bucket_map;
RenderScene* scene = ctx->cmd->m_pipeline->m_scene;
const ModelInstance* model_instances = scene->getModelInstances();
const u32* renderables = ctx->renderables;
MTBucketArray<u64>::Bucket sort_keys = ctx->sort_keys;
MTBucketArray<u64>::Bucket subrenderables = ctx->subrenderables;
const Universe::EntityData* entity_data = scene->getUniverse().getEntityData();
const DVec3 camera_pos = ctx->camera_pos;
for (int i = 0, c = ctx->count; i < c; ++i) {
const EntityRef e = {int(renderables[i] & 0x00ffFFff)};
const DVec3 pos = entity_data[e.index].transform.pos;
const float squared_length = float((pos - camera_pos).squaredLength());
const ModelInstance& mi = model_instances[e.index];
const RenderableTypes type = RenderableTypes(renderables[i] >> 24);
switch (type) {
case RenderableTypes::MESH: {
const Mesh& mesh = mi.meshes[0];
const u8 bucket = bucket_map[mesh.layer];
if (bucket < 0xff) {
sort_keys.push(mesh.sort_key | ((u64)bucket << 56));
subrenderables.push(renderables[i]);
}
break;
}
case RenderableTypes::SKINNED:
case RenderableTypes::MESH_GROUP:
// TODO bucket
const LODMeshIndices lod = mi.model->getLODMeshIndices(squared_length);
for(int mesh_idx = lod.from; mesh_idx <= lod.to; ++mesh_idx) {
sort_keys.push(mi.meshes[mesh_idx].sort_key);
subrenderables.push(renderables[i] | ((u64)mesh_idx << 32));
}
break;
case RenderableTypes::DECAL: {
// TODO camera inside decal volume
const Material* material = scene->getDecalMaterial(e);
const int layer = material->getLayer();
const u8 bucket = bucket_map[layer];
if (bucket < 0xff) {
// TODO material can have the same sort key as mesh
sort_keys.push(material->getSortKey() | ((u64)bucket << 56));
subrenderables.push(renderables[i]);
}
break;
}
case RenderableTypes::LOCAL_LIGHT: {
// TODO camera inside light volume
if(ctx->local_light_bucket < 0xff) {
sort_keys.push(((u64)ctx->local_light_bucket << 56));
subrenderables.push(renderables[i]);
}
break;
}
default: ASSERT(false); break;
}
}
sort_keys.end();
subrenderables.end();
}
MTBucketArray<u64>::Bucket sort_keys;
MTBucketArray<u64>::Bucket subrenderables;
DVec3 camera_pos;
u32* renderables;
u8 local_light_bucket;
int count;
PrepareCommandsRenderJob* cmd;
};
struct CreateCommands
{
static void execute(void* data)
{
// because of inlining in debug
#define WRITE(x) do { \
memcpy(out, &(x), sizeof(x)); \
out += sizeof(x); \
} while(false)
#define WRITE_FN(x) do { \
auto* p = x; \
memcpy(out, &p, sizeof(p)); \
out += sizeof(p); \
} while(false)
PROFILE_BLOCK("create cmds");
CreateCommands* ctx = (CreateCommands*)data;
PROFILE_INT("num", ctx->count);
const Universe& universe = ctx->cmd->m_pipeline->m_scene->getUniverse();
ctx->output->resize(ctx->count * (sizeof(RenderableTypes) + sizeof(Mesh::RenderData*) + sizeof(Material::RenderData*) + sizeof(Vec3) + sizeof(Quat) + sizeof(Vec3) + sizeof(u16) + sizeof(float)));
u8* out = ctx->output->begin();
const u64* LUMIX_RESTRICT renderables = ctx->renderables;
const u64* LUMIX_RESTRICT sort_keys = ctx->sort_keys;
RenderScene* scene = ctx->cmd->m_pipeline->m_scene;
const ModelInstance* LUMIX_RESTRICT model_instances = scene->getModelInstances();
const Universe::EntityData* LUMIX_RESTRICT entity_data = universe.getEntityData();
const DVec3 camera_pos = ctx->camera_pos;
for (int i = 0, c = ctx->count; i < c; ++i) {
const EntityRef e = {int(renderables[i] & 0x00ffFFff)};
const RenderableTypes type = RenderableTypes((renderables[i] >> 24) & 0xff);
*(RenderableTypes*)out = type;
out += sizeof(type);
switch(type) {
case RenderableTypes::MESH_GROUP:
case RenderableTypes::MESH: {
const u32 mesh_idx = renderables[i] >> 32;
const ModelInstance* LUMIX_RESTRICT mi = &model_instances[e.index];
WRITE(mi->meshes[mesh_idx].render_data);
WRITE_FN(mi->meshes[mesh_idx].material->getRenderData());
u16* instance_count = (u16*)out;
int start_i = i;
out += sizeof(*instance_count);
const u64 key = sort_keys[i];
while (i < c && sort_keys[i] == key) {
const EntityRef e = {int(renderables[i] & 0x00ffFFff)};
const Transform& tr = entity_data[e.index].transform;
const Vec3 lpos = (tr.pos - camera_pos).toFloat();
WRITE(tr.rot);
WRITE(lpos);
WRITE(tr.scale);
++i;
}
*instance_count = u16(i - start_i);
--i;
break;
}
case RenderableTypes::SKINNED: {
const u32 mesh_idx = renderables[i] >> 32;
const ModelInstance* LUMIX_RESTRICT mi = &model_instances[e.index];
const uint out_offset = uint(out - ctx->output->begin());
ctx->output->resize(ctx->output->size() + mi->pose->count * sizeof(Matrix) + sizeof(Matrix));
out = ctx->output->begin() + out_offset;
WRITE(mi->meshes[mesh_idx].render_data);
WRITE_FN(mi->meshes[mesh_idx].material->getRenderData());
const EntityRef e = {int(renderables[i] & 0x00ffFFff)};
const Transform& tr = entity_data[e.index].transform;
Matrix mtx = tr.rot.toMatrix();
mtx.multiply3x3(tr.scale);
mtx.setTranslation((tr.pos - camera_pos).toFloat());
WRITE(mtx);
*(int*)out = mi->pose->count;
out += sizeof(int);
const Quat* rotations = mi->pose->rotations;
const Vec3* positions = mi->pose->positions;
Model& model = *mi->model;
for(int j = 0, c = mi->pose->count; j < c; ++j) {
const Model::Bone& bone = model.getBone(j);
const LocalRigidTransform tmp = {positions[j], rotations[j]};
Matrix m = (tmp * bone.inv_bind_transform).toMatrix();
WRITE(m);
}
break;
}
case RenderableTypes::DECAL: {
const Material* material = scene->getDecalMaterial(e);
const Vec3 half_extents = scene->getDecalHalfExtents(e);
const uint out_offset = uint(out - ctx->output->begin());
ctx->output->resize(ctx->output->size() + sizeof(Vec3) + sizeof(void*) + sizeof(Vec3) + sizeof(Quat));
out = ctx->output->begin() + out_offset;
WRITE_FN(material->getRenderData());
u16* instance_count = (u16*)out;
int start_i = i;
out += sizeof(*instance_count);
const u64 key = sort_keys[i];
while (i < c && sort_keys[i] == key) {
const EntityRef e = {int(renderables[i] & 0x00ffFFff)};
const Transform& tr = entity_data[e.index].transform;
const Vec3 lpos = (tr.pos - camera_pos).toFloat();
WRITE(lpos);
WRITE(tr.rot);
const Vec3 half_extents = scene->getDecalHalfExtents(e);
WRITE(half_extents);
++i;
}
*instance_count = u16(i - start_i);
--i;
break;
}
case RenderableTypes::LOCAL_LIGHT: {
u16* instance_count = (u16*)out;
int start_i = i;
out += sizeof(*instance_count);
const u64 key = sort_keys[i];
while (i < c && sort_keys[i] == key) {
const EntityRef e = {int(renderables[i] & 0x00ffFFff)};
const Transform& tr = entity_data[e.index].transform;
const Vec3 lpos = (tr.pos - camera_pos).toFloat();
const float range = scene->getLightRange(e);
WRITE(tr.rot);
WRITE(lpos);
WRITE(range);
// TODO color, attn, ...
++i;
}
*instance_count = u16(i - start_i);
--i;
break;
}
default: ASSERT(false); break;
}
}
if (ctx->count > 0) ctx->output->resize(int(out - ctx->output->begin()));
#undef WRITE
#undef WRITE_FN
}
u64* renderables;
u64* sort_keys;
Array<u8>* output;
int idx;
DVec3 camera_pos;
int count;
PrepareCommandsRenderJob* cmd;
};
void createSortKeys(const Array<Array<u32>>& renderables, MTBucketArray<u64>& sort_keys, MTBucketArray<u64>& subrenderables)
{
Array<CreateSortKeys> create_sort_keys(m_allocator);
create_sort_keys.reserve(renderables.size());
JobSystem::SignalHandle counter = JobSystem::createSignal();
const u8 local_light_layer = m_pipeline->m_renderer.getLayerIdx("local_light");
const u8 local_light_bucket = m_bucket_map[local_light_layer];
for(int i = 0; i < renderables.size(); ++i) {
if (renderables[i].empty()) continue;
CreateSortKeys& ctx = create_sort_keys.emplace();
ctx.local_light_bucket = local_light_bucket;
ctx.renderables = renderables[i].begin();
ctx.sort_keys = sort_keys.begin();
ctx.subrenderables = subrenderables.begin();
ctx.count = renderables[i].size();
ctx.camera_pos = m_pipeline->m_viewport.pos;
ctx.cmd = this;
JobSystem::run(counter, &ctx, &CreateSortKeys::execute);
}
JobSystem::trigger(counter);
JobSystem::wait(counter);
sort_keys.merge();
subrenderables.merge();
}
void setup() override
{
PROFILE_FUNCTION();
if(!m_pipeline->m_scene) return;
Renderer& renderer = m_pipeline->m_renderer;
const RenderScene* scene = m_pipeline->getScene();
Array<Array<u32>> renderables(renderer.getAllocator());
scene->getRenderables(m_camera_params.frustum, renderables);
if (renderables.empty()) return;
MTBucketArray<u64> sort_keys(m_allocator);
MTBucketArray<u64> subrenderables(m_allocator);
createSortKeys(renderables, sort_keys, subrenderables);
if (subrenderables.size() > 0) {
radixSort(sort_keys.ptr(), subrenderables.ptr(), sort_keys.size());
createCommands(subrenderables.ptr(), sort_keys.ptr(), subrenderables.size());
}
}
void createCommands(u64* renderables, u64* sort_keys, int size)
{
Array<CreateCommands> create_commands(m_allocator);
const int job_count = Math::minimum(size, 16);
create_commands.reserve(job_count * m_bucket_count);
JobSystem::SignalHandle counter = JobSystem::createSignal();
int bucket_offset = 0;
for(u8 bucket = 0; bucket < m_bucket_count; ++bucket) {
m_command_sets[bucket]->cmds.reserve(job_count);
int bucket_size;
for(bucket_size = bucket_offset; bucket_size < size && (sort_keys[bucket_size] >> 56) == bucket; ++bucket_size);
bucket_size -= bucket_offset;
int job_offset = 0;
const int step = (bucket_size + job_count - 1) / job_count;
for(int i = 0; i < job_count; ++i) {
const int count = Math::minimum(step, bucket_size - job_offset);
if (count < 0) break;
CreateCommands& ctx = create_commands.emplace();
ctx.renderables = renderables + bucket_offset + job_offset;
ctx.sort_keys = sort_keys + bucket_offset + job_offset;
ctx.count = count;
ctx.cmd = this;
ctx.camera_pos = m_camera_params.pos;
ctx.output = &m_command_sets[bucket]->cmds.emplace(m_allocator);
job_offset += step;
JobSystem::run(counter, &ctx, &CreateCommands::execute);
}
bucket_offset += bucket_size;
}
JobSystem::trigger(counter);
JobSystem::wait(counter);
}
void execute() override {}
IAllocator& m_allocator;
CameraParams m_camera_params;
PipelineImpl* m_pipeline;
//u32 m_define_mask;
struct {
ffr::TextureHandle texture;
ffr::UniformHandle uniform;
} m_global_textures[16];
int m_global_textures_count = 0;
CommandSet* m_command_sets[255];
u8 m_bucket_map[255];
u8 m_bucket_count;
};
void blending(const char* mode)
{
struct Cmd : Renderer::RenderJob
{
void setup() override {}
void execute() override
{
ffr::blending(mode);
}
int mode;
};
Cmd* cmd = LUMIX_NEW(m_renderer.getAllocator(), Cmd);
cmd->mode = mode[0] ? 1 : 0;
m_renderer.push(cmd);
}
void clear(u32 flags, float r, float g, float b, float a, float depth)
{
struct Cmd : Renderer::RenderJob {
void setup() override {}
void execute() override {
ffr::clear(flags, &color.x, depth);
}
Vec4 color;
float depth;
u32 flags;
};
Cmd* cmd = LUMIX_NEW(m_renderer.getAllocator(), Cmd);
cmd->color.set(r, g, b, a);
cmd->flags = flags;
cmd->depth = depth;
m_renderer.push(cmd);
}
void viewport(int x, int y, int w, int h)
{
struct Cmd : Renderer::RenderJob {
void setup() override {}
void execute() override { ffr::viewport(x, y, w, h); }
int x, y, w, h;
};
Cmd* cmd = LUMIX_NEW(m_renderer.getAllocator(), Cmd);
cmd->x = x;
cmd->y = y;
cmd->w = w;
cmd->h = h;
m_renderer.push(cmd);
}
void beginBlock(const char* name)
{
struct Cmd : Renderer::RenderJob
{
void setup() override {}
void execute() override
{
ffr::pushDebugGroup(name);
renderer->beginProfileBlock(name);
}
StaticString<32> name;
Renderer* renderer;
};
Cmd* cmd = LUMIX_NEW(m_renderer.getAllocator(), Cmd);
cmd->name = name;
cmd->renderer = &m_renderer;
m_renderer.push(cmd);
}
void endBlock()
{
struct Cmd : Renderer::RenderJob
{
void setup() override {}
void execute() override
{
renderer->endProfileBlock();
ffr::popDebugGroup();
}
Renderer* renderer;
};
Cmd* cmd = LUMIX_NEW(m_renderer.getAllocator(), Cmd);
cmd->renderer = &m_renderer;
m_renderer.push(cmd);
}
void setStencil(uint write_mask, uint func, int ref, uint mask, uint sfail, uint zfail, uint zpass)
{
struct Cmd : Renderer::RenderJob
{
void setup() {}
void execute() override
{
ffr::setStencil(write_mask, (ffr::StencilFuncs)func, ref, mask, (ffr::StencilOps)sfail, (ffr::StencilOps)zfail, (ffr::StencilOps)zpass);
}
uint write_mask;
uint func;
int ref;
uint mask;
uint sfail;
uint zfail;
uint zpass;
};
IAllocator& allocator = m_renderer.getAllocator();
Cmd* cmd = LUMIX_NEW(allocator, Cmd);
cmd->write_mask = write_mask;
cmd->func = func;
cmd->ref = ref;
cmd->mask = mask;
cmd->sfail = sfail;
cmd->zfail = zfail;
cmd->zpass = zpass;
m_renderer.push(cmd);
}
void setOutput(int rb_index)
{
m_output = rb_index;
}
int preloadShader(const char* path)
{
ResourceManagerHub& rm = m_renderer.getEngine().getResourceManager();
ShaderRef s;
s.res = rm.load<Shader>(Path(path));
s.id = 0;
for(ShaderRef& i : m_shaders) {
if(i.id >= s.id) {
s.id = i.id + 1;
}
}
m_shaders.push(s);
return s.id;
}
void setWindowHandle(void* data) override { ASSERT(false); } // TODO
void callLuaFunction(const char* function) override
{
if (!m_lua_state) return;
lua_rawgeti(m_lua_state, LUA_REGISTRYINDEX, m_lua_env);
lua_getfield(m_lua_state, -1, function);
if (lua_type(m_lua_state, -1) != LUA_TFUNCTION)
{
lua_pop(m_lua_state, 2);
return;
}
if (lua_pcall(m_lua_state, 0, 0, 0) != 0)
{
g_log_warning.log("Renderer") << lua_tostring(m_lua_state, -1);
lua_pop(m_lua_state, 1);
}
lua_pop(m_lua_state, 1);
}
void registerLuaAPI(lua_State* L)
{
lua_rawgeti(m_lua_state, LUA_REGISTRYINDEX, m_lua_env);
auto registerCFunction = [L, this](const char* name, lua_CFunction function) {
lua_pushlightuserdata(L, this);
lua_pushcclosure(L, function, 1);
lua_setfield(L, -3, name);
};
auto registerConst = [L](const char* name, u32 value)
{
lua_pushinteger(L, value);
lua_setfield(L, -2, name);
};
#define REGISTER_FUNCTION(name) \
do {\
auto f = &LuaWrapper::wrapMethodClosure<PipelineImpl, decltype(&PipelineImpl::name), &PipelineImpl::name>; \
registerCFunction(#name, f); \
} while(false) \
REGISTER_FUNCTION(beginBlock);
REGISTER_FUNCTION(blending);
REGISTER_FUNCTION(clear);
REGISTER_FUNCTION(createRenderbuffer);
REGISTER_FUNCTION(endBlock);
REGISTER_FUNCTION(executeCustomCommand);
REGISTER_FUNCTION(preloadShader);
REGISTER_FUNCTION(prepareTerrainTextures);
REGISTER_FUNCTION(render2D);
REGISTER_FUNCTION(renderBucket);
REGISTER_FUNCTION(renderDebugShapes);
REGISTER_FUNCTION(renderLocalLights);
REGISTER_FUNCTION(renderTextMeshes);
REGISTER_FUNCTION(setOutput);
REGISTER_FUNCTION(setStencil);
REGISTER_FUNCTION(viewport);
registerConst("CLEAR_DEPTH", (uint)ffr::ClearFlags::DEPTH);
registerConst("CLEAR_COLOR", (uint)ffr::ClearFlags::COLOR);
registerConst("CLEAR_ALL", (uint)ffr::ClearFlags::COLOR | (uint)ffr::ClearFlags::DEPTH | (uint)ffr::ClearFlags::STENCIL);
registerConst("STENCIL_ALWAYS", (uint)ffr::StencilFuncs::ALWAYS);
registerConst("STENCIL_EQUAL", (uint)ffr::StencilFuncs::EQUAL);
registerConst("STENCIL_NOT_EQUAL", (uint)ffr::StencilFuncs::NOT_EQUAL);
registerConst("STENCIL_DISABLE", (uint)ffr::StencilFuncs::DISABLE);
registerConst("STENCIL_KEEP", (uint)ffr::StencilOps::KEEP);
registerConst("STENCIL_REPLACE", (uint)ffr::StencilOps::REPLACE);
registerCFunction("bindTextures", PipelineImpl::bindTextures);
registerCFunction("drawArray", PipelineImpl::drawArray);
registerCFunction("getCameraParams", PipelineImpl::getCameraParams);
registerCFunction("getShadowCameraParams", PipelineImpl::getShadowCameraParams);
registerCFunction("prepareCommands", PipelineImpl::prepareCommands);
registerCFunction("renderEnvProbeVolumes", PipelineImpl::renderEnvProbeVolumes);
registerCFunction("renderParticles", PipelineImpl::renderParticles);
registerCFunction("renderTerrains", PipelineImpl::renderTerrains);
registerCFunction("setRenderTargets", PipelineImpl::setRenderTargets);
lua_pop(L, 1); // pop env
#undef REGISTER_FUNCTION
}
void freeCommandSets()
{
for(CommandSet* set : m_command_sets) {
m_renderer.runInRenderThread(set, [](Renderer& renderer, void* data){
LUMIX_DELETE(renderer.getAllocator(), (CommandSet*)data);
});
}
m_command_sets.clear();
}
bool isReady() const override { return m_resource->isReady(); }
const Stats& getStats() const override { return m_stats; }
const Path& getPath() override { return m_resource->getPath(); }
Draw2D& getDraw2D() override { return m_draw2d; }
ffr::TextureHandle getOutput() override {
if (m_output < 0 || m_output >= m_renderbuffers.size()) return ffr::INVALID_TEXTURE;
return m_renderbuffers[m_output].handle;
}
struct Renderbuffer {
uint width;
uint height;
bool use_realtive_size;
Vec2 relative_size;
ffr::TextureFormat format;
ffr::TextureHandle handle;
int frame_counter;
};
struct ShaderRef {
Lumix::Shader* res;
int id;
};
IAllocator& m_allocator;
Renderer& m_renderer;
PipelineResource* m_resource;
lua_State* m_lua_state;
int m_lua_thread_ref;
int m_lua_env;
bool m_is_first_render;
StaticString<32> m_define;
RenderScene* m_scene;
Draw2D m_draw2d;
Shader* m_draw2d_shader;
Stats m_stats;
Viewport m_viewport;
int m_output;
Shader* m_debug_shape_shader;
Shader* m_text_mesh_shader;
Texture* m_default_cubemap;
Array<CommandSet*> m_command_sets;
Array<CustomCommandHandler> m_custom_commands_handlers;
Array<Renderbuffer> m_renderbuffers;
Array<ShaderRef> m_shaders;
Timer* m_timer;
ffr::UniformHandle m_position_radius_uniform;
ffr::UniformHandle m_position_uniform;
ffr::UniformHandle m_lod_uniform;
ffr::UniformHandle m_terrain_params_uniform;
ffr::UniformHandle m_rel_camera_pos_uniform;
ffr::UniformHandle m_terrain_scale_uniform;
ffr::UniformHandle m_terrain_matrix_uniform;
ffr::UniformHandle m_model_uniform;
ffr::UniformHandle m_bones_uniform;
ffr::UniformHandle m_canvas_size_uniform;
ffr::UniformHandle m_texture_uniform;
ffr::UniformHandle m_irradiance_map_uniform;
ffr::UniformHandle m_radiance_map_uniform;
ffr::UniformHandle m_material_params_uniform;
ffr::UniformHandle m_material_color_uniform;
ffr::UniformHandle m_splatmap_uniform;
ffr::UniformHandle m_detail_textures_uniform;
ffr::BufferHandle m_cube_vb;
ffr::BufferHandle m_cube_ib;
};
Pipeline* Pipeline::create(Renderer& renderer, PipelineResource* resource, const char* define, IAllocator& allocator)
{
return LUMIX_NEW(allocator, PipelineImpl)(renderer, resource, define, allocator);
}
void Pipeline::destroy(Pipeline* pipeline)
{
PipelineImpl* p = (PipelineImpl*)pipeline;
LUMIX_DELETE(p->m_allocator, p);
}
} // namespace Lumix