MuseScore/libmscore/rendermidi.cpp
mirabilos 77983234c8
some spelling fixes
most from the spell checker built into Debian’s automated
package checking tool lintian, two from me during applying
those lintian-suggested fixes
2018-11-27 22:49:18 +01:00

1908 lines
83 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//=============================================================================
// MuseScore
// Music Composition & Notation
//
// Copyright (C) 2002-2012 Werner Schweer
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License version 2
// as published by the Free Software Foundation and appearing in
// the file LICENCE.GPL
//=============================================================================
/**
\file
render score into event list
*/
#include <set>
#include "score.h"
#include "volta.h"
#include "note.h"
#include "glissando.h"
#include "instrument.h"
#include "part.h"
#include "chord.h"
#include "trill.h"
#include "vibrato.h"
#include "style.h"
#include "slur.h"
#include "tie.h"
#include "stafftext.h"
#include "repeat.h"
#include "articulation.h"
#include "arpeggio.h"
#include "durationtype.h"
#include "measure.h"
#include "tempo.h"
#include "repeatlist.h"
#include "velo.h"
#include "dynamic.h"
#include "navigate.h"
#include "pedal.h"
#include "staff.h"
#include "hairpin.h"
#include "bend.h"
#include "tremolo.h"
#include "noteevent.h"
#include "synthesizer/event.h"
#include "segment.h"
#include "undo.h"
#include "utils.h"
#include "sym.h"
namespace Ms {
//int printNoteEventLists(NoteEventList el, int prefix, int j){
// int k=0;
// for (NoteEvent event : el) {
// qDebug("%d: %d: %d pitch=%d ontime=%d duration=%d",prefix, j, k, event.pitch(), event.ontime(), event.len());
// k++;
// }
// return 0;
//}
//int printNoteEventLists(QList<NoteEventList> ell, int prefix){
// int j=0;
// for (NoteEventList el : ell) {
// printNoteEventLists(el,prefix,j);
// j++;
// }
// return 0;
//}
bool graceNotesMerged(Chord *chord);
//---------------------------------------------------------
// updateSwing
//---------------------------------------------------------
void Score::updateSwing()
{
for (Staff* s : _staves) {
s->clearSwingList();
}
Measure* fm = firstMeasure();
if (!fm)
return;
for (Segment* s = fm->first(SegmentType::ChordRest); s; s = s->next1(SegmentType::ChordRest)) {
for (const Element* e : s->annotations()) {
if (!e->isStaffTextBase())
continue;
const StaffTextBase* st = toStaffTextBase(e);
if (st->xmlText().isEmpty())
continue;
Staff* staff = st->staff();
if (!st->swing())
continue;
SwingParameters sp;
sp.swingRatio = st->swingParameters()->swingRatio;
sp.swingUnit = st->swingParameters()->swingUnit;
if (st->systemFlag()) {
for (Staff* sta : _staves) {
sta->insertIntoSwingList(s->tick(),sp);
}
}
else
staff->insertIntoSwingList(s->tick(),sp);
}
}
}
//---------------------------------------------------------
// updateCapo
//---------------------------------------------------------
void Score::updateCapo()
{
for (Staff* s : _staves) {
s->clearCapoList();
}
Measure* fm = firstMeasure();
if (!fm)
return;
for (Segment* s = fm->first(SegmentType::ChordRest); s; s = s->next1(SegmentType::ChordRest)) {
for (const Element* e : s->annotations()) {
if (!e->isStaffTextBase())
continue;
const StaffTextBase* st = toStaffTextBase(e);
if (st->xmlText().isEmpty())
continue;
Staff* staff = st->staff();
if (st->capo() == 0)
continue;
staff->insertIntoCapoList(s->tick(),st->capo());
}
}
}
//---------------------------------------------------------
// updateChannel
//---------------------------------------------------------
void MasterScore::updateChannel()
{
for (Staff* s : staves()) {
for (int i = 0; i < VOICES; ++i)
s->clearChannelList(i);
}
Measure* fm = firstMeasure();
if (!fm)
return;
for (Segment* s = fm->first(SegmentType::ChordRest); s; s = s->next1(SegmentType::ChordRest)) {
for (const Element* e : s->annotations()) {
if (e->isInstrumentChange()) {
Staff* staff = Score::staff(e->staffIdx());
for (int voice = 0; voice < VOICES; ++voice)
staff->insertIntoChannelList(voice, s->tick(), 0);
continue;
}
if (!e->isStaffTextBase())
continue;
const StaffTextBase* st = toStaffTextBase(e);
for (int voice = 0; voice < VOICES; ++voice) {
QString an(st->channelName(voice));
if (an.isEmpty())
continue;
Staff* staff = Score::staff(st->staffIdx());
int a = staff->part()->instrument(s->tick())->channelIdx(an);
if (a != -1)
staff->insertIntoChannelList(voice, s->tick(), a);
}
}
}
for (auto it = spanner().cbegin(); it != spanner().cend(); ++it) {
Spanner* spanner = (*it).second;
if (!spanner->isVolta())
continue;
Volta* volta = toVolta(spanner);
volta->setChannel();
}
for (Segment* s = fm->first(SegmentType::ChordRest); s; s = s->next1(SegmentType::ChordRest)) {
for (Staff* st : staves()) {
int strack = st->idx() * VOICES;
int etrack = strack + VOICES;
for (int track = strack; track < etrack; ++track) {
if (!s->element(track))
continue;
Element* e = s->element(track);
if (e->type() != ElementType::CHORD)
continue;
Chord* c = toChord(e);
int channel = st->channel(c->tick(), c->voice());
Instrument* instr = c->part()->instrument(c->tick());
if (channel >= instr->channel().size()) {
qDebug() << "Channel " << channel << " too high. Max " << instr->channel().size();
channel = 0;
}
for (Note* note : c->notes()) {
if (note->hidden())
continue;
if (note->tieBack())
continue;
note->setSubchannel(channel);
}
}
}
}
}
//---------------------------------------------------------
// playNote
//---------------------------------------------------------
static void playNote(EventMap* events, const Note* note, int channel, int pitch,
int velo, int onTime, int offTime, int staffIdx)
{
if (!note->play())
return;
velo = note->customizeVelocity(velo);
NPlayEvent ev(ME_NOTEON, channel, pitch, velo);
ev.setOriginatingStaff(staffIdx);
ev.setTuning(note->tuning());
ev.setNote(note);
if (offTime < onTime)
offTime = onTime;
events->insert(std::pair<int, NPlayEvent>(onTime, ev));
ev.setVelo(0);
events->insert(std::pair<int, NPlayEvent>(offTime, ev));
}
//---------------------------------------------------------
// collectNote
//---------------------------------------------------------
static void collectNote(EventMap* events, int channel, const Note* note, int velo, int tickOffset, int staffIdx)
{
if (!note->play() || note->hidden()) // do not play overlapping notes
return;
Chord* chord = note->chord();
int ticks;
int tieLen = 0;
if (chord->isGrace()) {
Q_ASSERT( !graceNotesMerged(chord)); // this function should not be called on a grace note if grace notes are merged
chord = toChord(chord->parent());
ticks = chord->actualTicks(); // ticks of the parent note
tieLen = 0;
}
else {
ticks = chord->actualTicks(); // ticks of the actual note
// calculate additional length due to ties forward
// taking NoteEvent length adjustments into account
// but stopping at any note with multiple NoteEvents
// and processing those notes recursively
if (note->tieFor()) {
Note* n = note->tieFor()->endNote();
while (n) {
NoteEventList nel = n->playEvents();
if (nel.size() == 1) {
// add value of this note to main note
// if we wish to suppress first note of ornament,
// then do this regardless of number of NoteEvents
tieLen += (n->chord()->actualTicks() * (nel[0].len())) / 1000;
}
else {
// recurse
collectNote(events, channel, n, velo, tickOffset, staffIdx);
break;
}
if (n->tieFor() && n != n->tieFor()->endNote())
n = n->tieFor()->endNote();
else
break;
}
}
}
int tick1 = chord->tick() + tickOffset;
bool tieFor = note->tieFor();
bool tieBack = note->tieBack();
NoteEventList nel = note->playEvents();
int nels = nel.size();
for (int i = 0, pitch = note->ppitch(); i < nels; ++i) {
const NoteEvent& e = nel[i]; // we make an explicit const ref, not a const copy. no need to copy as we won't change the original object.
// skip if note has a tie into it and only one NoteEvent
// its length was already added to previous note
// if we wish to suppress first note of ornament
// then change "nels == 1" to "i == 0", and change "break" to "continue"
if (tieBack && nels == 1)
break;
int p = pitch + e.pitch();
if (p < 0)
p = 0;
else if (p > 127)
p = 127;
int on = tick1 + (ticks * e.ontime())/1000;
int off = on + (ticks * e.len())/1000 - 1;
if (tieFor && i == nels - 1)
off += tieLen;
playNote(events, note, channel, p, velo, on, off, staffIdx);
}
// Bends
for (Element* e : note->el()) {
if (e == 0 || e->type() != ElementType::BEND)
continue;
Bend* bend = toBend(e);
if (!bend->playBend())
break;
const QList<PitchValue>& points = bend->points();
int pitchSize = points.size();
double noteLen = note->playTicks();
int lastPointTick = tick1;
for (int pitchIndex = 0; pitchIndex < pitchSize-1; pitchIndex++) {
PitchValue pitchValue = points[pitchIndex];
PitchValue nextPitch = points[pitchIndex+1];
int nextPointTick = tick1 + nextPitch.time / 60.0 * noteLen;
int pitch = pitchValue.pitch;
if (pitchIndex == 0 && (pitch == nextPitch.pitch)) {
int midiPitch = (pitch * 16384) / 1200 + 8192;
int msb = midiPitch / 128;
int lsb = midiPitch % 128;
NPlayEvent ev(ME_PITCHBEND, channel, lsb, msb);
ev.setOriginatingStaff(staffIdx);
events->insert(std::pair<int, NPlayEvent>(lastPointTick, ev));
lastPointTick = nextPointTick;
continue;
}
if (pitch == nextPitch.pitch && !(pitchIndex == 0 && pitch != 0)) {
lastPointTick = nextPointTick;
continue;
}
double pitchDelta = nextPitch.pitch - pitch;
double tickDelta = nextPitch.time - pitchValue.time;
/* B
/. pitch is 1/100 semitones
bend / . pitchDelta time is in noteDuration/60
/ . midi pitch is 12/16384 semitones
A....
tickDelta */
for (int i = lastPointTick; i <= nextPointTick; i += 16) {
double dx = ((i-lastPointTick) * 60) / noteLen;
int p = pitch + dx * pitchDelta / tickDelta;
// We don't support negative pitch, but Midi does. Let's center by adding 8192.
int midiPitch = (p * 16384) / 1200 + 8192;
// Representing pitch as two bytes
int msb = midiPitch / 128;
int lsb = midiPitch % 128;
NPlayEvent ev(ME_PITCHBEND, channel, lsb, msb);
ev.setOriginatingStaff(staffIdx);
events->insert(std::pair<int, NPlayEvent>(i, ev));
}
lastPointTick = nextPointTick;
}
NPlayEvent ev(ME_PITCHBEND, channel, 0, 64); // 0:64 is 8192 - no pitch bend
ev.setOriginatingStaff(staffIdx);
events->insert(std::pair<int, NPlayEvent>(tick1+int(noteLen), ev));
}
}
//---------------------------------------------------------
// aeolusSetStop
//---------------------------------------------------------
static void aeolusSetStop(int tick, int channel, int i, int k, bool val, EventMap* events)
{
NPlayEvent event;
event.setType(ME_CONTROLLER);
event.setController(98);
if (val)
event.setValue(0x40 + 0x20 + i);
else
event.setValue(0x40 + 0x10 + i);
event.setChannel(channel);
events->insert(std::pair<int,NPlayEvent>(tick, event));
event.setValue(k);
events->insert(std::pair<int,NPlayEvent>(tick, event));
// event.setValue(0x40 + i);
// events->insert(std::pair<int,NPlayEvent>(tick, event));
}
//---------------------------------------------------------
// collectMeasureEvents
//---------------------------------------------------------
static void collectMeasureEvents(EventMap* events, Measure* m, Staff* staff, int tickOffset)
{
int firstStaffIdx = staff->idx();
int nextStaffIdx = firstStaffIdx + 1;
SegmentType st = SegmentType::ChordRest;
int strack = firstStaffIdx * VOICES;
int etrack = nextStaffIdx * VOICES;
for (Segment* seg = m->first(st); seg; seg = seg->next(st)) {
int tick = seg->tick();
for (int track = strack; track < etrack; ++track) {
// skip linked staves, except primary
if (!m->score()->staff(track / VOICES)->primaryStaff()) {
track += VOICES-1;
continue;
}
Element* cr = seg->element(track);
if (cr == 0 || cr->type() != ElementType::CHORD)
continue;
Chord* chord = toChord(cr);
Staff* st1 = chord->staff();
int staffIdx = st1->idx();
int velocity = st1->velocities().velo(seg->tick());
Instrument* instr = chord->part()->instrument(tick);
int channel = instr->channel(chord->upNote()->subchannel())->channel();
events->registerChannel(channel);
for (Articulation* a : chord->articulations())
instr->updateVelocity(&velocity,channel, a->articulationName());
if ( !graceNotesMerged(chord))
for (Chord* c : chord->graceNotesBefore())
for (const Note* note : c->notes())
collectNote(events, channel, note, velocity, tickOffset, staffIdx);
for (const Note* note : chord->notes())
collectNote(events, channel, note, velocity, tickOffset, staffIdx);
if ( !graceNotesMerged(chord))
for (Chord* c : chord->graceNotesAfter())
for (const Note* note : c->notes())
collectNote(events, channel, note, velocity, tickOffset, staffIdx);
}
}
//
// collect program changes and controller
//
for (Segment* s = m->first(SegmentType::ChordRest); s; s = s->next(SegmentType::ChordRest)) {
// int tick = s->tick();
for (Element* e : s->annotations()) {
if (!e->isStaffTextBase() || e->staffIdx() < firstStaffIdx || e->staffIdx() >= nextStaffIdx)
continue;
const StaffTextBase* st1 = toStaffTextBase(e);
int tick = s->tick() + tickOffset;
Instrument* instr = e->part()->instrument(tick);
for (const ChannelActions& ca : *st1->channelActions()) {
int channel = instr->channel().at(ca.channel)->channel();
for (const QString& ma : ca.midiActionNames) {
NamedEventList* nel = instr->midiAction(ma, ca.channel);
if (!nel)
continue;
for (MidiCoreEvent event : nel->events) {
event.setChannel(channel);
NPlayEvent e1(event);
e1.setOriginatingStaff(firstStaffIdx);
if (e1.dataA() == CTRL_PROGRAM)
events->insert(std::pair<int, NPlayEvent>(tick-1, e1));
else
events->insert(std::pair<int, NPlayEvent>(tick, e1));
}
}
}
if (st1->setAeolusStops()) {
Staff* s1 = st1->staff();
int voice = 0;
int channel = s1->channel(tick, voice);
for (int i = 0; i < 4; ++i) {
static int num[4] = { 12, 13, 16, 16 };
for (int k = 0; k < num[i]; ++k)
aeolusSetStop(tick, channel, i, k, st1->getAeolusStop(i, k), events);
}
}
}
}
}
//---------------------------------------------------------
// updateRepeatList
//---------------------------------------------------------
void Score::updateRepeatList(bool expandRepeats)
{
if (!expandRepeats) {
for (RepeatSegment* s : *repeatList())
delete s;
repeatList()->clear();
Measure* m = firstMeasure();
if (m == 0)
return;
RepeatSegment* s = new RepeatSegment;
s->tick = 0;
s->utick = 0;
s->utime = 0.0;
s->timeOffset = 0.0;
do {
s->addMeasure(m);
m = m->nextMeasure();
}
while (m);
repeatList()->append(s);
}
else
repeatList()->unwind();
if (MScore::debugMode)
repeatList()->dump();
setPlaylistDirty();
}
//---------------------------------------------------------
// updateHairpin
//---------------------------------------------------------
void Score::updateHairpin(Hairpin* h)
{
Staff* st = h->staff();
int tick = h->tick();
int velo = st->velocities().velo(tick);
int incr = h->veloChange();
int tick2 = h->tick2();
//
// If velocity increase/decrease is zero, then assume
// the end velocity is taken from the next velocity
// event (the next dynamics symbol after the hairpin).
//
int endVelo = velo;
if (h->hairpinType() == HairpinType::CRESC_HAIRPIN || h->hairpinType() == HairpinType::CRESC_LINE) {
if (incr == 0 && velo < st->velocities().nextVelo(tick2-1))
endVelo = st->velocities().nextVelo(tick2-1);
else
endVelo += incr;
}
else {
if (incr == 0 && velo > st->velocities().nextVelo(tick2-1))
endVelo = st->velocities().nextVelo(tick2-1);
else
endVelo -= incr;
}
if (endVelo > 127)
endVelo = 127;
else if (endVelo < 1)
endVelo = 1;
switch (h->dynRange()) {
case Dynamic::Range::STAFF:
st->velocities().setVelo(tick, VeloEvent(VeloType::RAMP, velo));
st->velocities().setVelo(tick2-1, VeloEvent(VeloType::FIX, endVelo));
break;
case Dynamic::Range::PART:
for (Staff* s : *st->part()->staves()) {
s->velocities().setVelo(tick, VeloEvent(VeloType::RAMP, velo));
s->velocities().setVelo(tick2-1, VeloEvent(VeloType::FIX, endVelo));
}
break;
case Dynamic::Range::SYSTEM:
for (Staff* s : _staves) {
s->velocities().setVelo(tick, VeloEvent(VeloType::RAMP, velo));
s->velocities().setVelo(tick2-1, VeloEvent(VeloType::FIX, endVelo));
}
break;
}
}
//---------------------------------------------------------
// removeHairpin
//---------------------------------------------------------
void Score::removeHairpin(Hairpin* h)
{
Staff* st = h->staff();
int tick = h->tick();
int tick2 = h->tick2() - 1;
switch(h->dynRange()) {
case Dynamic::Range::STAFF:
st->velocities().remove(tick);
st->velocities().remove(tick2);
break;
case Dynamic::Range::PART:
for (Staff* s : *st->part()->staves()) {
s->velocities().remove(tick);
s->velocities().remove(tick2);
}
break;
case Dynamic::Range::SYSTEM:
for (Staff* s : _staves) {
s->velocities().remove(tick);
s->velocities().remove(tick2);
}
break;
}
}
//---------------------------------------------------------
// updateVelo
// calculate velocity for all notes
//---------------------------------------------------------
void Score::updateVelo()
{
//
// collect Dynamics
//
if (!firstMeasure())
return;
for (Staff* st : _staves) {
VeloList& velo = st->velocities();
velo.clear();
velo.setVelo(0, 80);
}
for (int staffIdx = 0; staffIdx < nstaves(); ++staffIdx) {
Staff* st = staff(staffIdx);
VeloList& velo = st->velocities();
Part* prt = st->part();
int partStaves = prt->nstaves();
int partStaff = Score::staffIdx(prt);
for (Segment* s = firstMeasure()->first(); s; s = s->next1()) {
int tick = s->tick();
for (const Element* e : s->annotations()) {
if (e->staffIdx() != staffIdx)
continue;
if (e->type() != ElementType::DYNAMIC)
continue;
const Dynamic* d = static_cast<const Dynamic*>(e);
int v = d->velocity();
if (v < 1) // illegal value
continue;
int dStaffIdx = d->staffIdx();
switch(d->dynRange()) {
case Dynamic::Range::STAFF:
if (dStaffIdx == staffIdx)
velo.setVelo(tick, v);
break;
case Dynamic::Range::PART:
if (dStaffIdx >= partStaff && dStaffIdx < partStaff+partStaves) {
for (int i = partStaff; i < partStaff+partStaves; ++i)
staff(i)->velocities().setVelo(tick, v);
}
break;
case Dynamic::Range::SYSTEM:
for (int i = 0; i < nstaves(); ++i)
staff(i)->velocities().setVelo(tick, v);
break;
}
}
}
for (const auto& sp : _spanner.map()) {
Spanner* s = sp.second;
if (s->type() != ElementType::HAIRPIN || sp.second->staffIdx() != staffIdx)
continue;
Hairpin* h = toHairpin(s);
updateHairpin(h);
}
}
for (auto it = spanner().cbegin(); it != spanner().cend(); ++it) {
Spanner* spanner = (*it).second;
if (!spanner->isVolta())
continue;
Volta* volta = toVolta(spanner);
volta->setVelocity();
}
}
//---------------------------------------------------------
// renderStaff
//---------------------------------------------------------
void Score::renderStaff(EventMap* events, Staff* staff)
{
Measure* lastMeasure = 0;
for (const RepeatSegment* rs : *repeatList()) {
int startTick = rs->tick;
int endTick = startTick + rs->len();
int tickOffset = rs->utick - rs->tick;
for (Measure* m = tick2measure(startTick); m; m = m->nextMeasure()) {
if (lastMeasure && m->isRepeatMeasure(staff)) {
int offset = m->tick() - lastMeasure->tick();
collectMeasureEvents(events, lastMeasure, staff, tickOffset + offset);
}
else {
lastMeasure = m;
collectMeasureEvents(events, lastMeasure, staff, tickOffset);
}
if (m->tick() + m->ticks() >= endTick)
break;
}
}
}
//---------------------------------------------------------
// renderSpanners
//---------------------------------------------------------
void Score::renderSpanners(EventMap* events)
{
for (const RepeatSegment* rs : *repeatList()) {
int tickOffset = rs->utick - rs->tick;
int utick1 = rs->utick;
int tick1 = repeatList()->utick2tick(utick1);
int tick2 = tick1 + rs->len();
std::map<int, std::vector<std::pair<int, std::pair<bool, int>>>> channelPedalEvents;
for (const auto& sp : _spanner.map()) {
Spanner* s = sp.second;
int staff = s->staffIdx();
int idx = s->staff()->channel(s->tick(), 0);
int channel = s->part()->instrument(s->tick())->channel(idx)->channel();
if (s->isPedal() || s->isLetRing()) {
channelPedalEvents.insert({channel, std::vector<std::pair<int, std::pair<bool, int>>>()});
std::vector<std::pair<int, std::pair<bool, int>>> pedalEventList = channelPedalEvents.at(channel);
std::pair<int, std::pair<bool, int>> lastEvent;
if (!pedalEventList.empty())
lastEvent = pedalEventList.back();
else
lastEvent = std::pair<int, std::pair<bool, int>>(0, std::pair<bool, int>(true, staff));
if (s->tick() >= tick1 && s->tick() < tick2) {
// Handle "overlapping" pedal segments (usual case for connected pedal line)
if (lastEvent.second.first == false && lastEvent.first >= (s->tick() + tickOffset + 2)) {
channelPedalEvents.at(channel).pop_back();
channelPedalEvents.at(channel).push_back(std::pair<int, std::pair<bool, int>>(s->tick() + tickOffset + 1, std::pair<bool, int>(false, staff)));
}
channelPedalEvents.at(channel).push_back(std::pair<int, std::pair<bool, int>>(s->tick() + tickOffset + 2, std::pair<bool, int>(true, staff)));
}
if (s->tick2() >= tick1 && s->tick2() <= tick2) {
int t = s->tick2() + tickOffset + 1;
if (t > repeatList()->last()->utick + repeatList()->last()->len())
t = repeatList()->last()->utick + repeatList()->last()->len();
channelPedalEvents.at(channel).push_back(std::pair<int, std::pair<bool, int>>(t, std::pair<bool, int>(false, staff)));
}
}
else if (s->isVibrato()) {
// from start to end of trill, send bend events at regular interval
Vibrato* t = toVibrato(s);
// guitar vibrato, up only
int spitch = 0; // 1/8 (100 is a semitone)
int epitch = 12;
if (t->vibratoType() == Vibrato::Type::GUITAR_VIBRATO_WIDE) {
spitch = 0; // 1/4
epitch = 25;
}
// vibrato with whammy bar up and down
else if (t->vibratoType() == Vibrato::Type::VIBRATO_SAWTOOTH_WIDE) {
spitch = 25; // 1/16
epitch = -25;
}
else if (t->vibratoType() == Vibrato::Type::VIBRATO_SAWTOOTH) {
spitch = 12;
epitch = -12;
}
int j = 0;
int delta = MScore::division / 8; // 1/8 note
int lastPointTick = s->tick();
while (lastPointTick < s->tick2()) {
int pitch = (j % 4 < 2) ? spitch : epitch;
int nextPitch = ((j+1) % 4 < 2) ? spitch : epitch;
int nextPointTick = lastPointTick + delta;
for (int i = lastPointTick; i <= nextPointTick; i += 16) {
double dx = ((i - lastPointTick) * 60) / delta;
int p = pitch + dx * (nextPitch - pitch) / delta;
int midiPitch = (p * 16384) / 1200 + 8192;
int msb = midiPitch / 128;
int lsb = midiPitch % 128;
NPlayEvent ev(ME_PITCHBEND, channel, lsb, msb);
ev.setOriginatingStaff(staff);
events->insert(std::pair<int, NPlayEvent>(i, ev));
}
lastPointTick = nextPointTick;
j++;
}
NPlayEvent ev(ME_PITCHBEND, channel, 0, 64); // no pitch bend
ev.setOriginatingStaff(staff);
events->insert(std::pair<int, NPlayEvent>(s->tick2(), ev));
}
else
continue;
}
for (const auto& pedalEvents : channelPedalEvents) {
int channel = pedalEvents.first;
for (const auto& pe : pedalEvents.second) {
NPlayEvent event;
if (pe.second.first == true)
event = NPlayEvent(ME_CONTROLLER, channel, CTRL_SUSTAIN, 127);
else
event = NPlayEvent(ME_CONTROLLER, channel, CTRL_SUSTAIN, 0);
event.setOriginatingStaff(pe.second.second);
events->insert(std::pair<int,NPlayEvent>(pe.first, event));
}
}
}
}
//--------------------------------------------------------
// swingAdjustParams
//--------------------------------------------------------
void Score::swingAdjustParams(Chord* chord, int& gateTime, int& ontime, int swingUnit, int swingRatio)
{
int tick = chord->rtick();
// adjust for anacrusis
Measure* cm = chord->measure();
MeasureBase* pm = cm->prev();
ElementType pt = pm ? pm->type() : ElementType::INVALID;
if (!pm || pm->lineBreak() || pm->pageBreak() || pm->sectionBreak()
|| pt == ElementType::VBOX || pt == ElementType::HBOX
|| pt == ElementType::FBOX || pt == ElementType::TBOX) {
int offset = (cm->timesig() - cm->len()).ticks();
if (offset > 0) {
tick += offset;
}
}
int swingBeat = swingUnit * 2;
qreal ticksDuration = (qreal)chord->actualTicks();
qreal swingTickAdjust = ((qreal)swingBeat) * (((qreal)(swingRatio-50))/100.0);
qreal swingActualAdjust = (swingTickAdjust/ticksDuration) * 1000.0;
ChordRest *ncr = nextChordRest(chord);
//Check the position of the chord to apply changes accordingly
if (tick % swingBeat == swingUnit) {
if (!isSubdivided(chord,swingUnit)) {
ontime = ontime + swingActualAdjust;
}
}
int endTick = tick + ticksDuration;
if ((endTick % swingBeat == swingUnit) && (!isSubdivided(ncr,swingUnit))) {
gateTime = gateTime + (swingActualAdjust/10);
}
}
//---------------------------------------------------------
// isSubdivided
// Check for subdivided beat
//---------------------------------------------------------
bool Score::isSubdivided(ChordRest* chord, int swingUnit)
{
if (!chord)
return false;
ChordRest* prev = prevChordRest(chord);
if (chord->actualTicks() < swingUnit || (prev && prev->actualTicks() < swingUnit))
return true;
else
return false;
}
const Drumset* getDrumset(const Chord* chord)
{
if (chord->staff() && chord->staff()->isDrumStaff(chord->tick())) {
const Drumset* ds = chord->staff()->part()->instrument(chord->tick())->drumset();
return ds;
}
return nullptr;
}
//---------------------------------------------------------
// renderTremolo
//---------------------------------------------------------
void renderTremolo(Chord* chord, QList<NoteEventList>& ell)
{
Segment* seg = chord->segment();
Tremolo* tremolo = chord->tremolo();
int notes = int(chord->notes().size());
// check if tremolo was rendered before for drum staff
const Drumset* ds = getDrumset(chord);
if (ds) {
for (Note* n : chord->notes()) {
DrumInstrumentVariant div = ds->findVariant(n->pitch(), chord->articulations(), chord->tremolo());
if (div.pitch != INVALID_PITCH && div.tremolo == tremolo->tremoloType())
return; // already rendered
}
}
// we cannot render buzz roll with MIDI events only
if (tremolo->tremoloType() == TremoloType::BUZZ_ROLL)
return;
// render tremolo with multiple events
if (chord->tremoloChordType() == TremoloChordType::TremoloFirstNote) {
int t = MScore::division / (1 << (tremolo->lines() + chord->durationType().hooks()));
SegmentType st = SegmentType::ChordRest;
Segment* seg2 = seg->next(st);
int track = chord->track();
while (seg2 && !seg2->element(track))
seg2 = seg2->next(st);
Chord* c2 = seg2 ? toChord(seg2->element(track)) : 0;
if (c2 && c2->type() == ElementType::CHORD) {
int notes2 = int(c2->notes().size());
int tnotes = qMax(notes, notes2);
int tticks = chord->actualTicks() * 2; // use twice the size
int n = tticks / t;
n /= 2;
int l = 2000 * t / tticks;
for (int k = 0; k < tnotes; ++k) {
NoteEventList* events;
if (k < notes) {
// first chord has note
events = &ell[k];
events->clear();
}
else {
// otherwise reuse note 0
events = &ell[0];
}
if (k < notes && k < notes2) {
// both chords have note
int p1 = chord->notes()[k]->pitch();
int p2 = c2->notes()[k]->pitch();
int dpitch = p2 - p1;
for (int i = 0; i < n; ++i) {
events->append(NoteEvent(0, l * i * 2, l));
events->append(NoteEvent(dpitch, l * i * 2 + l, l));
}
}
else if (k < notes) {
// only first chord has note
for (int i = 0; i < n; ++i)
events->append(NoteEvent(0, l * i * 2, l));
}
else {
// only second chord has note
// reuse note 0 of first chord
int p1 = chord->notes()[0]->pitch();
int p2 = c2->notes()[k]->pitch();
int dpitch = p2-p1;
for (int i = 0; i < n; ++i)
events->append(NoteEvent(dpitch, l * i * 2 + l, l));
}
}
}
else
qDebug("Chord::renderTremolo: cannot find 2. chord");
}
else if (chord->tremoloChordType() == TremoloChordType::TremoloSecondNote) {
for (int k = 0; k < notes; ++k) {
NoteEventList* events = &(ell)[k];
events->clear();
}
}
else if (chord->tremoloChordType() == TremoloChordType::TremoloSingle) {
int t = MScore::division / (1 << (tremolo->lines() + chord->durationType().hooks()));
if (t == 0) // avoid crash on very short tremolo
t = 1;
int n = chord->duration().ticks() / t;
int l = 1000 / n;
for (int k = 0; k < notes; ++k) {
NoteEventList* events = &(ell)[k];
events->clear();
for (int i = 0; i < n; ++i)
events->append(NoteEvent(0, l * i, l));
}
}
}
//---------------------------------------------------------
// renderArpeggio
//---------------------------------------------------------
void renderArpeggio(Chord *chord, QList<NoteEventList> & ell)
{
int notes = int(chord->notes().size());
int l = 64;
while (l && (l * notes > chord->upNote()->playTicks()))
l = 2*l / 3;
int start, end, step;
bool up = chord->arpeggio()->arpeggioType() != ArpeggioType::DOWN && chord->arpeggio()->arpeggioType() != ArpeggioType::DOWN_STRAIGHT;
if (up) {
start = 0;
end = notes;
step = 1;
}
else {
start = notes - 1;
end = -1;
step = -1;
}
int j = 0;
for (int i = start; i != end; i += step) {
NoteEventList* events = &(ell)[i];
events->clear();
auto tempoRatio = chord->score()->tempomap()->tempo(chord->tick()) / Score::defaultTempo();
int ot = (l * j * 1000) / chord->upNote()->playTicks() *
tempoRatio * chord->arpeggio()->Stretch();
events->append(NoteEvent(0, ot, 1000 - ot));
j++;
}
}
//---------------------------------------------------------
// convertLine
// find the line in clefF corresponding to lineL2 in clefR
//---------------------------------------------------------
int convertLine (int lineL2, ClefType clefL, ClefType clefR) {
int lineR2 = lineL2;
int goalpitch = line2pitch(lineL2, clefL, Key::C);
int p;
while ( (p = line2pitch(lineR2, clefR, Key::C)) > goalpitch && p < 127)
lineR2++;
while ( (p = line2pitch(lineR2, clefR, Key::C)) < goalpitch && p > 0)
lineR2--;
return lineR2;
}
//---------------------------------------------------------
// convertLine
// find the line in clef for NoteL corresponding to lineL2 in clef for noteR
// for example middle C is line 10 in Treble clef, but is line -2 in Bass clef.
//---------------------------------------------------------
int convertLine(int lineL2, Note *noteL, Note *noteR)
{
return convertLine(lineL2,
noteL->chord()->staff()->clef(noteL->chord()->tick()),
noteR->chord()->staff()->clef(noteR->chord()->tick()));
}
//---------------------------------------------------------
// articulationExcursion -- an articulation such as a trill, or modant consists of several notes
// played in succession. The pitch offsets of each such note in the sequence can be represented either
// as a number of steps in the diatonic scale, or in half steps as on a piano keyboard.
// this function, articulationExcursion, takes deltastep indicating the number of steps in the
// diatonic scale, and calculates (and returns) the number of half steps, taking several things into account.
// E.g., the key signature, a trill from e to f, is to be understood as a trill between E and F# if we are
// in the key of G.
// E.g., if previously (looking backward in time) in the same measure there is another note on the same
// staff line/space, and that note has an accidental (sharp,flat,natural,etc), then we want to match that
// tone exactly.
// E.g., If there are multiple notes on the same line/space, then we only consider the most
// recent one, but avoid looking forward in time after the current note.
// E.g., Also if there is an accidental // on a note one (or more) octaves above or below we
// observe its accidental as well.
// E.g., Still another case is that if two staffs are involved (such as a glissando between two
// notes on different staffs) then we have to search both staffs for the most recent accidental.
//
// noteL is the note to measure the deltastep from, i.e., ornaments are w.r.t. this note
// noteR is the note to search backward from to find accidentals.
// for ornament calculation noteL and noteR are the same, but for glissando they are
// the start end end note of glissando.
// deltastep is the desired number of diatonic steps between the base note and this articulation step.
//---------------------------------------------------------
int articulationExcursion(Note *noteL, Note *noteR, int deltastep)
{
if (0 == deltastep)
return 0;
Chord *chordL = noteL->chord();
Chord *chordR = noteR->chord();
int epitchL = noteL->epitch();
int tickL = chordL->tick();
// we canot use staffL = chord->staff() because that won't correspond to the noteL->line()
// in the case the user has pressed Shift-Cmd->Up or Shift-Cmd-Down.
// Therefore we have to take staffMove() into account using vStaffIdx().
Staff * staffL = noteL->score()->staff(chordL->vStaffIdx());
ClefType clefL = staffL->clef(tickL);
// line represents the ledger line of the staff. 0 is the top line, 1, is the space between the top 2 lines,
// ... 8 is the bottom line.
int lineL = noteL->line();
// we use line - deltastep, because lines are oriented from top to bottom, while step is oriented from bottom to top.
int lineL2 = lineL - deltastep;
Measure* measureR = chordR->segment()->measure();
Segment* segment = noteL->chord()->segment();
int lineR2 = convertLine(lineL2, noteL, noteR);
// is there another note in this segment on the same line?
// if so, use its pitch exactly.
int halfsteps = 0;
int staffIdx = noteL->chord()->staff()->idx(); // cannot use staffL->idx() because of staffMove()
int startTrack = staffIdx * VOICES;
int endTrack = startTrack + VOICES;
bool done = false;
for (int track = startTrack; track < endTrack; ++track) {
Element *e = segment->element(track);
if (!e || e->type() != ElementType::CHORD)
continue;
Chord* chord = toChord(e);
for (Note* note : chord->notes()) {
if (note->tieBack())
continue;
int pc = (note->line() + 700) % 7;
int pc2 = (lineL2 + 700) % 7;
if (pc2 == pc) {
// e.g., if there is an F# note at this staff/tick, then force every F to be F#.
int octaves = (note->line() - lineL2) / 7;
halfsteps = note->epitch() + 12 * octaves - epitchL;
done = true;
break;
}
}
if (!done) {
if (staffL->isPitchedStaff(segment->tick())) {
bool error = false;
AccidentalVal acciv2 = measureR->findAccidental(chordR->segment(), chordR->staff()->idx(), lineR2, error);
int acci2 = int(acciv2);
// epitch (effective pitch) is a visible pitch so line2pitch returns exactly that.
halfsteps = line2pitch(lineL-deltastep, clefL, Key::C) + acci2 - epitchL;
}
else {
// cannot rely on accidentals or key signatures
halfsteps = deltastep;
}
}
}
return halfsteps;
}
//---------------------------------------------------------
// totalTiedNoteTicks
// return the total of the actualTicks of the given note plus
// the chain of zero or more notes tied to it to the right.
//---------------------------------------------------------
int totalTiedNoteTicks(Note* note)
{
int total = note->chord()->actualTicks();
while (note->tieFor() && note->tieFor()->endNote() && (note->chord()->tick() < note->tieFor()->endNote()->chord()->tick())) {
note = note->tieFor()->endNote();
total += note->chord()->actualTicks();
}
return total;
};
//---------------------------------------------------------
// renderNoteArticulation
// prefix, vector of int, normally something like {0,-1,0,1} modeling the prefix of tremblement relative to the base note
// body, vector of int, normally something like {0,-1,0,1} modeling the possibly repeated tremblement relative to the base note
// tickspernote, number of ticks, either _16h or _32nd, i.e., MScore::division/4 or MScore::division/8
// repeatp, true means repeat the body as many times as possible to fill the time slice.
// sustainp, true means the last note of the body is sustained to fill remaining time slice
//---------------------------------------------------------
bool renderNoteArticulation(NoteEventList* events, Note* note, bool chromatic, int requestedTicksPerNote,
const vector<int>& prefix, const vector<int>& body,
bool repeatp, bool sustainp, const vector<int>& suffix,
int fastestFreq=64, int slowestFreq=8 // 64 Hz and 8 Hz
)
{
events->clear();
Chord *chord = note->chord();
int maxticks = totalTiedNoteTicks(note);
int space = 1000 * maxticks;
int numrepeat = 1;
int sustain = 0;
int ontime = 0;
int gnb = note->chord()->graceNotesBefore().size();
int p = int(prefix.size());
int b = int(body.size());
int s = int(suffix.size());
int gna = note->chord()->graceNotesAfter().size();
int ticksPerNote = 0;
if (gnb + p + b + s + gna <= 0 )
return false;
int tick = chord->tick();
qreal tempo = chord->score()->tempo(tick);
int ticksPerSecond = tempo * MScore::division;
int minTicksPerNote = int(ticksPerSecond / fastestFreq);
int maxTicksPerNote = (0 == slowestFreq) ? 0 : int(ticksPerSecond / slowestFreq);
// for fast tempos, we have to slow down the tremblement frequency, i.e., increase the ticks per note
if (requestedTicksPerNote >= minTicksPerNote)
;
else { // try to divide the requested frequency by a power of 2 if possible, if not, use the maximum frequency, ie., minTicksPerNote
ticksPerNote = requestedTicksPerNote;
while (ticksPerNote < minTicksPerNote) {
ticksPerNote *= 2; // decrease the tremblement frequency
}
if (ticksPerNote > maxTicksPerNote)
ticksPerNote = minTicksPerNote;
}
ticksPerNote = max(requestedTicksPerNote, minTicksPerNote);
if (slowestFreq <= 0) // no slowest freq given such as something silly like glissando with 4 notes over 8 counts.
;
else if (ticksPerNote <= maxTicksPerNote) // in a good range, so we don't need to adjust ticksPerNote
;
else {
// for slow tempos, such as adagio, we may need to speed up the tremblement frequency, i.e., decrease the ticks per note, to make it sound reasonable.
ticksPerNote = requestedTicksPerNote ;
while (ticksPerNote > maxTicksPerNote) {
ticksPerNote /= 2;
}
if (ticksPerNote < minTicksPerNote)
ticksPerNote = minTicksPerNote;
}
// calculate whether to shorten the duration value.
if ( ticksPerNote*(gnb + p + b + s + gna) <= maxticks )
; // plenty of space to play the notes without changing the requested trill note duration
else if ( ticksPerNote == minTicksPerNote )
return false; // the ornament is impossible to implement respecting the minimum duration and all the notes it contains
else {
ticksPerNote = maxticks / (gnb + p + b + s + gna); // integer division ignoring remainder
if ( slowestFreq <= 0 )
;
else if ( ticksPerNote < minTicksPerNote )
return false;
}
int millespernote = space * ticksPerNote / maxticks; // rescale duration into per mille
// local function:
// look ahead in the given vector to see if the current note is the same pitch as the next note or next several notes.
// If so, increment the duration by the appropriate note duration, and increment the index, j, to the next note index
// of a different pitch.
// The total duration of the tied note is returned, and the index is modified.
auto tieForward = [millespernote] (int & j, const vector<int> & vec) {
int size = int(vec.size());
int duration = millespernote;
while ( j < size-1 && vec[j] == vec[j+1] ) {
duration += millespernote;
j++;
}
return duration;
};
// local function:
// append a NoteEvent either by calculating an articulationExcursion or by
// the given chromatic relative pitch.
// RETURNS the new ontime value. The caller is expected to assign this value.
auto makeEvent = [note,chord,chromatic,events] (int pitch, int ontime, int duration) {
events->append( NoteEvent(chromatic ? pitch : articulationExcursion(note,note,pitch),
ontime/chord->actualTicks(),
duration/chord->actualTicks()));
return ontime + duration;
};
// local function:
// Given a chord from a grace note, (normally the chord contains a single note) and create
// a NoteEvent as if the grace note were part of the articulation (such as trill). This
// local function works for the graceNotesBefore() and also graceNotesAfter().
// If the grace note has play=false, then it will sound as a rest, but the other grace
// notes will still play. This means graceExtend simply omits the call to append( NoteEvent(...))
// but still updates ontime +=millespernote.
// RETURNS the new value of ontime, so caller must make an assignment to the return value.
auto graceExtend = [millespernote,chord,events] (int notePitch, QVector<Chord*> graceNotes, int ontime) {
for (Chord* c : graceNotes) {
for (Note* n : c->notes()) {
// NoteEvent takes relative pitch as first argument.
// The pitch is relative to the pitch of the note, the event is rendering
if (n->play())
events->append( NoteEvent(n->pitch() - notePitch,
ontime/chord->actualTicks(),
millespernote/chord->actualTicks()));
}
ontime += millespernote;
}
return ontime;
};
// calculate the number of times to repeat the body, and sustain the last note of the body
// 1000 = P + numrepeat*B+sustain + S
if (repeatp)
numrepeat = (space - millespernote*(gnb + p + s + gna)) / (millespernote * b);
if (sustainp)
sustain = space - millespernote*(gnb + p + numrepeat * b + s + gna);
// render the graceNotesBefore
ontime = graceExtend(note->pitch(),note->chord()->graceNotesBefore(), ontime);
// render the prefix
for (int j=0; j < p; j++)
ontime = makeEvent(prefix[j], ontime, tieForward(j,prefix));
if (b > 0) {
// render the body, but not the final repetition
for (int r = 0; r < numrepeat-1; r++) {
for (int j=0; j < b; j++)
ontime = makeEvent(body[j], ontime, millespernote);
}
// render the final repetition of body, but not the final note of the repition
for (int j = 0; j < b - 1; j++)
ontime = makeEvent(body[j], ontime, millespernote);
// render the final note of the final repeat of body
ontime = makeEvent(body[b-1], ontime, millespernote+sustain);
}
// render the suffix
for (int j = 0; j < s; j++)
ontime = makeEvent(suffix[j], ontime, tieForward(j,suffix));
// render graceNotesAfter
graceExtend(note->pitch(), note->chord()->graceNotesAfter(), ontime);
return true;
}
// This struct specifies how to render an articulation.
// atype - the articulation type to implement, such as SymId::ornamentTurn
// ostyles - the actual ornament has a property called ornamentStyle whose value is
// a value of type MScore::OrnamentStyle. This ostyles field indicates the
// the set of ornamentStyles which apply to this rendition.
// duration - the default duration for each note in the rendition, the final duration
// rendered might be less than this if an articulation is attached to a note of
// short duration.
// prefix - vector of integers. indicating which notes to play at the beginning of rendering the
// articulation. 0 represents the principle note, 1==> the note diatonically 1 above
// -1 ==> the note diatonically 1 below. E.g., in the key of G, if a turn articulation
// occurs above the note F#, then 0==>F#, 1==>G, -1==>E.
// These integers indicate which notes actual notes to play when rendering the ornamented
// note. However, if the same integer appears several times adjacently such as {0,0,0,1}
// That means play the notes tied. e.g., F# followed by G, but the duration of F# is 3x the
// duration of the G.
// body - notes to play comprising the body of the rendered ornament.
// The body differs from the prefix and suffix in several ways.
// * body does not support tied notes: {0,0,0,1} means play 4 distinct notes (not tied).
// * if there is sufficient duration in the principle note, AND repeatep is true, then body
// will be rendered multiple times, as the duration allows.
// * to avoid a time gap (or rest) in rendering the articulation, if sustainp is true,
// then the final note of the body will be sustained to fill the left-over time.
// suffix - similar to prefix but played once at the end of the rendered ornament.
// repeatp - whether the body is repeatable in its entirety.
// sustainp - whether the final note of the body should be sustained to fill the remaining duration.
struct OrnamentExcursion {
SymId atype;
set<MScore::OrnamentStyle> ostyles;
int duration;
vector<int> prefix;
vector<int> body;
bool repeatp;
bool sustainp;
vector<int> suffix;
};
set<MScore::OrnamentStyle> baroque = {MScore::OrnamentStyle::BAROQUE};
set<MScore::OrnamentStyle> defstyle = {MScore::OrnamentStyle::DEFAULT};
set<MScore::OrnamentStyle> any; // empty set has the special meaning of any-style, rather than no-styles.
int _16th = MScore::division / 4;
int _32nd = _16th / 2;
vector<OrnamentExcursion> excursions = {
// articulation type set of duration body repeatp suffix
// styles prefix sustainp
{ SymId::ornamentTurn, any, _32nd, {}, {1,0,-1,0}, false, true, {}}
,{SymId::ornamentTurnInverted, any, _32nd, {}, {-1,0,1,0}, false, true, {}}
,{SymId::ornamentTrill, baroque, _32nd, {1,0}, {1,0}, true, true, {}}
,{SymId::ornamentTrill, defstyle, _32nd, {0,1}, {0,1}, true, true, {}}
,{SymId::brassMuteClosed, baroque, _32nd, {0,-1},{0, -1}, true, true, {}}
,{SymId::ornamentMordentInverted, any, _32nd, {}, {0,-1,0}, false, true, {}}
,{SymId::ornamentMordent, defstyle, _32nd, {}, {0,1,0}, false, true, {}} // inverted mordent
,{SymId::ornamentMordent, baroque, _32nd, {1,0,1},{0}, false, true, {}} // short trill
,{SymId::ornamentTremblement, any, _32nd, {1,0}, {1,0}, false, true, {}}
,{SymId::ornamentPrallMordent, any, _32nd, {}, {1,0,-1,0}, false, true, {}}
,{SymId::ornamentLinePrall, any, _32nd, {2,2,2},{1,0}, true, true, {}}
,{SymId::ornamentUpPrall, any, _16th, {-1,0},{1,0}, true, true, {1,0}} // p 144 Ex 152 [1]
,{SymId::ornamentUpMordent, any, _16th, {-1,0},{1,0}, true, true, {-1,0}} // p 144 Ex 152 [1]
,{SymId::ornamentPrecompMordentUpperPrefix, any, _16th, {1,1,1,0}, {1,0}, true, true, {}} // p136 Cadence Appuyee [1] [2]
,{SymId::ornamentDownMordent, any, _16th, {1,1,1,0}, {1,0}, true, true, {-1, 0}} // p136 Cadence Appuyee + mordent [1] [2]
,{SymId::ornamentPrallUp, any, _16th, {1,0}, {1,0}, true, true, {-1,0}} // p136 Double Cadence [1]
,{SymId::ornamentPrallDown, any, _16th, {1,0}, {1,0}, true, true, {-1,0,0,0}} // p144 ex 153 [1]
,{SymId::ornamentPrecompSlide, any, _32nd, {}, {0}, false, true, {}}
// [1] Some of the articulations/ornaments in the excursions table above come from
// Baroque Music, Style and Performance A Handbook, by Robert Donington,(c) 1982
// ISBN 0-393-30052-8, W. W. Norton & Company, Inc.
// [2] In some cases, the example from [1] does not preserve the timing.
// For example, illustrates 2+1/4 counts per half note.
};
//---------------------------------------------------------
// renderNoteArticulation
//---------------------------------------------------------
bool renderNoteArticulation(NoteEventList* events, Note * note, bool chromatic, SymId articulationType, MScore::OrnamentStyle ornamentStyle)
{
if (!note->staff()->isPitchedStaff(note->tick())) // not enough info in tab staff
return false;
vector<int> emptypattern = {};
for (auto& oe : excursions) {
if (oe.atype == articulationType && ( 0 == oe.ostyles.size()
|| oe.ostyles.end() != oe.ostyles.find(ornamentStyle))) {
return renderNoteArticulation(events, note, chromatic, oe.duration,
oe.prefix, oe.body, oe.repeatp, oe.sustainp, oe.suffix);
}
}
return false;
}
//---------------------------------------------------------
// renderNoteArticulation
//---------------------------------------------------------
bool renderNoteArticulation(NoteEventList* events, Note * note, bool chromatic, Trill::Type trillType, MScore::OrnamentStyle ornamentStyle)
{
map<Trill::Type,SymId> articulationMap = {
{Trill::Type::TRILL_LINE, SymId::ornamentTrill }
,{Trill::Type::UPPRALL_LINE, SymId::ornamentUpPrall }
,{Trill::Type::DOWNPRALL_LINE, SymId::ornamentPrecompMordentUpperPrefix }
,{Trill::Type::PRALLPRALL_LINE, SymId::ornamentTrill }
};
auto it = articulationMap.find(trillType);
if (it == articulationMap.cend())
return false;
else
return renderNoteArticulation(events, note, chromatic, it->second, ornamentStyle);
}
//---------------------------------------------------------
// noteHasGlissando
// true if note is the end of a glissando
//---------------------------------------------------------
bool noteHasGlissando(Note *note)
{
for (Spanner* spanner : note->spannerFor()) {
if ((spanner->type() == ElementType::GLISSANDO)
&& spanner->endElement()
&& (ElementType::NOTE == spanner->endElement()->type()))
return true;
}
return false;
}
//---------------------------------------------------------
// renderGlissando
//---------------------------------------------------------
void renderGlissando(NoteEventList* events, Note *notestart)
{
vector<int> empty = {};
int Cnote = 60; // pitch of middle C
int pitchstart = notestart->ppitch();
int linestart = notestart->line();
set<int> blacknotes = { 1, 3, 6, 8, 10};
set<int> whitenotes = {0, 2, 4, 5, 7, 9, 11};
for (Spanner* spanner : notestart->spannerFor()) {
if (spanner->type() == ElementType::GLISSANDO) {
Glissando *glissando = toGlissando(spanner);
GlissandoStyle glissandoStyle = glissando->glissandoStyle();
Element* ee = spanner->endElement();
// only consider glissando connected to NOTE.
if (glissando->playGlissando() && ElementType::NOTE == ee->type()) {
vector<int> body;
Note *noteend = toNote(ee);
int pitchend = noteend->ppitch();
bool direction = pitchend > pitchstart;
if (pitchend == pitchstart)
continue; // next spanner
if (glissandoStyle == GlissandoStyle::DIATONIC) { // scale obeying accidentals
int line;
int p = pitchstart;
// iterate as long as we haven't past the pitchend.
for (line = linestart; (direction) ? (p<pitchend) : (p>pitchend);
(direction) ? line-- : line++) {
int halfsteps = articulationExcursion(notestart, noteend, linestart - line);
p = pitchstart + halfsteps;
if (direction ? p < pitchend : p > pitchend)
body.push_back(halfsteps);
}
}
else {
for (int p = pitchstart; direction ? p < pitchend : p > pitchend; p += (direction ? 1 : -1)) {
bool choose = false;
int mod = ((p - Cnote) + 1200) % 12;
switch (glissandoStyle) {
case GlissandoStyle::CHROMATIC:
choose = true;
break;
case GlissandoStyle::WHITE_KEYS: // white note
choose = (whitenotes.find(mod) != whitenotes.end());
break;
case GlissandoStyle::BLACK_KEYS: // black note
choose = (blacknotes.find(mod) != blacknotes.end());
break;
default:
choose = false;
}
if (choose)
body.push_back(p - pitchstart);
}
}
renderNoteArticulation(events, notestart, true, MScore::division, empty, body, false, true, empty, 16, 0);
}
}
}
}
//---------------------------------------------------------
// findFirstTrill
// search the spanners in the score, finding the first one
// which overlaps this chord and is of type ElementType::TRILL
//---------------------------------------------------------
Trill* findFirstTrill(Chord *chord) {
auto spanners = chord->score()->spannerMap().findOverlapping(1+chord->tick(), chord->tick() + chord->actualTicks() - 1);
for (auto i : spanners) {
if (i.value->type() != ElementType::TRILL)
continue;
if (i.value->track() != chord->track())
continue;
Trill *trill = toTrill (i.value);
if (trill->playArticulation() == false)
continue;
return trill;
}
return nullptr;
}
// In the case that graceNotesBefore or graceNotesAfter are attached to a note
// with an articulation such as a trill, then the grace notes are/will-be/have-been
// already merged into the articulation.
// So this predicate, graceNotesMerged, checks for this condition to avoid calling
// functions which would re-emit the grace notes by a different algorithm.
bool graceNotesMerged(Chord* chord)
{
if (findFirstTrill(chord))
return true;
for (Articulation* a : chord->articulations())
for (auto& oe : excursions)
if ( oe.atype == a->symId() )
return true;
return false;
}
//---------------------------------------------------------
// renderChordArticulation
//---------------------------------------------------------
void renderChordArticulation(Chord* chord, QList<NoteEventList> & ell, int & gateTime)
{
Segment* seg = chord->segment();
Instrument* instr = chord->part()->instrument(seg->tick());
int channel = 0; // note->subchannel();
for (unsigned k = 0; k < chord->notes().size(); ++k) {
NoteEventList* events = &ell[k];
Note *note = chord->notes()[k];
Trill *trill;
if (noteHasGlissando(note))
renderGlissando(events, note);
else if (chord->staff()->isPitchedStaff(chord->tick()) && (trill = findFirstTrill(chord)) != nullptr) {
renderNoteArticulation(events, note, false, trill->trillType(), trill->ornamentStyle());
}
else {
for (Articulation* a : chord->articulations()) {
if (!a->playArticulation())
continue;
if (!renderNoteArticulation(events, note, false, a->symId(), a->ornamentStyle()))
instr->updateGateTime(&gateTime, channel, a->articulationName());
}
}
}
}
//---------------------------------------------------------
// shouldRenderNote
//---------------------------------------------------------
static bool shouldRenderNote(Note* n)
{
int dist = 0;
while (n->tieBack()) {
n = n->tieBack()->startNote();
++dist;
if (n && n->playEvents().offtime() > (dist * NoteEvent::NOTE_LENGTH)) {
// The previous tied note probably has events for this note too.
// That is, we don't need to render this note separately.
return false;
}
}
return true;
}
//---------------------------------------------------------
// renderChord
// ontime and trailtime in 1/1000 of duration
// ontime signifies how much gap to leave, i.e., how late the note should start because of graceNotesBefore which have already been rendered
// trailtime signifies how much gap to leave after the note to allow for graceNotesAfter to be rendered
//---------------------------------------------------------
static QList<NoteEventList> renderChord(Chord* chord, int gateTime, int ontime, int trailtime)
{
QList<NoteEventList> ell;
if (chord->notes().empty())
return ell;
size_t notes = chord->notes().size();
for (size_t i = 0; i < notes; ++i)
ell.append(NoteEventList());
bool arpeggio = false;
if (chord->tremolo()) {
renderTremolo(chord, ell);
}
else if (chord->arpeggio() && chord->arpeggio()->playArpeggio()) {
renderArpeggio(chord, ell);
arpeggio = true;
}
else
renderChordArticulation(chord, ell, gateTime);
// Check each note and apply gateTime
for (int i = 0; i < int(notes); ++i) {
NoteEventList* el = &ell[i];
if (!shouldRenderNote(chord->notes()[i])) {
el->clear();
continue;
}
if (arpeggio)
continue; // don't add extra events and apply gateTime to arpeggio
// If we are here then we still need to render the note.
// Render its body if necessary and apply gateTime.
if (el->size() == 0 && chord->tremoloChordType() != TremoloChordType::TremoloSecondNote) {
el->append(NoteEvent(0, ontime, 1000 - ontime - trailtime));
}
if (trailtime == 0) // if trailtime is non-zero that means we have graceNotesAfter, so we don't need additional gate time.
for (NoteEvent& e : ell[i])
e.setLen(e.len() * gateTime / 100);
}
return ell;
}
//---------------------------------------------------------
// createGraceNotesPlayEvent
// as a side effect of createGraceNotesPlayEvents, ontime and trailtime (passed by ref)
// are modified. ontime reflects the time needed to play the grace-notes-before, and
// trailtime reflects the time for the grace-notes-after. These are used by the caller
// to effect the on/off time of the main note
//---------------------------------------------------------
void Score::createGraceNotesPlayEvents(int tick, Chord* chord, int &ontime, int &trailtime)
{
QVector<Chord*> gnb = chord->graceNotesBefore();
QVector<Chord*> gna = chord->graceNotesAfter();
int nb = gnb.size();
int na = gna.size();
if (0 == nb + na){
return; // return immediately if no grace notes to deal with
}
// return immediately if the chord has a trill or articulation which effectively plays the graces notes.
if (graceNotesMerged(chord)) {
return;
}
// if there are graceNotesBefore and also graceNotesAfter, and the before grace notes are
// not ACCIACCATURA, then the total time of all of them will be 50% of the time of the main note.
// if the before grace notes are ACCIACCATURA then the grace notes after (if there are any).
// get 50% of the time of the main note.
// this is achieved by the two floating point weights: weighta and weightb whose total is 1.0
// assuring that all the grace notes get the same duration, and their total is 50%.
// exception is if the note is dotted or double-dotted; see below.
float weighta = float(na) / (nb+na);
float weightb = float(nb) / (nb+na);
int graceDuration = 0;
bool drumset = (getDrumset(chord) != nullptr);
const qreal ticksPerSecond = tempo(tick) * MScore::division;
const qreal chordTimeMS = (chord->actualTicks() / ticksPerSecond) * 1000;
if (drumset) {
int flamDuration = 15; //ms
graceDuration = flamDuration / chordTimeMS * 1000; //ratio 1/1000 from the main note length
ontime = graceDuration * nb;
}
else if (nb) {
//
// render grace notes:
// simplified implementation:
// - grace notes start on the beat of the main note
// - duration: appoggiatura: 0.5 * duration of main note (2/3 for dotted notes, 4/7 for double-dotted)
// acciacatura: min of 0.5 * duration or 65ms fixed (independent of duration or tempo)
// - for appoggiaturas, the duration is divided by the number of grace notes
// - the grace note duration as notated does not matter
//
Chord* graceChord = gnb[0];
if (graceChord->noteType() == NoteType::ACCIACCATURA) {
int graceTimeMS = 65 * nb; // value determined empirically (TODO: make instrument-specific, like articulations)
// 1000 occurs below as a unit for ontime
ontime = qMin(500, static_cast<int>((graceTimeMS / chordTimeMS) * 1000));
weightb = 0.0;
weighta = 1.0;
}
else if (chord->dots() == 1)
ontime = floor(667 * weightb);
else if (chord->dots() == 2)
ontime = floor(571 * weightb);
else
ontime = floor(500 * weightb);
graceDuration = ontime / nb;
}
for (int i = 0, on = 0; i < nb; ++i) {
QList<NoteEventList> el;
Chord* gc = gnb.at(i);
size_t nn = gc->notes().size();
for (size_t ii = 0; ii < nn; ++ii) {
NoteEventList nel;
nel.append(NoteEvent(0, on, graceDuration));
el.append(nel);
}
if (gc->playEventType() == PlayEventType::InvalidUser)
gc->score()->undo(new ChangeEventList(gc, el));
else if (gc->playEventType() == PlayEventType::Auto) {
for (int ii = 0; ii < int(nn); ++ii)
gc->notes()[ii]->setPlayEvents(el[ii]);
}
on += graceDuration;
}
if (na) {
if (chord->dots() == 1)
trailtime = floor(667 * weighta);
else if (chord->dots() == 2)
trailtime = floor(571 * weighta);
else
trailtime = floor(500 * weighta);
int graceDuration1 = trailtime / na;
int on = 1000 - trailtime;
for (int i = 0; i < na; ++i) {
QList<NoteEventList> el;
Chord* gc = gna.at(i);
size_t nn = gc->notes().size();
for (size_t ii = 0; ii < nn; ++ii) {
NoteEventList nel;
nel.append(NoteEvent(0, on, graceDuration1)); // NoteEvent(pitch,ontime,len)
el.append(nel);
}
if (gc->playEventType() == PlayEventType::InvalidUser)
gc->score()->undo(new ChangeEventList(gc, el));
else if (gc->playEventType() == PlayEventType::Auto) {
for (int ii = 0; ii < int(nn); ++ii)
gc->notes()[ii]->setPlayEvents(el[ii]);
}
on += graceDuration1;
}
}
}
//---------------------------------------------------------
// createPlayEvents
// create default play events
//---------------------------------------------------------
void Score::createPlayEvents(Chord* chord)
{
int gateTime = 100;
int tick = chord->tick();
Slur* slur = 0;
for (auto sp : _spanner.map()) {
if (sp.second->type() != ElementType::SLUR || sp.second->staffIdx() != chord->staffIdx())
continue;
Slur* s = toSlur(sp.second);
if (tick >= s->tick() && tick < s->tick2()) {
slur = s;
break;
}
}
// gateTime is 100% for slured notes
if (!slur) {
Instrument* instr = chord->part()->instrument(tick);
instr->updateGateTime(&gateTime, 0, "");
}
int ontime = 0;
int trailtime = 0;
createGraceNotesPlayEvents(tick, chord, ontime, trailtime); // ontime and trailtime are modified by this call depending on grace notes before and after
SwingParameters st = chord->staff()->swing(tick);
int unit = st.swingUnit;
int ratio = st.swingRatio;
// Check if swing needs to be applied
if (unit && !chord->tuplet()) {
swingAdjustParams(chord, gateTime, ontime, unit, ratio);
}
//
// render normal (and articulated) chords
//
QList<NoteEventList> el = renderChord(chord, gateTime, ontime, trailtime);
if (chord->playEventType() == PlayEventType::InvalidUser) {
chord->score()->undo(new ChangeEventList(chord, el));
}
else if (chord->playEventType() == PlayEventType::Auto) {
int n = int(chord->notes().size());
for (int i = 0; i < n; ++i)
chord->notes()[i]->setPlayEvents(el[i]);
}
// dont change event list if type is PlayEventType::User
}
void Score::createPlayEvents()
{
int etrack = nstaves() * VOICES;
for (int track = 0; track < etrack; ++track) {
for (Measure* m = firstMeasure(); m; m = m->nextMeasure()) {
// skip linked staves, except primary
if (!m->score()->staff(track / VOICES)->primaryStaff())
continue;
const SegmentType st = SegmentType::ChordRest;
for (Segment* seg = m->first(st); seg; seg = seg->next(st)) {
Element* e = seg->element(track);
if (e == 0 || !e->isChord())
continue;
createPlayEvents(toChord(e));
}
}
}
}
//---------------------------------------------------------
// renderMetronome
//---------------------------------------------------------
void Score::renderMetronome(EventMap* events, Measure* m, int tickOffset)
{
int msrTick = m->tick();
qreal tempo = tempomap()->tempo(msrTick);
TimeSigFrac timeSig = sigmap()->timesig(msrTick).nominal();
int clickTicks = timeSig.isBeatedCompound(tempo) ? timeSig.beatTicks() : timeSig.dUnitTicks();
int endTick = m->endTick();
int rtick;
if (m->isAnacrusis()) {
int rem = m->ticks() % clickTicks;
msrTick += rem;
rtick = rem + timeSig.ticksPerMeasure() - m->ticks();
}
else
rtick = 0;
for (int tick = msrTick; tick < endTick; tick += clickTicks, rtick+=clickTicks)
events->insert(std::pair<int,NPlayEvent>(tick + tickOffset, NPlayEvent(timeSig.rtick2beatType(rtick))));
}
//---------------------------------------------------------
// renderMidi
// export score to event list
//---------------------------------------------------------
void Score::renderMidi(EventMap* events)
{
renderMidi(events, true, MScore::playRepeats);
}
void Score::renderMidi(EventMap* events, bool metronome, bool expandRepeats)
{
updateSwing();
updateCapo();
createPlayEvents();
updateRepeatList(expandRepeats);
masterScore()->updateChannel();
updateVelo();
// create note & other events
for (Staff* part : _staves)
renderStaff(events, part);
events->fixupMIDI();
// create sustain pedal events
renderSpanners(events);
if (!metronome)
return;
// add metronome ticks
for (const RepeatSegment* rs : *repeatList()) {
int startTick = rs->tick;
int endTick = startTick + rs->len();
int tickOffset = rs->utick - rs->tick;
//
// add metronome tick events
//
for (Measure* m = tick2measure(startTick); m; m = m->nextMeasure()) {
renderMetronome(events, m, tickOffset);
if (m->tick() + m->ticks() >= endTick)
break;
}
}
}
}