
Python Package
Metadata Management

Basic Databases

by Nguyễn Gia Phong, Nguyễn Quốc Thông,

Nguyễn Văn Tùng and Trần Minh Vương

July 7, 2020

Contents
1 Introduction 2

1.1 Brief Description . 2
1.2 Authors and Credits . 2

2 User Requirements 3

3 Data Definition 3
3.1 Entity Relationship Diagram 3
3.2 Database Schema . 5

3.2.1 releases . 5
3.2.2 keywords . 5
3.2.3 contact . 5
3.2.4 information . 5
3.2.5 trove . 6
3.2.6 classifiers . 6
3.2.7 Distribution . 6

4 Data Query 6
4.1 Project Listing . 6
4.2 Project Releases . 6
4.3 Users . 6
4.4 Release URLs . 6
4.5 Release Data . 6
4.6 Classifiers . 7

5 Conclusion 7

6 References 7

1

1 Introduction

1.1 Brief Description
In traditional Unix-like operating systems like GNU/Linux distributions and
BSD-based OSes, package managers tries to synchronize the packages meta-
data (such as available versions and dependencies) with that of central repos-
itories. While this proves to be reliable and efficient, language-specific pack-
age managers do not usually have such synchronized databases, since they
focus on development libraries which have more flexible contraints.

Within the Python packaging ecosystem, this is the case, where package
managers like pip needs to fetch metadata of each package to be installed to
find out dependencies and other information. This turns out to have heavy
performance penalty on the dependency resolution process alone, which is
already a NP-hard problem. This project explores ways to store these meta-
data in an efficient in a database, to be used in practice either locally or in
a local/regional network, to avoid Python package managers from having to
fetch (and potentially build) entire packages just to find out if it conflicts
with others.

1.2 Authors and Credits
The work has been undertaken by group number 8, whose members are listed
in the following table.

Full name Student ID
Nguyễn Gia Phong BI9-184

Nguyễn Quốc Thông BI9-214
Nguyễn Văn Tùng BI9-229
Trần Minh Vương BI9-239

This report is licensed under a CC BY-SA 4.0 license, while the source
code is available on GitHub∗ under AGPLv3+.

We would like to express our special thanks to Dr. Nguyễn Hoàng Hà,
whose lectures gave us basic understanding on the key principles of relational
databases. In addition, we also recieved a lot of help from the Python pack-
aging community over #pypa on Freenode on understanding the structure
of the metadata as well as finding a way to fetch these data from package
indices.

∗https://github.com/McSinyx/cheese-shop

2

https://github.com/McSinyx/cheese-shop

2 User Requirements
This project aims to provide a database for metadata queries and Python
packages exploration. We try to replicate the PyPI’s XML-RPC API [1],
which supports queris similar to the following:

• list_projects(): Retrieve a list of registered project names.

• project_releases(project): Retrieve a list of releases for the given
project, ordered by version.

• project_release_latest(): Retrieve the latest release of the given
project.

• belong_to(name): Retrieve a list of projects whose author is name.

• browse(classifier): Retrieve a list of (project, version) of all re-
leases classified with all of the given classifier.

• release_data(project, version): Retrieve the following metadata
matching the given release: project, version, homepage, author, au-
thor’s email, summary, license, keywords, classifiers and dependencies

• search_name(pattern): Retrieve a list of (project, version, summary)
where the project name matches the pattern.

• search_summary(pattern): Retrieve a list of (project, version, summary)
where the summary matches the pattern.

3 Data Definition

3.1 Entity Relationship Diagram
The entity relationship diagram represents the relationship between each of
its entity set of data extracted from projects:

• Author(Releases-Contact: Many-One): Within each release, there could
be one author, due to data extraction method doesn’t support multi-
author. Yet an author could have multiple releases under per name.

• Require(Releases-Dependencies: Many-Many): Every release would re-
quire a number of dependencies, and many dependencies can each be
used by multiple releases.

3

• Classify(Releases-Trove: Many-Many): This relationship indicates the
relationship between trove classifier and each releases, with many re-
lease could be classified under one trove classifier, and a release could
be classified by many classifiers.

• Contain(Releases-Keyword: Many-Many): A release has many key-
words, and also a keyword can also be in many different releases.

• Release(Releases-Distribution: One-Many): Within each releases, a
number of distribution(s) would be released. A distribution could re-
late to only one releases, but many distributions could be released in
the same releases.

4

3.2 Database Schema

3.2.1 releases

This entity set represents each releases of the project,include the name of
the project and its version in addition to summary,homepage and author’s
email. The ID of each releases is the primary key to represent each one of
them. This release ID is also the foreign key of many primary key in other
entity set.

3.2.2 keywords

Containing both the ID of the releases and the terminology as primary
key,this entity represent the keywords of a specific release.

3.2.3 contact

Containing contact information of the author,including email (primary key)
and name

3.2.4 information

Specific information of each releases. Containing release ID,summary,homepage
and author’s email of the releases.

5

3.2.5 trove

This entity set represent Trove classifiers,identified by its ID.

3.2.6 classifiers

Containing the release ID and Trove classifiers ID,this table has the role of
representing the relationship of trove and releases

3.2.7 Distribution

This entity set represents the distribution of each releases. With its pri-
mary key its release ID along with its filename,each distribution contains
the url,python version and the python version it requires,the distribtions it
requires and its digests (a dictionary) sha256 and md5

4 Data Query

4.1 Project Listing
Retrieve a list of the project names registered with the project index.

4.2 Project Releases
Retrieve a list of the releases registered for the given project name, ordered
by version.

4.3 Users
Retrieve a list of role, user for a given project name.

4.4 Release URLs
Retrieve a list of download URLs for the given release version.

4.5 Release Data
retrieve metadata describing a specific release version.

6

4.6 Classifiers
Retrieve a list of name, version of all releases classified with all of the given
classifiers, classifiers must be a list of Trove classifier strings.

5 Conclusion

6 References
[1] The Python Packaging Authority. PyPI’s XML-RPC methods. Ware-

house documentation.

7

https://warehouse.readthedocs.io/api-reference/xml-rpc

	Introduction
	Brief Description
	Authors and Credits

	User Requirements
	Data Definition
	Entity Relationship Diagram
	Database Schema
	releases
	keywords
	contact
	information
	trove
	classifiers
	Distribution

	Data Query
	Project Listing
	Project Releases
	Users
	Release URLs
	Release Data
	Classifiers

	Conclusion
	References

