
Python Package
Metadata Management

Basic Databases

by Nguyễn Gia Phong, Nguyễn Quốc Thông,

Nguyễn Văn Tùng and Trần Minh Vương

July 7, 2020

Contents
1 Introduction 2

1.1 Brief Description . 2
1.2 Authors and Credits . 2

2 User Requirements 3

3 Data Definition 3
3.1 Entity Relationship Diagram 3
3.2 Database Schema . 4

4 Data Query 6
4.1 Project Listing . 6
4.2 Project Releases . 6
4.3 Project Latest Release . 6
4.4 User’s Project . 6
4.5 Classifiers . 7
4.6 Release Data . 7
4.7 Search project by name . 7
4.8 Search project name by summary 7

5 Conclusion 8

6 References 8

1

1 Introduction

1.1 Brief Description
In traditional Unix-like operating systems like GNU/Linux distributions and
BSD-based OSes, package managers tries to synchronize the packages meta-
data (such as available versions and dependencies) with that of central repos-
itories. While this proves to be reliable and efficient, language-specific pack-
age managers do not usually have such synchronized databases, since they
focus on development libraries which have more flexible contraints.

Within the Python packaging ecosystem, this is the case, where package
managers like pip needs to fetch metadata of each package to be installed to
find out dependencies and other information. This turns out to have heavy
performance penalty on the dependency resolution process alone, which is
already a NP-hard problem. This project explores ways to store these meta-
data in an efficient in a database, to be used in practice either locally or in
a local/regional network, to avoid Python package managers from having to
fetch (and potentially build) entire packages just to find out if it conflicts
with others.

1.2 Authors and Credits
The work has been undertaken by group number 8, whose members are listed
in the following table.

Full name Student ID
Nguyễn Gia Phong BI9-184

Nguyễn Quốc Thông BI9-214
Nguyễn Văn Tùng BI9-229
Trần Minh Vương BI9-239

This report is licensed under a CC BY-SA 4.0 license, while the source
code is available on GitHub∗ under AGPLv3+.

We would like to express our special thanks to Dr. Nguyễn Hoàng Hà,
whose lectures gave us basic understanding on the key principles of relational
databases. In addition, we also recieved a lot of help from the Python pack-
aging community over #pypa on Freenode on understanding the structure
of the metadata as well as finding a way to fetch these data from package
indices.

∗https://github.com/McSinyx/cheese-shop

2

https://github.com/McSinyx/cheese-shop

2 User Requirements
This project aims to provide a database for metadata queries and Python
packages exploration. We try to replicate the PyPI’s XML-RPC API [1],
which supports queris similar to the following:

• list_projects(): Retrieve a list of registered project names.

• project_releases(project): Retrieve a list of releases for the given
project, ordered by version.

• project_release_latest(): Retrieve the latest release of the given
project.

• belong_to(name): Retrieve a list of projects whose author is name.

• browse(classifier): Retrieve a list of (project, version) of all re-
leases classified with all of the given classifier.

• release_data(project, version): Retrieve the following metadata
matching the given release: project, version, homepage, author, au-
thor’s email, summary, license, keywords, classifiers and dependencies

• search_name(pattern): Retrieve a list of (project, version, summary)
where the project name matches the pattern.

• search_summary(pattern): Retrieve a list of (project, version, summary)
where the summary matches the pattern.

3 Data Definition

3.1 Entity Relationship Diagram
The entity relationship diagram represents the relationship between each of
its entity set of data extracted from projects:

• Author(Releases-Contact: Many-One): Within each release, there could
be one author, due to data extraction method doesn’t support multi-
author. Yet an author could have multiple releases under per name.

• Require(Releases-Dependencies: Many-Many): Every release would re-
quire a number of dependencies, and many dependencies can each be
used by multiple releases.

3

• Classify(Releases-Trove: Many-Many): This relationship indicates the
relationship between trove classifier and each releases, with many re-
lease could be classified under one trove classifier, and a release could
be classified by many classifiers.

• Contain(Releases-Keyword: Many-Many): A release has many key-
words, and also a keyword can also be in many different releases.

• Release(Releases-Distribution: One-Many): Within each releases, a
number of distribution(s) would be released. A distribution could re-
late to only one releases, but many distributions could be released in
the same releases.

3.2 Database Schema
Based on the entity relationship diagram, we worked out a schema complying
with the third normal form [2].

4

contacts(email, name) Contact information of an author, including per
email as the primary key and per name.

releases(id, project, version, summary, homepage, email) This re-
lation represents each release of a project, including its name, version, sum-
mary, homepage and the email of its author. The ID of each release is the
primary key to represent each one of them. This release ID is also the foreign
key of many primary key in other entity set.

troves(id, classifier) Valid trove classifiers, identified by their ID.

classifiers(release id, trove id) Release ID and corresponding trove clas-
sifiers ID the release is classified by.

keywords(release id, term) Keywords of a specific release. Both the ID
of the release and the keyword are set as primary key.

dependencies(release id, dependency) This relation represents the de-
pendency list of each release, which is a pattern can be matched by a release
of another project.

5

distributions(release id, filename, size, url, dist type, python version,
requires python, sha256, md5) Each distribution (i.e. the file that the
package manager can use to install) and the corresponding url, checksums
and other auxiliary information.

4 Data Query

4.1 Project Listing
Retrieve a list of registered project names

SELECT DISTINCT project FROM releases

4.2 Project Releases
Retrieve a list of releases for the given project name, ordered by version.

SELECT * FROM releases
WHERE project = ’numpy’
ORDER BY version

4.3 Project Latest Release
Retrieve the latest version of the given project.

SELECT *
FROM releases
WHERE project = ’numpy’
ORDER BY version
LIMIT 1

4.4 User’s Project
Retrieve a list of projects whose author is name.

SELECT project
FROM releases
LEFT JOIN contacts
ON releases.email = contacts.email
WHERE contacts.name = ’Travis E. Oliphant et al.’

6

4.5 Classifiers
Retrieve a list of name, version of all releases classified with all the given
classifiers, classifiers must be a list of Trove classifier strings.
SELECT releases.name, releases.version, troves.classifier
FROM releases
JOIN classifier ON releases.id = classifier.release_id
INNER JOIN troves ON classifier.trove_id = troves.id
WHERE troves.classifier = ’Python’

4.6 Release Data
Retrieve metadata describing a specific release.
SELECT rls.project, rls.version, rls.homepage, rls.author,

rls.email, rls.summary, keywords.term,
classiffier.troves.classifier,
dependencies.dependency

FROM releases AS rls
INNER JOIN contacts ON rls.email = contacts.email
RIGHT JOIN (classifier

INNER JOIN troves
ON classifier.trove_id = troves.id)

ON rls.id = classifier.release_id
RIGHT JOIN keywords ON rls.id = keywords.release_id
RIGHT JOIN dependencies ON rls.id = dependencies.release_id
WHERE rls.id = ’1’

4.7 Search project by name
Retrieve project by name SQL pattern
SELECT project, version, summary
FROM releases
WHERE project LIKE ’py%’

4.8 Search project name by summary
Retrieve project by summary SQL pattern
SELECT project, version, summary
FROM releases
WHERE summary LIKE ’%num%’

7

5 Conclusion

6 References
[1] The Python Packaging Authority. PyPI’s XML-RPC methods. Ware-

house documentation.

[2] Edgar F. Codd. Further Normalization of the Data Base Relational
Model. IBM Research Report RJ909, August 31, 1971.

8

https://warehouse.readthedocs.io/api-reference/xml-rpc

	Introduction
	Brief Description
	Authors and Credits

	User Requirements
	Data Definition
	Entity Relationship Diagram
	Database Schema

	Data Query
	Project Listing
	Project Releases
	Project Latest Release
	User's Project
	Classifiers
	Release Data
	Search project by name
	Search project name by summary

	Conclusion
	References

