1
0
Fork 0

[usth/ICT2.10] Communicate mobile networks

This commit is contained in:
Nguyễn Gia Phong 2020-04-18 16:20:12 +07:00
parent 1c93aaaad8
commit 743056f763
12 changed files with 844 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,405 @@
\documentclass[a4paper,12pt]{article}
\usepackage[english,vietnamese]{babel}
\usepackage{amsmath}
\usepackage{booktabs}
\usepackage{circuitikz}
\usepackage{enumerate}
\usepackage{lmodern}
\usepackage{mathtools}
\usepackage{pgfplots}
\usepackage{siunitx}
\usepackage{textcomp}
\usepackage{tikz}
\usetikzlibrary{arrows,automata}
\newcommand{\N}{\mathcal N}
\newcommand{\ud}{\,\mathrm{d}}
\newcommand{\SIR}{\mathrm{SIR}}
\newcommand{\baud}{\mathrm{Bd}}
\newcommand{\bit}{\mathrm{b}}
\newcommand{\chip}{\mathrm{c}}
\newcommand{\problem}[1]{\noindent\textbf{#1.}}
\title{Mobile Wireless Communication}
\author{Nguyễn Gia Phong}
\date{Spring 2020}
\begin{document}
\maketitle
\setcounter{section}{1}
\section{Characteristics of Radio Environment}
\subsection{Propagation Models}
\problem 1 Consider radio waves propagating by two-slope model over the
distance under \SI{200}{\metre} in Orlando. The average receive power is given by
\[\bar P_R = g(d) P_T G_T G_R\]
Assume the attenna gains are both 1 and apply the inverse variation of power
with distance for two-slope model we get
\begin{align*}
&\bar P_R = d^{-n_1}\left(1 + \frac{d}{d_b}\right)^{-n_2} P_T\\
\iff &P_T = d^{n_1}\left(1 + \frac{d}{d_b}\right)^{n_2}\bar P_R
\end{align*}
Substituting $d_b = \SI{90}{\metre}$, $n_1 = 1.3$ and $n_2 = 3.5$ gives us
\[P_T = d^{1.3}\left(1 + \frac{d}{90}\right)^{3.5}\bar P_R\]
With average power effect experienced, $P_{R,\si{\deci\bel}} = 10\lg P_R
= 10\lg \bar P_R$ and $P_{T,\si{\deci\bel}} = 10\lg P_T$ and thus
\begin{align*}
&P_{T,\si{\deci\bel}} - P_{R,\si{\deci\bel}}
= 13\lg d + 35\lg\frac{d + 90}{90}\\
\iff &P_{R,\si{\deci\bel}} - P_{T,\si{\deci\bel}}
= 35\lg\frac{90}{d + 90} - 13\lg d
\end{align*}
\pagebreak
This is plotted in the figure below
\begin{center}
\begin{tikzpicture}
\begin{axis}[
xlabel={$d$ (\si{\metre})},
ylabel={$P_{R,\si{\deci\bel}}-P_{T,\si{\deci\bel}}$ (\si{\deci\bel})}]
\addplot[domain=0:200]{35*ln(90/(x+90))/ln(10) - 13*ln(x)/ln(10)};
\end{axis}
\end{tikzpicture}
\end{center}
\problem 2 Consider a log-normal shadow fading propagation, the receive power
is given by \[P_R = \sqrt[10]{10^X} g(d) P_T G_T G_R\] where $X$ is a zero-mean
normal random variable with STD $\sigma = \SI{6}{\deci\bel}$.
\begin{enumerate}[(a)]
\item Given $\bar P_R = \SI{1}{\milli\watt}$ at $d = \SI{100}{\metre}$.
\[P_R > \bar P_R \iff \sqrt[10]{10^X} > 1 \iff X > 0\]
Since $X$ is zero-mean and normally distributed, the probability
the received power at a mobile at that distance from the base station
will exceed \SI{1}{\milli\watt} is \SI{50}{\percent}, and so is the
probability it is less than \SI{1}{\milli\watt}.
\item Let $Y = X/\sigma$, $Y \sim \N(0, 1)$
and $F_X(x) = \Phi(X/\sigma) = \Phi(X/6)$.
The probability a mobile has an acceptable received signal at
\SI{10}{\milli\watt} or higher is
\begin{align*}
P\left(P_R \ge 10\bar P_R\right)
&= P\left(\sqrt[10]{10^X} \ge 10\right) = P(X \ge 10)\\
&= 1 - F_X(10) = 1 - \Phi\left(\frac{10}{6}\right) = \SI{4.78}{\percent}
\end{align*}
\item For $\sigma = \SI{10}{\deci\bel}$, $F_X(x) = \Phi(X/10)$.
The probability a mobile has an acceptable received signal at
\SI{10}{\milli\watt} or higher is
\[P\left(P_R \ge 10\bar P_R\right) = 1 - F_X(10)
= 1 - \Phi(1) = \SI{15.87}{\percent}\]
\item If the lower limit for an acceptable received signal is
\SI{6}{\milli\watt}, with $\sigma = 6$, the probability a received signal
is acceptable is
\begin{align*}
P\left(P_R \ge 6\bar P_R\right)
&= P\left(\sqrt[10]{10^X} \ge 6\right)
= P\left(X \ge \lg{6^{10}}\right)\\
&= 1 - F_X\left(\lg{6^{10}}\right)
= 1 - \Phi\left(\frac{\lg{6^{10}}}{6}\right) = \SI{9.73}{\percent}
\end{align*}
With $\sigma = 10$, the probability a received signal is acceptable is
\[P\left(P_R \ge 6\bar P_R\right) = 1 - F_X\left(\lg{6^{10}}\right)
= 1 - \Phi\left(\frac{\lg{6^{10}}}{10}\right) = \SI{21.82}{\percent}\]
\end{enumerate}
\subsection{Random Channel Characterization}
Given $x(t) = e^t * (\Pi(t - 1) - \Pi(t - 3))$ and $h(t) = \delta(t - 1)$,
where $\Pi$ is the rectangular function:
\[\Pi(t) = \begin{dcases}
0, &\text{if }|t| > \frac{1}{2}\\
\frac{1}{2}, &\text{if }|t| = \frac{1}{2}\\
1, &\text{if }|t| < \frac{1}{2}\\
\end{dcases}\]
The convolution sum of $x$ and $h$ is
\begin{align*}
y(t) &= x(t - 1)\\
&= \int_{-\infty}^\infty e^{t-z-1}(\Pi(z-2) - \Pi(z-4))\ud z\\
&= \int_{-\infty}^\infty e^{t-z-1}\Pi(z-2)\ud z
- \int_{-\infty}^\infty e^{t-z-1}\Pi(z-4)\ud z\\
&= \int_{1.5}^{2.5} e^{t-z-1}\ud z
- \int_{3.5}^{4.5} e^{t-z-1}\ud z\\
&= e^{t-1}\left(e^{2.5} - e^{1.5} - e^{4.5} + e^{3.5}\right)
\end{align*}
\subsection{Fading}
\problem 1 Consider several delay spreeds $D$ of \SI{0.5}{\micro\second},
\SI{1}{\micro\second} and \SI{6}{\micro\second}.
\begin{itemize}
\item For IS-95 and cdma2000 which uses the transmission bandwidth of
\SI{1.25}{\mega\hertz}, their symbol interval is \SI{0.8}{\micro\second}.
For the multipath rays to be resolvable, the delay spread must be
greater than this (\SI{1}{\micro\second} and \SI{6}{\micro\second}).
\item For WCDMA which uses the bandwidth of \SI{5}{\mega\hertz},
the symbol interval is \SI{0.2}{\micro\second}, thus symbols
are resolvable in all cases.
\end{itemize}
\problem 2 Indicate the condition for flat fading for each of the following
data rates with transmission in binary form: \SI{8}{kbps}, \SI{40}{kbps},
\SI{100}{kbps}, \SI{6}{Mbps}.
Assume information is transmitted in rectangular waves, the symbol interval
are \SI{125}{\micro\second}, \SI{25}{\micro\second}, \SI{10}{\micro\second}
and \SI{1/6}{\micro\second} respectively. For flat fading to occur,
the delay spread must be significantly less than the symbol interval.
Since no data is provided or found, no conclusion is drawn on which
radio environments would result in flat fading for each of these data rates.
\section{Cellular Concept}
\subsection{Channel Allocation}
\problem 1 Assume the simplest path-loss model of $g(d) = d^{-3}$, calculate
down-link SIR at point P at the corner of a hexagonal cell in a 3-reuse case.
Using to path-loss model, the signal-to-interference ratio
can be approximated from the six first-tier interferers as follows
\[\SIR \approx \frac{1}{\left(\frac{R}{D-R}\right)^3
+ \left(\frac{R}{D+R}\right)^3
+ 4\left(\frac{R}{D}\right)^3}\]
In a 3-reuse case, $D = \sqrt{3C}R = 3R$, and thus
\[\SIR \approx \frac{1}{\left(\frac{R}{2R}\right)^3
+ \left(\frac{R}{4R}\right)^3
+ 4\left(\frac{R}{3R}\right)^3} = \frac{1728}{499}\]
\problem 2 Calculate the worst-case uplink SIR assuming the co-channel
interference is caused only by the closest interfering mobiles in radio cells
a distance $D = 3.46R$ away from the cell. Assume the simplest path-loss model
of $g(d) = d^{-4}$, the signal-to-interference ratio is approximated by
\[\SIR \approx \frac{P_t/R^4}{6P_t/\left(\frac{3D}{4}\right)^4}
= \frac{(3D/4)^4}{6R^4}\]
With $D = 3.46R$ (4-reuse), this becomes
\[\SIR \approx \frac{(3\cdot3.46/4)^4}{6} = 7.56\]
\subsection{Erlang-B Formula and Sizing a Cell}
\problem 1 An user who makes a call attempt every 15 minutes, with each call
lasts an average of 2 minutes, generate the load of 2/15 erlangs.
\problem 2 Consider a mobile system supporting 832 frequency channels
and 7-reuse, there are over 118 channels per cell. With the probility of
call blocking of $P_B \le \SI{1}{\percent}$, the traffic is around 101 erlangs.
Given the average call-holding time $h = \SI{200}{\second}$, the arrival rate
can be calculated to be $\lambda = \SI{0.505}{\mathrm{calls}\per\second}$.
Since an user makes a call every \SI{900}{\second} on average, there are
approximately 454.5 users. As the density of mobile terminals is
\SI{2}{\mathrm{terminals}\per\square{\kilo\metre}}, the area is
\SI{227.25}{\square{\kilo\metre}}, which indicates a cell radius
of $R = \SI{9.35}{\kilo\metre}$, assuming a hexagonal topology.
\section{Modulation Techniques}
\problem 1 Consider communication system operating at the transmission
bandwidth of \SI{1}{\mega\hertz} with the rolloff factor of 0.25.
\begin{itemize}
\item Achievable data traffic rate is
\[R_s = \frac{B}{1 + \beta} = \frac{10^6}{1 + 0.25}
= \SI{800}{\kilo\baud\per\second}\]
\item Delay spread that no ISI occurs is much less than the symbol interval,
which is $T = B^{-1} = \SI{1}{\micro\second}$.
\item Using OFDM with $N = 16$ equally spead carriers, for each subcarrier,
$\Delta f = \SI{62.5}{\kilo\hertz}$, $R_s = \SI{50}{\kilo\baud\per\second}$
and $T = \SI{16}{\micro\second}$.
\item Additionally use 16-QAM, the bit rate is
$R_\bit = \SI{800}{\kilo\bit\per\second}$.
\end{itemize}
\problem 2 Given $B = \SI{1}{\mega\hertz}$, $\beta = 0.25$,
$R_\bit = \SI{4.8}{\mega\bit\per\second}$ and $T = \SI{25}{\micro\second}$.
$R_s = B/(1+\beta) = \SI{0.8}{\mega\baud\per\second}$, thus 64-QAM is used.
For OFDM, $N = R_s/\Delta f = R_\bit T \approx 128$.
\problem 3 Consider a transmission of bandwidth $B = \SI{2}{\mega\hertz}$,
where phase-shift keying and Nyquist rolloff shaping is used.
For rolloff factors of 0.2, 0.25, 0.5, the traffic rates are respectively
\SI{1.67}{\mega\baud\per\second}, \SI{1.6}{\mega\baud\per\second} and
\SI{1.33}{\mega\baud\per\second}.
In order to transmit at a rate of $R_\bit = \SI{6.4}{\mega\bit\per\second}$
when $\beta = 0.25$, 16-QAM should be used.
\problem 4 Given the input sequence 1001111010
and the following QPSK signal pairs
\begin{center}
\begin{tabular}{c c c}
\toprule
Successive Signal & $a_i$ & $b_i$\\
\midrule
0 0 & $-1$ & $-1$\\
0 1 & $-1$ & $+1$\\
1 0 & $+1$ & $-1$\\
1 1 & $+1$ & $+1$\\
\bottomrule
\end{tabular}
\end{center}
Let the carrier frequency be some multiple of 1/T
\begin{tikzpicture}
\begin{axis}[scale only axis, width=0.8\textwidth, height=0.16\textwidth,
xlabel=In-phase Carrier, xtick={0,1,2,3,4,5},
xticklabels={0,T,2T,3T,4T,5T}, ymin=-2, ymax=2, samples=420]
\addplot[domain=0:5]{cos(x*720)};
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{axis}[scale only axis, width=0.8\textwidth, height=0.16\textwidth,
xlabel=Quadrature-phase Carrier, xtick={0,1,2,3,4,5},
xticklabels={0,T,2T,3T,4T,5T}, ymin=-2, ymax=2, samples=420]
\addplot[domain=0:5]{sin(x*720)};
\end{axis}
\end{tikzpicture}
The output QPSK signal would then be
\begin{tikzpicture}
\begin{axis}[scale only axis, width=0.8\textwidth, height=0.16\textwidth,
xlabel=In-phase Component, xtick={0,1,2,3,4,5},
xticklabels={0,T,2T,3T,4T,5T}, ymin=-2, ymax=2, samples=69]
\addplot[domain=0:1]{+cos(x*720)};
\addplot[domain=1:2]{-cos(x*720)};
\addplot[domain=2:3]{+cos(x*720)};
\addplot[domain=3:4]{+cos(x*720)};
\addplot[domain=4:5]{+cos(x*720)};
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{axis}[scale only axis, width=0.8\textwidth, height=0.16\textwidth,
xlabel=Quadrature-phase Component, xtick={0,1,2,3,4,5},
xticklabels={0,T,2T,3T,4T,5T}, ymin=-2, ymax=2, samples=69]
\addplot[domain=0:1]{-sin(x*720)};
\addplot[domain=1:2]{+sin(x*720)};
\addplot[domain=2:3]{+sin(x*720)};
\addplot[domain=3:4]{-sin(x*720)};
\addplot[domain=4:5]{-sin(x*720)};
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{axis}[scale only axis, width=0.8\textwidth, height=0.16\textwidth,
xlabel=Output Signal, xtick={0,1,2,3,4,5},
xticklabels={0,T,2T,3T,4T,5T}, ymin=-2, ymax=2, samples=69]
\addplot[domain=0:1]{+cos(x*720)-sin(x*720)};
\addplot[domain=1:2]{-cos(x*720)+sin(x*720)};
\addplot[domain=2:3]{+cos(x*720)+sin(x*720)};
\addplot[domain=3:4]{+cos(x*720)-sin(x*720)};
\addplot[domain=4:5]{+cos(x*720)-sin(x*720)};
\end{axis}
\end{tikzpicture}
\section{Multiple Access Techniques}
\subsection{Time-Division Multiple Access}
Transmission bit rate is the rate at which the bits are transmitted, while
the user information bit rate is the rate at which per data are transmitted.
In particular, GSM gives each time slot \SI{576.92}{\micro\second},
minus \SI{30.46}{\micro\second} guard time. During this duration,
\SI{148}{\bit} are tramsmitted, thus the transmission bit rate is
$\SI{148}{\bit}/(\SI{576.92}{\micro\second}-\SI{30.46}{\micro\second})
= \SI{270.834}{\kilo\bit\per\second}$. Of the \SI{148}{\bit},
\SI{114}{\bit} are data bits. Furthermore, only one slot per GSM eight-slot
frame and 24 out of 26 frames are used to carry information. Therefore,
the user bit rate is $\SI{114}{\bit}/\SI{4.615}{\milli\second}\cdot 24/26
= \SI{22.8}{\kilo\bit\per\second}$.
Similarly, IS-136 has the transmission bit rate of $\SI{1944}{\bit}
/ \SI{40}{\milli\second} = \SI{48.6}{\kilo\bit\per\second}$ and $\SI{520}{\bit}
/ \SI{40}{\milli\second} = \SI{13}{\kilo\bit\per\second}$.
\subsection{Code-Division Multiple Access}
Consider IS-95 with the bit rate of \SI{9.6}{\kilo\bit\per\second}
and the chip rate of \SI{1.2288}{\mega\chip\per\second}, the speading gain
is 128 chips per bit.
\section{Channel Coding Techniques}
\subsection{Block Coding}
Consider the generator matrix
\[\mathbf G = [\mathbf I_k \mathbf P] = \begin{pmatrix}
1&0&0&0&1&0&1\\
0&1&0&0&1&1&1\\
0&0&1&0&1&1&0\\
0&0&0&1&0&1&1
\end{pmatrix}\]
it is trivial that $n = 7$, $k = 4$ and
\[\mathbf P = \begin{pmatrix}
1&0&1\\
1&1&1\\
1&1&0\\
0&1&1
\end{pmatrix}\]
The parity check matrix is then given by
\[\mathbf H = [\mathbf P^T \mathbf I_{n-k}] = \begin{pmatrix}
1&0&0&1&1&1&0\\
0&1&0&0&1&1&1\\
0&0&1&1&1&0&1
\end{pmatrix}\]
\subsection{Convolutional Coding}
Consider a $K = 3$, rate \textonehalf{} convolution encoder with generators
$g_1 = [101]$ and $g_2 = [011]$.
\begin{center}
\begin{circuitikz}
\draw (0,3) node (input) {input}
(1,3) node[inputarrow] (in) {}
(2,3) node[circ] (m1) {}
(3.5,3) node[twoportshape] (port1) {}
(5,3) node[circ] (m2) {}
(6.5,3) node[twoportshape] (port2) {}
(8,3) node[circ] (m3) {}
(input) -- (in) -- (m1) -- (port1) -- (m2) -- (port2) -- (m3)
(5,5.5) node[xor port, rotate=90] (xor1) {}
(9,6) node[flowarrow] (out1) {}
(10,6) node{$n_1$}
(m1) |- (xor1.in 1)
(m3) |- (xor1.in 2)
(xor1.out) |- (out1)
(6.5,0.5) node[xor port, rotate=270] (xor2) {}
(9,0) node[flowarrow] (out2) {}
(10,0) node{$n_2$}
(m3) |- (xor2.in 1)
(m2) |- (xor2.in 2)
(xor2.out) |- (out2);
\end{circuitikz}
\end{center}
Initialize the encoder with 01, we get the following state diagram
\begin{center}
\begin{tikzpicture}[->,>=latex,shorten >=1pt,auto,node distance=42mm]
\node[initial,state] (01) {01};
\node[state] (00) [above right of=01] {00};
\node[state] (11) [below right of=01] {11};
\node[state] (10) [below right of=00] {10};
\path (00) edge [dashed, loop above] node {00} (00)
edge node {10} (10)
(01) edge [dashed] node {11} (00)
edge [bend left] node {01} (10)
(10) edge [dashed, bend left] node {01} (01)
edge node {11} (11)
(11) edge [dashed] node {10} (01)
edge [loop below] node {00} (11);
\node [below of=10] {%
\begin{tabular}{c c}
\raisebox{2pt}{\tikz{\draw[dashed] (0,0) -- (10mm,0);}} & 0\\
\raisebox{2pt}{\tikz{\draw (0,0) -- (10mm,0);}} & 1
\end{tabular}};
\end{tikzpicture}
\end{center}
Given the input bit sequence of 10011011, the output would be
0101111011100111.
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 181 KiB

BIN
usth/ICT2.10/midterm/BY.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
usth/ICT2.10/midterm/CC.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

BIN
usth/ICT2.10/midterm/SA.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 366 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 313 KiB

Binary file not shown.

View File

@ -0,0 +1,439 @@
\documentclass[pdf]{beamer}
\usepackage[english,vietnamese]{babel}
\usepackage{amsmath}
\usepackage{booktabs}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage{lmodern}
\usepackage{siunitx}
\mode<presentation>{}
\usetheme[hideothersubsections]{Hannover}
\usecolortheme{crane}
\usefonttheme[onlymath]{serif}
\usebackgroundtemplate{
\includegraphics[width=\paperwidth,height=\paperheight]{USTH.jpg}}
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\setcounter{tocdepth}{2}
\title{Satellite Internet}
\author[Group 1]{Nguyễn Như Hiếu---BI9-103\\
Ngô Ngọc Đức Huy---BI9-119\\
Ngô Xuân Minh---BI9-167\\
Nguyễn Gia Phong---BI9-184\\
Nguyễn Hồng Quang---BI9-194\\
Trần Minh Vương---BI9-239}
\institute{University of Science and Technology of Hà Nội}
\date{\selectlanguage{english}\today}
\begin{document}
\frame{\titlepage}
\selectlanguage{english}
\begin{frame}{Contents}
\tableofcontents
\end{frame}
\section{Introduction}
\frame{\tableofcontents[currentsection]}
\begin{frame}{Usage}\Large
\begin{block}{Popular Use}
\begin{itemize}
\item Airplane
\item Cruise Ship
\item Rural Area
\end{itemize}
\end{block}
\begin{block}{Similarity}
All three are either in or travel through area \\
with little to no ground station.
\end{block}
\end{frame}
\begin{frame}{Future Usage}\Large
Provide Internet for the whole world
\begin{block}{Fact}
Over 3.7 Billion people are living without being \\
connected to the internet.
\end{block}
\end{frame}
\section{How It Works}
\frame{\tableofcontents[currentsection]}
\begin{frame}{Components}
\begin{itemize}\Large
\item Geostationary satellite (GEO)
\item Gateway
\item Antenna
\item Others:
\begin{itemize}\Large
\item Modem
\item Centralized NOC
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Components Interaction}
\begin{figure}
\includegraphics[width=0.9\textwidth]{A-GPS.png}
\caption{GPS using A-GPS and GSM network}
\end{figure}
\end{frame}
\begin{frame}{One-way Satellite Network}
\Large
\begin{center}
\includegraphics[width=\textwidth]{one-way-to-earth.png}
\end{center}
\end{frame}
\subsection{1-way from Earth}
\begin{frame}{Components}\large
\begin{itemize}
\item Upstream: Data travelling through telephone modem
\item Downstream: Download through satellite
\end{itemize}
\end{frame}
\begin{frame}{Characteristics}
\begin{itemize}
\item Upload speed: Same as that of the dial-up internet
\item Download speed: Much faster than dial-up internet
\item Latency: Still high,much lower than two way satellite internet
\item You have to tie up the telephone lie when you use the Internet
\end{itemize}
\end{frame}
\subsection{1-way to Earth}
\begin{frame}{One-way to Earth}\Large
\begin{block}{Components}
\begin{itemize}
\item 1 transmitting hub station (usually very large)
\item Multiple receive-only Earth stations
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{Characteristics}\Large
\begin{itemize}
\item Usage: IP multicast-based data,\\
audio and video distribution
\item Interactivity: Little user interface,\\
similar to TV or radio content
\end{itemize}
\end{frame}
\subsection{2-way}
\begin{frame}{Two-way Satellite Network}
\begin{center}
\includegraphics[width=0.8\textwidth]{two-way.png}
\end{center}
\end{frame}
\begin{frame}{Components}\LARGE
\begin{itemize}
\item VSAT: Send and receive data
\item Telecommunication port:\\ Relay data through Internet
\end{itemize}
\end{frame}
\begin{frame}{Condition}\LARGE
Satellite dish must be precisely pointed\\
to avoid interference.
\end{frame}
\begin{frame}{Characteristics}\large
\begin{itemize}
\item Both TDMA and single channel per carrier
\item Mostly Ku-band, but also C-band and Ka-band
\item May utilize telephone modem to reduce latency
\item Home-user's bandwidth based on payment
\item Difficult on moving vehicles
\end{itemize}
\end{frame}
\begin{frame}{Portable Satellite Internet}
\begin{block}{Portable}
\begin{itemize}
\item Use self-contained box pointed in general direction of Satellite
\item Expensive
\end{itemize}
\end{block}
\begin{block}{Satellite phone}
\begin{itemize}
\item Omnidirectional antenna so no alignment needed
\item Low bandwidth so slow to browse net,useful for sending email
\end{itemize}
\end{block}
\end{frame}
\section{Limits and Challenges}
\frame{\tableofcontents[currentsection]}
\subsection{Weather}
\begin{frame}{Heavy rain or Blizzard}\LARGE
\begin{itemize}
\item Fading
\item Accumulating raindrop or snow
\item Wind
\end{itemize}
\end{frame}
\subsection{Latency}
\begin{frame}{Latency}\large
\begin{block}{Satellite altitude}
\begin{itemize}
\item LEO: $<$ \SI{2000}{\kilo\meter}
\item MEO: 2000--\SI{35786}{\kilo\meter}
\item GEO: $>$ \SI{35786}{\kilo\meter}
\end{itemize}
\end{block}
\begin{block}{Result}
GEO has 12 times higher latency than terrestrial base networks.
LEO and MEO have a bit lower delay.
\end{block}
\end{frame}
\subsection{Others}
\begin{frame}{Other Limitations}\Large
\begin{block}{Economically}
Costly: \SI{2}{\mega b\per\second} costs around \$100 a month.
\end{block}
\begin{block}{Environmentally}
Space junk: Only 2000 out of 5000 launched satellites are still in function.
\end{block}
\end{frame}
\section{Mitigations}
\frame{\tableofcontents[currentsection]}
\subsection{Techniques}
\begin{frame}{Fade Mitigation Techniques}\Large
Common functions:
\begin{itemize}
\item \emph{Monitor} link quality by continuous measurements
\item \emph{Predict} short-term behavior and duration\\
of satellite channel's next state
\item \emph{Set} parameters based on previous estimation
\end{itemize}
\end{frame}
\subsubsection{EIRP Control Techniques}
\begin{frame}{Effective Isotropic Radiated Power}\Large
\begin{itemize}
\item EIRP = tranmitted power $\times$ antenna gain
\item EIRP control = adjusting carrier power
or antenna gain to compensate for power losses
\end{itemize}
\end{frame}
\begin{frame}{Power Control System}
\begin{enumerate}\large
\item Open loop: Based on recently received power.
\begin{itemize}\large
\item Non-reliable
\item Responsive
\end{itemize}
\item Closed loop: Based on channel power measurements.
\begin{itemize}\large
\item More comprehensive
\item Large propagation delay
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}{Uplink Power Control}
\begin{itemize}
\item Vary carrier power at the earth station
\item Restoration of side lobes might lead to\\
adjacent \emph{channel} interference\\
\includegraphics[width=0.54\textwidth]{lobes.png}
\item Increase of earth station transmit power may cause
adjacent \emph{satellite} interference\footnote{Satellites
are separated by 2--3 degrees on the geostationary orbit.\\}
\item Effective and preferred by many satellite operators
\end{itemize}
\end{frame}
\begin{frame}{Downlink Power Control}
\begin{itemize}\Large
\item Vary carrier power on-board the satellite
\item Difficult to implement due to\\ satellite size and weight limitations
\item Subject to
\begin{enumerate}\large
\item Adjacent \emph{channel} interference
\item Inter\emph{modulation} interference
\item Inter\emph{system} interference (with terrestrial networks)
\end{enumerate}
\end{itemize}
\end{frame}
\begin{frame}{Spot Beam Shaping}\Large
\begin{itemize}
\item Adjust antenna gain on-board the satellite\\
for a certain geographical region
\item Shape satellite antenna for nearly constant\\
ground receive power, even under rainfall
\item Does \textbf{not} need expensive calculations\\
for attenuation estimation\footnote{SBS compensates
the entire coverage area instead of a single site.\\}
\item Technology and research are WIP
\end{itemize}
\end{frame}
\subsubsection{Adaptive Transmission Techniques}
\begin{frame}{Adaptive Transmission Techniques}
\begin{itemize}\Large
\item Modify processing/transmission\\ manner of signals
\item Resource-shared techniques
\item Categories:
\begin{enumerate}\large
\item Hierarchical coding
\item Hierarchical modulation
\item Data rate reduction
\end{enumerate}
\end{itemize}
\end{frame}
\begin{frame}{Hierarchical Coding}\large
\begin{itemize}
\item Add redundancy to the information signal
\item Trade-off between bandwidth and error probability
\item Different conditions require different coding schemes
\item Prioritize users with less efficient coding schemes, i.e.\\
longer bursts (TDMA) or larger bandwidth (FDMA)
\end{itemize}
\end{frame}
\begin{frame}{Hierarchical Modulation}\large
\begin{itemize}
\item Provide lower quality fallback in case of weak signals
\item Exchange bandwidth efficiency for power requirements
\item Suitable for localized satellite systems, e.g. VSAT
\item Users with lower-order modulation get more resources
\end{itemize}
\end{frame}
\begin{frame}{Data Rate Reduction}\large
\begin{itemize}
\item Reduce information data rate for power gain
\item Distribute satellite resources equally to every user
\item Utilizable where significant information rate reduction\\
is tolerable, e.g.\ video or data but voice transmission
\end{itemize}
\end{frame}
\subsubsection{Diversity Protection Schemes}
\begin{frame}{Diversity Protection Schemes}\large
\begin{itemize}
\item Use multiple channels with different characteristics
\item Oriented against rain fades and highly efficient
\item Performance criteria
\begin{itemize}
\item Diversity gain: difference between site attenuation\\
and joint attenuation, for the same probability level
\item Diversity improvement: ratio of site exceedence probability
to the joint one, for the same attenuation value
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Diversity Techniques}
\begin{tabular}{l p{0.39\textwidth} l p{0.18\textwidth}}
\toprule
\textbf{Diversity} & \textbf{Setup} & \textbf{Efficiency} & \textbf{Cost}\\
\midrule
Site & Connected earth stations & High & High\\
Orbital & Earth station may choose\newline between satellites & Low & Low\\
Frequency & Use lower frequency\newline on higher attenuation
& Adaptive & Terrestrial equipments\\
Time & Repeat faded data & Selective\footnote{\ldots of fade duration} & N/A\\
\bottomrule
\end{tabular}
\end{frame}
\subsection{Comparison}
\begin{frame}{EIRP Control Techniques}
\begin{table}
\begin{tabular}{l l p{0.27\textwidth} p{0.2\textwidth}}
\toprule
\textbf{Tech} & \textbf{Availability}
& \textbf{Max gain} (dB) & \textbf{Cons} \\
\midrule
ULPC & 0.01--10 \% & 5 (VSAT)\newline 15 (hubs)& power range \\
DLPC & 0.01--10 \% & 3 (sat.~TWTA) & power range \\
SBS & 0.01--1 \% & 5 (sat.~antenna) & immature research \\
\bottomrule
\end{tabular}
\caption{Comparisons between EIRP control techniques}
\end{table}
\end{frame}
\begin{frame}{Adaptive Transmission Techniques}
\begin{table}
\begin{tabular}{l l p{0.25\textwidth} p{0.23\textwidth}}
\toprule
\textbf{Tech} & \textbf{Availability}
& \textbf{Max gain} (dB) & \textbf{Cons} \\
\midrule
HC/HM & 0.01--10 \% & 10--15\newline ($E_b/N_0$ range)
& fading in \newline many stations \\
DDR & 0.01--10 \% & 3--9 & low rate\newline intolerant \\
\bottomrule
\end{tabular}
\caption{Comparisons between adaptive transmission techniques}
\end{table}
\end{frame}
\begin{frame}{Diversity Protection Schemes}
\begin{table}
\begin{tabular}{l l p{0.25\textwidth} p{0.24\textwidth}}
\toprule
\textbf{Tech} & \textbf{Availability}
& \textbf{Max gain} (dB) & \textbf{Cons} \\
\midrule
SD & 0.001--0.1 \% & 10--30\newline (conv.~rain) & cost \\
OD & 0.001--1 \% & 3--10 & satellite switch \\
FD & 0.01--10 \% & 30 (Ka--Ku) & cost\\
\bottomrule
\end{tabular}
\caption{Comparisons between diversity protection schemes}
\end{table}
\end{frame}
\section{Conclusion}
\frame{\tableofcontents[currentsection]}
\begin{frame}{Conclusion}\LARGE
\begin{itemize}
\item Have many potentials
\item Challenging
\item Need more research
\end{itemize}
\end{frame}
\begin{frame}{References}
\begin{thebibliography}{69}
\setbeamertemplate{bibliography item}[article]
\bibitem{KuKaV} Athanasios D.~Panagopoulos,\\
Pantelis-Daniel M.~Arapoglou and Panayotis G.~Cottis.\\
``Satellite communications at Ku, Ka, and V bands:
Propagation impairments and mitigation techniques''.\\
\emph{Communications Surveys \& Tutorials}, vol.~6, p.~2--14.\\
IEEE, 2004. doi:10.1109/COMST.2004.5342290.
\setbeamertemplate{bibliography item}[online]
\bibitem{wiki} Satellite Internet access. \emph{Wikipedia}.
\end{thebibliography}
\end{frame}
\begin{frame}{Copying}\Large
\begin{center}
\includegraphics[width=0.2\textwidth]{CC.png}
\includegraphics[width=0.2\textwidth]{BY.png}
\includegraphics[width=0.2\textwidth]{SA.png}
\end{center}
This work is licensed under a
\href{https://creativecommons.org/licenses/by-sa/4.0/}{Creative Commons
Attribution-ShareAlike 4.0 International License}.
\end{frame}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 285 KiB