pip/src/pip/_internal/download.py

1074 lines
38 KiB
Python
Raw Normal View History

from __future__ import absolute_import
import cgi
2013-08-16 14:04:27 +02:00
import email.utils
import json
import logging
import mimetypes
import os
import platform
import re
import shutil
import sys
2019-08-09 02:39:12 +02:00
from contextlib import contextmanager
from pip._vendor import requests, six, urllib3
2017-05-16 12:16:30 +02:00
from pip._vendor.cachecontrol import CacheControlAdapter
from pip._vendor.cachecontrol.cache import BaseCache
2017-05-16 12:16:30 +02:00
from pip._vendor.cachecontrol.caches import FileCache
from pip._vendor.requests.adapters import BaseAdapter, HTTPAdapter
from pip._vendor.requests.models import CONTENT_CHUNK_SIZE, Response
from pip._vendor.requests.structures import CaseInsensitiveDict
from pip._vendor.six import PY2
# NOTE: XMLRPC Client is not annotated in typeshed as on 2017-07-17, which is
# why we ignore the type on this import
from pip._vendor.six.moves import xmlrpc_client # type: ignore
from pip._vendor.six.moves.urllib import parse as urllib_parse
import pip
from pip._internal.exceptions import HashMismatch, InstallationError
2018-05-29 22:14:51 +02:00
from pip._internal.models.index import PyPI
2019-09-20 05:03:55 +02:00
from pip._internal.network.auth import MultiDomainBasicAuth
# Import ssl from compat so the initial import occurs in only one place.
from pip._internal.utils.compat import HAS_TLS, ipaddress, ssl
from pip._internal.utils.encoding import auto_decode
from pip._internal.utils.filesystem import (
adjacent_tmp_file,
check_path_owner,
copy2_fixed,
replace,
)
from pip._internal.utils.glibc import libc_ver
from pip._internal.utils.misc import (
2019-07-22 06:45:27 +02:00
ask_path_exists,
backup_dir,
build_url_from_netloc,
2019-07-22 06:45:27 +02:00
consume,
display_path,
ensure_dir,
2019-07-22 06:45:27 +02:00
format_size,
get_installed_version,
hide_url,
parse_netloc,
path_to_display,
2019-07-22 06:45:27 +02:00
path_to_url,
rmtree,
splitext,
2017-05-16 12:16:30 +02:00
)
from pip._internal.utils.temp_dir import TempDirectory
from pip._internal.utils.typing import MYPY_CHECK_RUNNING
from pip._internal.utils.ui import DownloadProgressProvider
from pip._internal.utils.unpacking import unpack_file
from pip._internal.utils.urls import get_url_scheme, url_to_path
from pip._internal.vcs import vcs
if MYPY_CHECK_RUNNING:
2019-02-22 12:17:07 +01:00
from typing import (
IO, Callable, Iterator, List, Optional, Text, Tuple, Union,
)
from mypy_extensions import TypedDict
2019-02-22 12:17:07 +01:00
from pip._internal.models.link import Link
from pip._internal.utils.hashes import Hashes
from pip._internal.vcs.versioncontrol import VersionControl
SecureOrigin = Tuple[str, str, Optional[Union[int, str]]]
if PY2:
CopytreeKwargs = TypedDict(
'CopytreeKwargs',
{
'ignore': Callable[[str, List[str]], List[str]],
'symlinks': bool,
},
total=False,
)
else:
CopytreeKwargs = TypedDict(
'CopytreeKwargs',
{
'copy_function': Callable[[str, str], None],
'ignore': Callable[[str, List[str]], List[str]],
'ignore_dangling_symlinks': bool,
'symlinks': bool,
},
total=False,
)
2013-08-16 14:04:27 +02:00
__all__ = ['get_file_content',
'path_to_url',
'unpack_vcs_link',
2019-08-15 23:00:55 +02:00
'unpack_file_url', 'is_file_url',
'unpack_http_url', 'unpack_url',
'parse_content_disposition', 'sanitize_content_filename']
logger = logging.getLogger(__name__)
SECURE_ORIGINS = [
# protocol, hostname, port
# Taken from Chrome's list of secure origins (See: http://bit.ly/1qrySKC)
("https", "*", "*"),
("*", "localhost", "*"),
("*", "127.0.0.0/8", "*"),
("*", "::1/128", "*"),
("file", "*", None),
# ssh is always secure.
("ssh", "*", "*"),
] # type: List[SecureOrigin]
# These are environment variables present when running under various
# CI systems. For each variable, some CI systems that use the variable
# are indicated. The collection was chosen so that for each of a number
# of popular systems, at least one of the environment variables is used.
# This list is used to provide some indication of and lower bound for
# CI traffic to PyPI. Thus, it is okay if the list is not comprehensive.
# For more background, see: https://github.com/pypa/pip/issues/5499
2019-02-18 08:03:51 +01:00
CI_ENVIRONMENT_VARIABLES = (
# Azure Pipelines
'BUILD_BUILDID',
# Jenkins
'BUILD_ID',
# AppVeyor, CircleCI, Codeship, Gitlab CI, Shippable, Travis CI
'CI',
# Explicit environment variable.
'PIP_IS_CI',
2019-02-18 08:03:51 +01:00
)
def looks_like_ci():
# type: () -> bool
"""
Return whether it looks like pip is running under CI.
"""
2019-02-18 08:03:51 +01:00
# We don't use the method of checking for a tty (e.g. using isatty())
# because some CI systems mimic a tty (e.g. Travis CI). Thus that
# method doesn't provide definitive information in either direction.
return any(name in os.environ for name in CI_ENVIRONMENT_VARIABLES)
2013-08-16 14:04:27 +02:00
def user_agent():
"""
Return a string representing the user agent.
"""
data = {
"installer": {"name": "pip", "version": pip.__version__},
"python": platform.python_version(),
"implementation": {
"name": platform.python_implementation(),
},
}
if data["implementation"]["name"] == 'CPython':
data["implementation"]["version"] = platform.python_version()
elif data["implementation"]["name"] == 'PyPy':
if sys.pypy_version_info.releaselevel == 'final':
pypy_version_info = sys.pypy_version_info[:3]
else:
pypy_version_info = sys.pypy_version_info
data["implementation"]["version"] = ".".join(
[str(x) for x in pypy_version_info]
)
elif data["implementation"]["name"] == 'Jython':
# Complete Guess
data["implementation"]["version"] = platform.python_version()
elif data["implementation"]["name"] == 'IronPython':
# Complete Guess
data["implementation"]["version"] = platform.python_version()
if sys.platform.startswith("linux"):
from pip._vendor import distro
distro_infos = dict(filter(
lambda x: x[1],
zip(["name", "version", "id"], distro.linux_distribution()),
))
libc = dict(filter(
lambda x: x[1],
zip(["lib", "version"], libc_ver()),
))
if libc:
distro_infos["libc"] = libc
if distro_infos:
data["distro"] = distro_infos
if sys.platform.startswith("darwin") and platform.mac_ver()[0]:
2016-11-06 18:24:43 +01:00
data["distro"] = {"name": "macOS", "version": platform.mac_ver()[0]}
if platform.system():
data.setdefault("system", {})["name"] = platform.system()
if platform.release():
data.setdefault("system", {})["release"] = platform.release()
if platform.machine():
data["cpu"] = platform.machine()
2017-03-18 18:46:23 +01:00
if HAS_TLS:
data["openssl_version"] = ssl.OPENSSL_VERSION
setuptools_version = get_installed_version("setuptools")
if setuptools_version is not None:
data["setuptools_version"] = setuptools_version
# Use None rather than False so as not to give the impression that
# pip knows it is not being run under CI. Rather, it is a null or
# inconclusive result. Also, we include some value rather than no
# value to make it easier to know that the check has been run.
data["ci"] = True if looks_like_ci() else None
user_data = os.environ.get("PIP_USER_AGENT_USER_DATA")
if user_data is not None:
data["user_data"] = user_data
return "{data[installer][name]}/{data[installer][version]} {json}".format(
data=data,
json=json.dumps(data, separators=(",", ":"), sort_keys=True),
)
2013-08-16 14:04:27 +02:00
class LocalFSAdapter(BaseAdapter):
def send(self, request, stream=None, timeout=None, verify=None, cert=None,
proxies=None):
pathname = url_to_path(request.url)
2013-08-16 14:04:27 +02:00
resp = Response()
resp.status_code = 200
resp.url = request.url
2013-08-16 14:04:27 +02:00
try:
stats = os.stat(pathname)
except OSError as exc:
resp.status_code = 404
resp.raw = exc
else:
modified = email.utils.formatdate(stats.st_mtime, usegmt=True)
content_type = mimetypes.guess_type(pathname)[0] or "text/plain"
resp.headers = CaseInsensitiveDict({
"Content-Type": content_type,
"Content-Length": stats.st_size,
"Last-Modified": modified,
})
resp.raw = open(pathname, "rb")
resp.close = resp.raw.close
2013-08-16 14:04:27 +02:00
return resp
def close(self):
pass
2019-08-09 02:39:12 +02:00
@contextmanager
def suppressed_cache_errors():
"""If we can't access the cache then we can just skip caching and process
requests as if caching wasn't enabled.
"""
try:
yield
2019-09-15 23:03:49 +02:00
except (OSError, IOError):
2019-08-09 02:39:12 +02:00
pass
class SafeFileCache(BaseCache):
"""
A file based cache which is safe to use even when the target directory may
not be accessible or writable.
"""
2019-09-15 23:02:16 +02:00
def __init__(self, directory):
# type: (str) -> None
2019-08-09 02:39:12 +02:00
assert directory is not None, "Cache directory must not be None."
super(SafeFileCache, self).__init__()
self.directory = directory
2019-09-15 22:47:00 +02:00
def _get_cache_path(self, name):
# type: (str) -> str
# From cachecontrol.caches.file_cache.FileCache._fn, brought into our
# class for backwards-compatibility and to avoid using a non-public
# method.
hashed = FileCache.encode(name)
parts = list(hashed[:5]) + [hashed]
return os.path.join(self.directory, *parts)
def get(self, key):
# type: (str) -> Optional[bytes]
path = self._get_cache_path(key)
2019-08-09 02:39:12 +02:00
with suppressed_cache_errors():
with open(path, 'rb') as f:
return f.read()
def set(self, key, value):
# type: (str, bytes) -> None
path = self._get_cache_path(key)
2019-08-09 02:39:12 +02:00
with suppressed_cache_errors():
ensure_dir(os.path.dirname(path))
with adjacent_tmp_file(path) as f:
f.write(value)
replace(f.name, path)
def delete(self, key):
# type: (str) -> None
path = self._get_cache_path(key)
2019-08-09 02:39:12 +02:00
with suppressed_cache_errors():
os.remove(path)
class InsecureHTTPAdapter(HTTPAdapter):
def cert_verify(self, conn, url, verify, cert):
conn.cert_reqs = 'CERT_NONE'
conn.ca_certs = None
2013-08-16 14:04:27 +02:00
class PipSession(requests.Session):
timeout = None # type: Optional[int]
2013-08-16 14:04:27 +02:00
def __init__(self, *args, **kwargs):
"""
:param trusted_hosts: Domains not to emit warnings for when not using
HTTPS.
"""
retries = kwargs.pop("retries", 0)
cache = kwargs.pop("cache", None)
trusted_hosts = kwargs.pop("trusted_hosts", []) # type: List[str]
index_urls = kwargs.pop("index_urls", None)
2013-08-16 14:04:27 +02:00
super(PipSession, self).__init__(*args, **kwargs)
# Namespace the attribute with "pip_" just in case to prevent
# possible conflicts with the base class.
self.pip_trusted_origins = [] # type: List[Tuple[str, Optional[int]]]
2013-08-16 14:04:27 +02:00
# Attach our User Agent to the request
self.headers["User-Agent"] = user_agent()
# Attach our Authentication handler to the session
self.auth = MultiDomainBasicAuth(index_urls=index_urls)
2014-12-02 08:55:44 +01:00
# Create our urllib3.Retry instance which will allow us to customize
# how we handle retries.
retries = urllib3.Retry(
# Set the total number of retries that a particular request can
# have.
total=retries,
# A 503 error from PyPI typically means that the Fastly -> Origin
2016-06-10 21:27:07 +02:00
# connection got interrupted in some way. A 503 error in general
2014-12-02 08:55:44 +01:00
# is typically considered a transient error so we'll go ahead and
# retry it.
# A 500 may indicate transient error in Amazon S3
# A 520 or 527 - may indicate transient error in CloudFlare
status_forcelist=[500, 503, 520, 527],
2014-12-02 08:55:44 +01:00
# Add a small amount of back off between failed requests in
# order to prevent hammering the service.
backoff_factor=0.25,
)
2019-08-09 02:39:12 +02:00
# Check to ensure that the directory containing our cache directory
# is owned by the user current executing pip. If it does not exist
# we will check the parent directory until we find one that does exist.
if cache and not check_path_owner(cache):
logger.warning(
"The directory '%s' or its parent directory is not owned by "
"the current user and the cache has been disabled. Please "
"check the permissions and owner of that directory. If "
"executing pip with sudo, you may want sudo's -H flag.",
cache,
)
cache = None
# We want to _only_ cache responses on securely fetched origins. We do
# this because we can't validate the response of an insecurely fetched
# origin, and we don't want someone to be able to poison the cache and
2015-10-20 05:13:48 +02:00
# require manual eviction from the cache to fix it.
if cache:
secure_adapter = CacheControlAdapter(
2019-09-15 23:02:16 +02:00
cache=SafeFileCache(cache),
max_retries=retries,
)
else:
secure_adapter = HTTPAdapter(max_retries=retries)
# Our Insecure HTTPAdapter disables HTTPS validation. It does not
# support caching (see above) so we'll use it for all http:// URLs as
# well as any https:// host that we've marked as ignoring TLS errors
# for.
insecure_adapter = InsecureHTTPAdapter(max_retries=retries)
# Save this for later use in add_insecure_host().
self._insecure_adapter = insecure_adapter
self.mount("https://", secure_adapter)
self.mount("http://", insecure_adapter)
2013-08-16 14:04:27 +02:00
# Enable file:// urls
self.mount("file://", LocalFSAdapter())
for host in trusted_hosts:
self.add_trusted_host(host, suppress_logging=True)
def add_trusted_host(self, host, source=None, suppress_logging=False):
# type: (str, Optional[str], bool) -> None
"""
:param host: It is okay to provide a host that has previously been
added.
:param source: An optional source string, for logging where the host
string came from.
"""
if not suppress_logging:
msg = 'adding trusted host: {!r}'.format(host)
if source is not None:
msg += ' (from {})'.format(source)
logger.info(msg)
host_port = parse_netloc(host)
if host_port not in self.pip_trusted_origins:
self.pip_trusted_origins.append(host_port)
self.mount(build_url_from_netloc(host) + '/', self._insecure_adapter)
if not host_port[1]:
# Mount wildcard ports for the same host.
self.mount(
build_url_from_netloc(host) + ':',
self._insecure_adapter
)
def iter_secure_origins(self):
# type: () -> Iterator[SecureOrigin]
for secure_origin in SECURE_ORIGINS:
yield secure_origin
for host, port in self.pip_trusted_origins:
yield ('*', host, '*' if port is None else port)
def is_secure_origin(self, location):
# type: (Link) -> bool
# Determine if this url used a secure transport mechanism
parsed = urllib_parse.urlparse(str(location))
origin_protocol, origin_host, origin_port = (
parsed.scheme, parsed.hostname, parsed.port,
)
# The protocol to use to see if the protocol matches.
# Don't count the repository type as part of the protocol: in
# cases such as "git+ssh", only use "ssh". (I.e., Only verify against
# the last scheme.)
origin_protocol = origin_protocol.rsplit('+', 1)[-1]
# Determine if our origin is a secure origin by looking through our
# hardcoded list of secure origins, as well as any additional ones
# configured on this PackageFinder instance.
for secure_origin in self.iter_secure_origins():
secure_protocol, secure_host, secure_port = secure_origin
if origin_protocol != secure_protocol and secure_protocol != "*":
continue
try:
# We need to do this decode dance to ensure that we have a
# unicode object, even on Python 2.x.
addr = ipaddress.ip_address(
origin_host
if (
isinstance(origin_host, six.text_type) or
origin_host is None
)
else origin_host.decode("utf8")
)
network = ipaddress.ip_network(
secure_host
if isinstance(secure_host, six.text_type)
# setting secure_host to proper Union[bytes, str]
# creates problems in other places
else secure_host.decode("utf8") # type: ignore
)
except ValueError:
# We don't have both a valid address or a valid network, so
# we'll check this origin against hostnames.
if (origin_host and
origin_host.lower() != secure_host.lower() and
secure_host != "*"):
continue
else:
# We have a valid address and network, so see if the address
# is contained within the network.
if addr not in network:
continue
# Check to see if the port matches.
if (origin_port != secure_port and
secure_port != "*" and
secure_port is not None):
continue
# If we've gotten here, then this origin matches the current
# secure origin and we should return True
return True
# If we've gotten to this point, then the origin isn't secure and we
# will not accept it as a valid location to search. We will however
# log a warning that we are ignoring it.
logger.warning(
"The repository located at %s is not a trusted or secure host and "
"is being ignored. If this repository is available via HTTPS we "
"recommend you use HTTPS instead, otherwise you may silence "
"this warning and allow it anyway with '--trusted-host %s'.",
origin_host,
origin_host,
)
return False
2013-08-16 14:04:27 +02:00
def request(self, method, url, *args, **kwargs):
# Allow setting a default timeout on a session
kwargs.setdefault("timeout", self.timeout)
# Dispatch the actual request
return super(PipSession, self).request(method, url, *args, **kwargs)
2013-08-16 14:04:27 +02:00
def get_file_content(url, comes_from=None, session=None):
# type: (str, Optional[str], Optional[PipSession]) -> Tuple[str, Text]
"""Gets the content of a file; it may be a filename, file: URL, or
2016-11-09 14:25:40 +01:00
http: URL. Returns (location, content). Content is unicode.
:param url: File path or url.
:param comes_from: Origin description of requirements.
:param session: Instance of pip.download.PipSession.
"""
2013-08-16 14:04:27 +02:00
if session is None:
raise TypeError(
"get_file_content() missing 1 required keyword argument: 'session'"
)
2013-08-16 14:04:27 +02:00
scheme = get_url_scheme(url)
2019-07-21 04:51:10 +02:00
if scheme in ['http', 'https']:
# FIXME: catch some errors
resp = session.get(url)
resp.raise_for_status()
return resp.url, resp.text
elif scheme == 'file':
if comes_from and comes_from.startswith('http'):
raise InstallationError(
'Requirements file %s references URL %s, which is local'
% (comes_from, url))
2019-07-21 04:51:10 +02:00
path = url.split(':', 1)[1]
path = path.replace('\\', '/')
match = _url_slash_drive_re.match(path)
if match:
path = match.group(1) + ':' + path.split('|', 1)[1]
path = urllib_parse.unquote(path)
if path.startswith('/'):
path = '/' + path.lstrip('/')
url = path
try:
with open(url, 'rb') as f:
content = auto_decode(f.read())
except IOError as exc:
raise InstallationError(
'Could not open requirements file: %s' % str(exc)
)
return url, content
_url_slash_drive_re = re.compile(r'/*([a-z])\|', re.I)
def unpack_vcs_link(link, location):
# type: (Link, str) -> None
vcs_backend = _get_used_vcs_backend(link)
assert vcs_backend is not None
vcs_backend.unpack(location, url=hide_url(link.url))
def _get_used_vcs_backend(link):
# type: (Link) -> Optional[VersionControl]
"""
Return a VersionControl object or None.
"""
for vcs_backend in vcs.backends:
if link.scheme in vcs_backend.schemes:
return vcs_backend
return None
def is_file_url(link):
# type: (Link) -> bool
return link.url.lower().startswith('file:')
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
def is_dir_url(link):
# type: (Link) -> bool
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
"""Return whether a file:// Link points to a directory.
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
``link`` must not have any other scheme but file://. Call is_file_url()
first.
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
"""
2019-09-20 02:14:10 +02:00
link_path = link.file_path
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
return os.path.isdir(link_path)
2015-02-11 16:23:57 +01:00
def _progress_indicator(iterable, *args, **kwargs):
return iterable
def _download_url(
resp, # type: Response
link, # type: Link
content_file, # type: IO
hashes, # type: Optional[Hashes]
progress_bar # type: str
):
# type: (...) -> None
try:
2013-08-16 14:04:27 +02:00
total_length = int(resp.headers['content-length'])
except (ValueError, KeyError, TypeError):
total_length = 0
cached_resp = getattr(resp, "from_cache", False)
if logger.getEffectiveLevel() > logging.INFO:
show_progress = False
elif cached_resp:
show_progress = False
elif total_length > (40 * 1000):
show_progress = True
elif not total_length:
show_progress = True
else:
show_progress = False
show_url = link.show_url
def resp_read(chunk_size):
try:
# Special case for urllib3.
for chunk in resp.raw.stream(
chunk_size,
2015-09-03 23:38:34 +02:00
# We use decode_content=False here because we don't
# want urllib3 to mess with the raw bytes we get
# from the server. If we decompress inside of
# urllib3 then we cannot verify the checksum
# because the checksum will be of the compressed
# file. This breakage will only occur if the
# server adds a Content-Encoding header, which
# depends on how the server was configured:
# - Some servers will notice that the file isn't a
# compressible file and will leave the file alone
# and with an empty Content-Encoding
# - Some servers will notice that the file is
# already compressed and will leave the file
# alone and will add a Content-Encoding: gzip
# header
# - Some servers won't notice anything at all and
# will take a file that's already been compressed
# and compress it again and set the
# Content-Encoding: gzip header
#
# By setting this not to decode automatically we
# hope to eliminate problems with the second case.
decode_content=False):
yield chunk
except AttributeError:
# Standard file-like object.
while True:
chunk = resp.raw.read(chunk_size)
if not chunk:
break
yield chunk
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
def written_chunks(chunks):
for chunk in chunks:
content_file.write(chunk)
yield chunk
2015-02-11 16:23:57 +01:00
progress_indicator = _progress_indicator
if link.netloc == PyPI.netloc:
url = show_url
else:
url = link.url_without_fragment
if show_progress: # We don't show progress on cached responses
progress_indicator = DownloadProgressProvider(progress_bar,
max=total_length)
if total_length:
2015-09-11 20:41:58 +02:00
logger.info("Downloading %s (%s)", url, format_size(total_length))
else:
logger.info("Downloading %s", url)
elif cached_resp:
logger.info("Using cached %s", url)
else:
logger.info("Downloading %s", url)
downloaded_chunks = written_chunks(
progress_indicator(
resp_read(CONTENT_CHUNK_SIZE),
CONTENT_CHUNK_SIZE
)
)
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
if hashes:
2015-09-25 00:53:39 +02:00
hashes.check_against_chunks(downloaded_chunks)
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
else:
consume(downloaded_chunks)
2015-12-18 19:16:56 +01:00
def _copy_file(filename, location, link):
copy = True
download_location = os.path.join(location, link.filename)
if os.path.exists(download_location):
response = ask_path_exists(
'The file %s exists. (i)gnore, (w)ipe, (b)ackup, (a)abort' %
display_path(download_location), ('i', 'w', 'b', 'a'))
if response == 'i':
copy = False
elif response == 'w':
logger.warning('Deleting %s', display_path(download_location))
os.remove(download_location)
elif response == 'b':
dest_file = backup_dir(download_location)
logger.warning(
'Backing up %s to %s',
display_path(download_location),
display_path(dest_file),
)
shutil.move(download_location, dest_file)
elif response == 'a':
sys.exit(-1)
if copy:
shutil.copy(filename, download_location)
logger.info('Saved %s', display_path(download_location))
def unpack_http_url(
link, # type: Link
location, # type: str
download_dir=None, # type: Optional[str]
session=None, # type: Optional[PipSession]
hashes=None, # type: Optional[Hashes]
progress_bar="on" # type: str
):
# type: (...) -> None
2013-08-16 14:04:27 +02:00
if session is None:
raise TypeError(
"unpack_http_url() missing 1 required keyword argument: 'session'"
)
2013-08-16 14:04:27 +02:00
with TempDirectory(kind="unpack") as temp_dir:
# If a download dir is specified, is the file already downloaded there?
already_downloaded_path = None
if download_dir:
already_downloaded_path = _check_download_dir(link,
download_dir,
hashes)
if already_downloaded_path:
from_path = already_downloaded_path
content_type = mimetypes.guess_type(from_path)[0]
else:
# let's download to a tmp dir
from_path, content_type = _download_http_url(link,
session,
temp_dir.path,
hashes,
progress_bar)
# unpack the archive to the build dir location. even when only
# downloading archives, they have to be unpacked to parse dependencies
unpack_file(from_path, location, content_type)
# a download dir is specified; let's copy the archive there
if download_dir and not already_downloaded_path:
_copy_file(from_path, download_dir, link)
if not already_downloaded_path:
os.unlink(from_path)
def _copy2_ignoring_special_files(src, dest):
# type: (str, str) -> None
"""Copying special files is not supported, but as a convenience to users
we skip errors copying them. This supports tools that may create e.g.
socket files in the project source directory.
"""
try:
copy2_fixed(src, dest)
except shutil.SpecialFileError as e:
# SpecialFileError may be raised due to either the source or
# destination. If the destination was the cause then we would actually
# care, but since the destination directory is deleted prior to
# copy we ignore all of them assuming it is caused by the source.
logger.warning(
"Ignoring special file error '%s' encountered copying %s to %s.",
str(e),
path_to_display(src),
path_to_display(dest),
)
def _copy_source_tree(source, target):
# type: (str, str) -> None
def ignore(d, names):
# Pulling in those directories can potentially be very slow,
# exclude the following directories if they appear in the top
# level dir (and only it).
# See discussion at https://github.com/pypa/pip/pull/6770
return ['.tox', '.nox'] if d == source else []
kwargs = dict(ignore=ignore, symlinks=True) # type: CopytreeKwargs
if not PY2:
# Python 2 does not support copy_function, so we only ignore
# errors on special file copy in Python 3.
kwargs['copy_function'] = _copy2_ignoring_special_files
shutil.copytree(source, target, **kwargs)
def unpack_file_url(
link, # type: Link
location, # type: str
download_dir=None, # type: Optional[str]
hashes=None # type: Optional[Hashes]
):
# type: (...) -> None
2014-05-23 10:39:12 +02:00
"""Unpack link into location.
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
If download_dir is provided and link points to a file, make a copy
of the link file inside download_dir.
"""
2019-09-20 02:14:10 +02:00
link_path = link.file_path
# If it's a url to a local directory
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
if is_dir_url(link):
if os.path.isdir(location):
rmtree(location)
_copy_source_tree(link_path, location)
2014-05-23 10:39:12 +02:00
if download_dir:
logger.info('Link is a directory, ignoring download_dir')
return
2015-10-09 18:27:10 +02:00
# If --require-hashes is off, `hashes` is either empty, the
2016-06-10 21:27:07 +02:00
# link's embedded hash, or MissingHashes; it is required to
2015-10-09 18:27:10 +02:00
# match. If --require-hashes is on, we are satisfied by any
# hash in `hashes` matching: a URL-based or an option-based
# one; no internet-sourced hash will be in `hashes`.
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
if hashes:
hashes.check_against_path(link_path)
# If a download dir is specified, is the file already there and valid?
already_downloaded_path = None
if download_dir:
2015-09-25 00:53:39 +02:00
already_downloaded_path = _check_download_dir(link,
download_dir,
hashes)
if already_downloaded_path:
from_path = already_downloaded_path
else:
from_path = link_path
content_type = mimetypes.guess_type(from_path)[0]
# unpack the archive to the build dir location. even when only downloading
# archives, they have to be unpacked to parse dependencies
unpack_file(from_path, location, content_type)
# a download dir is specified and not already downloaded
if download_dir and not already_downloaded_path:
2015-12-18 19:16:56 +01:00
_copy_file(from_path, download_dir, link)
class PipXmlrpcTransport(xmlrpc_client.Transport):
"""Provide a `xmlrpclib.Transport` implementation via a `PipSession`
object.
"""
def __init__(self, index_url, session, use_datetime=False):
xmlrpc_client.Transport.__init__(self, use_datetime)
index_parts = urllib_parse.urlparse(index_url)
self._scheme = index_parts.scheme
self._session = session
def request(self, host, handler, request_body, verbose=False):
parts = (self._scheme, host, handler, None, None, None)
url = urllib_parse.urlunparse(parts)
try:
headers = {'Content-Type': 'text/xml'}
response = self._session.post(url, data=request_body,
headers=headers, stream=True)
response.raise_for_status()
self.verbose = verbose
return self.parse_response(response.raw)
except requests.HTTPError as exc:
logger.critical(
"HTTP error %s while getting %s",
exc.response.status_code, url,
)
raise
def unpack_url(
link, # type: Link
location, # type: str
download_dir=None, # type: Optional[str]
session=None, # type: Optional[PipSession]
hashes=None, # type: Optional[Hashes]
progress_bar="on" # type: str
):
# type: (...) -> None
2014-05-23 10:39:12 +02:00
"""Unpack link.
If link is a VCS link:
if only_download, export into download_dir and ignore location
else unpack into location
for other types of link:
- unpack into location
- if download_dir, copy the file into download_dir
- if only_download, mark location for deletion
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
:param hashes: A Hashes object, one of whose embedded hashes must match,
2015-10-09 18:27:10 +02:00
or HashMismatch will be raised. If the Hashes is empty, no matches are
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
required, and unhashable types of requirements (like VCS ones, which
would ordinarily raise HashUnsupported) are allowed.
"""
# non-editable vcs urls
2019-08-15 23:00:55 +02:00
if link.is_vcs:
unpack_vcs_link(link, location)
# file urls
elif is_file_url(link):
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
unpack_file_url(link, location, download_dir, hashes=hashes)
# http urls
else:
if session is None:
session = PipSession()
unpack_http_url(
link,
location,
download_dir,
session,
hashes=hashes,
progress_bar=progress_bar
)
def sanitize_content_filename(filename):
# type: (str) -> str
"""
Sanitize the "filename" value from a Content-Disposition header.
"""
return os.path.basename(filename)
def parse_content_disposition(content_disposition, default_filename):
# type: (str, str) -> str
"""
Parse the "filename" value from a Content-Disposition header, and
return the default filename if the result is empty.
"""
_type, params = cgi.parse_header(content_disposition)
filename = params.get('filename')
if filename:
# We need to sanitize the filename to prevent directory traversal
# in case the filename contains ".." path parts.
filename = sanitize_content_filename(filename)
return filename or default_filename
def _download_http_url(
link, # type: Link
session, # type: PipSession
temp_dir, # type: str
hashes, # type: Optional[Hashes]
progress_bar # type: str
):
# type: (...) -> Tuple[str, str]
"""Download link url into temp_dir using provided session"""
target_url = link.url.split('#', 1)[0]
try:
resp = session.get(
target_url,
# We use Accept-Encoding: identity here because requests
# defaults to accepting compressed responses. This breaks in
# a variety of ways depending on how the server is configured.
# - Some servers will notice that the file isn't a compressible
# file and will leave the file alone and with an empty
# Content-Encoding
# - Some servers will notice that the file is already
# compressed and will leave the file alone and will add a
# Content-Encoding: gzip header
# - Some servers won't notice anything at all and will take
# a file that's already been compressed and compress it again
# and set the Content-Encoding: gzip header
# By setting this to request only the identity encoding We're
# hoping to eliminate the third case. Hopefully there does not
# exist a server which when given a file will notice it is
# already compressed and that you're not asking for a
# compressed file and will then decompress it before sending
# because if that's the case I don't think it'll ever be
# possible to make this work.
headers={"Accept-Encoding": "identity"},
stream=True,
)
resp.raise_for_status()
except requests.HTTPError as exc:
logger.critical(
"HTTP error %s while getting %s", exc.response.status_code, link,
)
raise
content_type = resp.headers.get('content-type', '')
filename = link.filename # fallback
# Have a look at the Content-Disposition header for a better guess
content_disposition = resp.headers.get('content-disposition')
if content_disposition:
filename = parse_content_disposition(content_disposition, filename)
ext = splitext(filename)[1] # type: Optional[str]
if not ext:
ext = mimetypes.guess_extension(content_type)
if ext:
filename += ext
if not ext and link.url != resp.url:
ext = os.path.splitext(resp.url)[1]
if ext:
filename += ext
file_path = os.path.join(temp_dir, filename)
with open(file_path, 'wb') as content_file:
_download_url(resp, link, content_file, hashes, progress_bar)
return file_path, content_type
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
def _check_download_dir(link, download_dir, hashes):
# type: (Link, str, Optional[Hashes]) -> Optional[str]
""" Check download_dir for previously downloaded file with correct hash
If a correct file is found return its path else None
"""
download_path = os.path.join(download_dir, link.filename)
if os.path.exists(download_path):
# If already downloaded, does its hash match?
logger.info('File was already downloaded %s', download_path)
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
if hashes:
try:
Add checks against requirements-file-dwelling hashes for most kinds of packages. Close #1175. * Add --require-hashes option. This is handy in deployment scripts to force application authors to hash their requirements. It is also a convenient way to get pip to show computed hashes for a virgin, unhashed requirements file. Eventually, additions to `pip freeze` should fill a superset of this use case. * In --require-hashes mode, at least one hash is required to match for each requirement. * Option-based requirements (--sha256=...) turn on --require-hashes mode implicitly. * Internet-derived URL-based hashes are "necessary but not sufficient": they do not satisfy --require-hashes mode when they match, but they are still used to guard against transmission errors. * Other URL-based requirements (#md5=...) are treated just like flag-based ones, except they don't turn on --require-hashes. * Complain informatively, with the most devastating errors first so you don't chase your tail all day only to run up against a brick wall at the end. This also means we don't complain that a hash is missing, only for the user to find, after fixing it, that we have no idea how to even compute a hash for that type of requirement. * Complain about unpinned requirements when hash-checking mode is on, lest they cause the user surprise later. * Complain about missing hashes. * Complain about requirement types we don't know how to hash (like VCS ones and local dirs). * Have InstallRequirement keep its original Link around (original_link) so we can differentiate between URL hashes from requirements files and ones downloaded from the (untrustworthy) internet. * Remove test_download_hashes, which is obsolete. Similar coverage is provided in test_utils.TestHashes and the various hash cases in test_req.py.
2015-09-09 19:01:53 +02:00
hashes.check_against_path(download_path)
except HashMismatch:
logger.warning(
2015-09-11 20:41:58 +02:00
'Previously-downloaded file %s has bad hash. '
'Re-downloading.',
download_path
)
os.unlink(download_path)
return None
return download_path
return None