
CHEAT SHEETCHEAT SHEET
developers.redhat.com | @RHDevelopers

This cheat sheet covers the basic principles of JavaScript promises and the async/await syntax.

PROMISES

The Promise object represents the eventual completion (or failure) of
an asynchronous operation and its resulting value.
A promise has three states:

Pending: Initial state, neither ful�lled nor rejected.

Ful�lled: The operation was completed successfully.

Rejected: The operation failed.

PromisePromise

Creates a new Promise object. The constructor is primarily used to
wrap functions that do not already support promises.
new Promise((resolve, reject) => {
 setTimeout(() => resolve(), 2000);
});

Promise.prototype.then()Promise.prototype.then()

The .then() method of a JavaScript Promise object can be used to get
the eventual result of the asynchronous operation.
asyncOperation().then(result => console.log(result));

Promise.prototype.catch()Promise.prototype.catch()

The information for the rejection of the promise is available to the
handler supplied in the .catch() method.
asyncOperation().catch(err => console.log(err));

Promise.prototype.�nally()Promise.prototype.�nally()

The handler is called when the promise is settled, whether ful�lled or
rejected.
asyncOperation().finally(() => console.log('async operation ended!'));

Promise.resolve()Promise.resolve()

Returns a promise that resolves to the value given to it.
Promise.resolve(15).then(console.log);

Promise.reject()Promise.reject()

Returns a promise that rejects with an error given to it.
Promise
 .reject(new Error('This is an error!'))
 .catch(console.log);

Promise.all([… promises])Promise.all([… promises])

Wait for all promises to be resolved, or for any to be rejected.
Promise
 .all([promise1, promise2])
 .then(([val1, val2]) => console.log(val1, val2));

Promise.allSettled([… promises])Promise.allSettled([… promises])

Wait until all promises have settled (each may resolve or reject).
Promise
 .allSettled([promise1, promise2])
 .then(results => {
 results.forEach(result => console.log(result.status));
 });

Promise.any([… promises])Promise.any([… promises])

Takes an iterable of Promise objects and as soon as one of the
promises in the iterable ful�lls, returns a single promise that resolves
with the value from that promise.
Promise
 .any([promise1, promise2])
 .then(value => console.log(value));

Promise.race([… promises])Promise.race([… promises])

Wait until any of the promises is resolved or rejected. The di�erence
with .any is that the outer promise can be rejected if an internal
promise gets rejected.
Promise
 .race([promise1, promise2])
 .then(value => console.log(value));

ASYNC / AWAIT
The async… await syntax in ES6 o�ers a new way to write more
readable and scalable code to handle promises.

Async functionsAsync functions

An async function is a function declared with the async keyword, and
the await keyword is permitted within them. Calling an async function
always results in a promise.
async function asyncOperation(...params) {
 // function code
}

JavaScript Promises and async/await Cheat SheetJavaScript Promises and async/await Cheat Sheet

CHEAT SHEETCHEAT SHEET
developers.redhat.com | @RHDevelopers

Async functions return statementsAsync functions return statements

(async () � value)()
Returning a value from an async function will always resolve to this
value.
const getName = async () => "Red Hat";

getName().then(console.log); // output: Red Hat

(async () � throw err)()
Throwing an error from an async function will always reject to that
error.
const throwError = async () => throw Error("Error...");

throwError().reject(console.error);

Await keywordAwait keyword

You can await a promise using the await keyword.
(async () => {
 const data = await asyncOperation();
 console.log(data);
})();

Note: Top-level await is not yet supported. You can only use the
await keyword inside an async function.

Async/Await error handlingAsync/Await error handling

You can use try/catchtry/catch blocks to catch rejections from an async function
(keep in mind there is also the promises API available to catch errors).
const main = async () => {
 try {
 const value = await asyncOperation();
 console.log(value);
 } catch (err) {
 console.log(err);
 }
};

main();

