
Free and Open: A (rough) Primer

Most things open now refer back to open source software and model themselves in
some way on the goals and practices of open source software communities. These, in
turn started as something of a marketing effort for an older cousin, the free software
movement.

This primer is meant for those familiar with daily use of computing devices at home
and especially at work, but who generally are not involved in software development.

I’ve tried to highlight in bold text the take-home message of some sections in case
one is already familiar with most concepts reviewed in that section.

Software

So, we’ll talk about software for just a little bit.

These days, most folk have a pretty good conception of what we usually mean by
software, but to review: We understand that these devices we work with–desktop
computers still for some of us, laptop computers for many of us, phones for most
of us, but also increasingly many things all around us, like cars and speakers and
thermostats and doorbells–can be made to do different things if we install on them
different apps.

These apps–or slightly less colloquially, applications–are what we mean by software.
Sometimes these apps come pre-installed, and sometimes we can apply fixes or
upgrades from the manufacturer. Sometimes we add apps from a store. Mostly, we
download apps and their upgrades through network connections. Occasionally even
now, some are installed through a type of removable medium, usually a keychain
flash drive. Some of us remember older forms of installation media like DVD’s,
CD’s, possibly floppy disks or even tapes.

Whatever its manner of distribution, software is the portable, fungible, mutable part
in any computing device, and make manifest the essential ability of a computing
device to be customized in nearly limitless variety.

The broad and growing spread of computing devices into so many aspects

1



of our lives is one big reason we care how software is made.

Source code

At a place like our university, many of us understand that this software needs to be
made by someone, known variously by the terms programmer or coder or maybe
software engineer or developer. There’s a lot that goes into making software, but at
the most fundamental level, we talk about writing software. We talk about writing
it as we might talk about writing a poem or a play or a novel. Writing software is a
craft that has to be learned and practiced. It can be art. Like other art, its pursuit
can invoke passion in the truest sense of the word, driving those who seek to cross
the gulf between conception and realization variously through cycles of suffering
and exultation, through despair, awe, wonder, delight.

We write software in any of a large and growing number of artificial languages,
programming languages. The form of software that people can read and
write is the source (or more fully, the source code to which open source refers)
written in one of these languages. Once written, source code is transformed in
various ways into something computers can read and act upon. This transformed
version is sometimes referred to as machine code, as an executable, as object code or
often just as a binary or binaries.

Changing the way software works, whether fixing bugs or adding new features,
involves (usually still, but with AI not entirely) humans looking at and modifying this
source code, then once again transforming this now-changed version into machine-
readable binaries. Again, a hint of the comparison to literature persists, in that we
speak of using tools called editors to make these changes to the human-readable
source.

Free and open source software communities

We can talk about software, and we can talk about who makes it. With this
distinction in mind, I’ll note that there are two overlapping but distinct movements,
one whose adherents prefer to talk about free software in which the free refers to
freedom, not price. The other movement refers to open source and prefers to dwell

2



on what they see as several pragmatic benefits of freedom while assiduously avoiding
using the word freedom itself.

Though we might talk about these groups of people using different terms, the
digital artifacts with which they concern themselves are nearly always the same.
So, we tend to see terms like Free and Open Source Software (FOSS) or sometimes
Free/Libre/Open Source Software (FLOSS) as catchall terms including the work of
both groups but, as these things often go, satisfying neither group fully.

Software is made from source code, so we care who can read that source
code better to understand what that software does, and who can change
that source code to change how the software, and thus all our computing
devices, operate.

Free and open source software criteria

Software is free and open if it is available to its users under certain criteria. There is
broad agreement about these criteria, expressed at more or less length by the Open
Source Initiative’s (OSI’s) Open Source Definition (OSD), by the Debian project’s
Free Software Guidelines (DFSG) from which the OSD was first derived, and the
Free Software Foundation and GNU Project’s four freedoms. I usually summarize
these as the four R’s

• Run
• Read
• Revise
• Redistribute

That is to say, free and open source software is only considered free and open if
those who use it 1) can use it for any purpose (run), 2) can inspect or study the
source code to learn how it works (read), 3) can make any changes they want to
the source code in order to improve the software for their own purposes (revise)
and 4) whether they can share either the original, upstream version of the source
code verbatim or their changed, derivative, downstream version to other people
(redistribute).

These criteria have been honed over the past several decades, in the face of various

3



attempts to exploit the work of free and open source software communities by
watering the criteria down. These attempts have driven most who embrace these
principles to be wary of proposed changes. Expect advocates to insist on all of
these criteria and to react coolly, at best, to arguments or suggestions in favor of
exceptions or changes.

In a nutshell, we sometimes use a single term for making practical use of these
freedoms. When one copies the code for a project and then works on that copy as
if that project were one’s own, we say they have exercised the right to make a fork
of that project.

Intellectual property

Some free software activists point out that the term intellectual property (IP) covers
a range of legal concepts that are in many important ways different from each other.
Out of concern that using this one term for disparate areas might (or worse, might
intentionally) cause confusion, they discourage use of the phrase. I use it because
the term has such wide currency, and because most of the concepts involved do
have similarities important to this discussion. Various terms lumped together under
IP include copyright, trademark, patents, and trade secrets.

What ties them together is the idea that they secure, in some fashion and to some
degree, exclusive access to an intangible good, increasingly these days manifested
either partially or wholly in digital form. The law has various ways of granting
exclusive access to IP’s creators. Those creators then have various avenues through
which they can arrange to pass along, either in whole or in part and often for a fee,
that access. These arrangements often take the form either of contracts or licenses.

As an expedient, we’ll use copyright as an example. It is the oldest and clearest
example of how intellectual property laws–and the agreements made under those
laws–shape the rise and spread of free and open approaches.

Intellectual property law sharply restricts, by default, who can access
source code and what they can do with it. So, we care about license
agreements that dramatically ease the path towards working more freely
and in the open.

4



IP comes to software

In a span of not much more than 5 or 6 years roughly from the time of the passage of
the Copyright Act of 1976 to the Apple v. Franklin Supreme Court decision in 1983,
the creative nature of software development came into its due, legally speaking.

In that same period, the Bayh-Dole Act (1980) opened the door for government
contractors to commercialize the results of federally-funded research, setting the
stage particularly for universities to establish technology transfer offices. What’s
more, in 1982, the consent decree breaking up AT&T’s Bell System removed
restraints established in the 1950s that kept AT&T and its software out of the
computing market. These were all huge developments with many implications and
effects, but from them all arises important threads of the free and open source
software movements.

Computing industry changes from the 1960s–both legally with the invalidation
of patents IBM relied upon to dominate the industry, and technically, as the
miniaturization most spectacularly exemplified by the Apollo Guidance Computer
(AGC) made its way into devices affordable by hobbyists–came to fruition in the
late 1970s with the rise of industries around so-called 8-bit computing (not the least
of which were today’s powerhouses Microsoft and Apple).

The ferment from this commercialization of computing disrupted cloisters of early
computing enthusiasts on each coast, at MIT and at Berkeley. These communities
worked on the cutting edge hardware of the day, mainframes and minicomputers,
rather than the small, new, relatively cheap, but relatively underpowered 8-bit
hobbyist computers. Dismay at the creation of an almost Montague versus Capulet
divide at the MIT AI lab over who had access to what source code for what computer
for what purpose led to the establishment of the GNU project and later the Free
Software Foundation (FSF). Participants in the GNU project and FSF in turn
created and supported the use of the GNU General Public Licenses (the GPL
licenses) in their various forms. Also at MIT, a number of projects under the
Project Athena umbrella were first developed and deployed which are still in use, or
whose direct descendants are still in use, including the X11 window system and the
Kerberos trusted-third-party authentication (information security) system. These
other projects tended to carry a free and open source software license often loosely
referred to as the MIT license and were adopted by other universities and research

5



centers.

Meanwhile, at Berkeley, enthusiasts had been given research access to what was
at the time illegal-to-commercialize AT&T Unix source code. In ship-of-Theseus
fashion the University of California, Berkeley hackers proceeded to add and remove
parts to it until not much of what came from AT&T was left.

Free and Open Source software emerges

Once the Bell System breakup removed blockers to commercialization for AT&T
Unix, AT&T did in fact take it to market–often by licensing it to workstation
manufacturers like HP, IBM, and Sun–leading to the so-called Unix Wars of the
1980s and to lawsuits over what people could do with the code that had passed
through Berkeley.

Eventually, the Unix Wars and the lawsuits pretty much died down, all the code
AT&T had supplied had been removed from the collection of software the people
at Berkeley had been working on. The resulting operating system, known as the
Berkeley Software Distributing (BSD), lives on in projects like FreeBSD, NetBSD,
OpenBSD, DragonflyBSD and so on. Like Linux, the BSDs often find use in small
embedded systems.

In parallel to the emergence of BSD as free software, other projects, like the GNU
Project and the Linux kernel project were independently re-implementing pieces
of a Unix-like operating system, released under a family of licenses known as the
GNU General Public Licenses (GPLs).

One big thing added to Unix at Berkeley was networking code. Linux, BSD, and
other free and open source software grew massively with the rise of computer
networking in the mid 1990s due to how flexibly they could be adapted and
deployed. One of the very early Internet-age IPOs was that of web-browser maker
Netscape. Soon, though, Netscape foundered on the shoals of Microsoft’s late but
aggressive entry into browsers, leading in turn to anti-trust cases against Microsoft
and to Netscape throwing the IP shackles off their browser by announcing (1998)
the availability of their browsers source code under free software licensing terms.
Netscape’s move quickly prompted discussion as to how to recruit business to the
benefits of working under software freedom, but without ensnaring the discussions

6



in the ambiguities of the English word free. Christine Peterson came up with the
idea of calling software licensed this way open source software. When the term was
introduced in a meeting shortly after Netscape’s announcement, it was adopted and
began to spread rapidly. The dominant computer companies of today were either
founded, or pivoted towards their current networking-dominant forms, over the next
decade.

Myths

Myth: I’m not a programmer, so I can’t benefit at all from having free
access to source code.

Busted: Consider any other field requiring specialist knowledge and continuing
education. You rely on specialists, but benefit when the specialist has ongoing,
detailed access to knowledge about how things work in their field. You benefit most
of all when you are able to choose amongst specialists to find those who understand
both the problem domain and are able to talk with you in a useful way, to find a fit
between their knowledge of the field and your own needs. Access to source code
does not guarantee, but at least enables, one to make a broader set of choices in
what software to use, how to use it, how to maintain it, and who to seek for help
with it.

Myth: If you find source code on the Internet without a copyright state-
ment or a license, you can use it however you want.

related Myth: You have to register a work for it to be copyrighted.

related Myth: You have to put a copyright statement or symbol on your source
code for it to be copyrighted.

Busted: Creative works are not born free. Copyright adheres to creative works as
soon as they are fixed in a tangible medium. Computer storage devices count as
a tangible medium. So, as soon as you write a creative work, it is automatically
copyrighted. This idea comes from the Berne Convention for the Protection of
Literary and Artistic Works, first established at a meeting in the eponymous Swiss

7



city in the 19th century. The United States did not join the Berne Convention until
a century later, in 1989. This author suspects misconceptions about how copyright
works in the US might still be circulating from when they were true, prior to 1989,
a time still in living memory for some of us.

One only has the freedom to use a work if one has been given a license to use it,
either through a contract or a purchase or as a gift from the free and open source
software development communities.

One can register the copyright on a work, and one can add a copyright statement to
a work to make clear to whom the copyright belongs and the date of the copyright.
These efforts can improve one’s position in the event of a dispute, but they are not
necessary for basic copyright restrictions to come into being.

Myth: Open source is free which means you can’t make money with it.

related Myth: Commercial software is an antonym for free and open source software.

Busted: The biggest tech companies–scratch that, the biggest companies, full
stop–all use free and open source software to make money.

One misunderstanding at the root of this myth is that software is always made to
be sold. This is true for some software, but not all of it.

A great deal of software is written for various forms of in house use and is never
sold, as such, and certainly never as a standalone retail product. Entirely different
considerations apply to the production and use of in-house software than for retail
software. In house software typically performs functions common to a business sector
or to running a business more generally that it is not a competitive differentiator.
Rather than being a revenue center, most software lives in cost centers. Minimizing
the cost of producing, deploying and maintaining that software come to the forefront.
Being able to share the production and maintenance burden with other organizations
becomes a huge win for in-house software. This shared effort is widely facilitated
by free and open approaches.

8



Myth: Free and open source software is poor quality.

Busted: Sturgeon’s Law–90% of everything is crap–applies. A great many one-off
projects, either experiments or toys or abandoned student projects, are increasingly
available given how easy and cheap it has become to share code. This sort of
software always was written, but now more people are writing it, and more of
what people write is visible. The advantage of this great diversity is that it makes
room for experimental or niche applications that might otherwise never have been
developed, or never have found an audience. Not every piece of software has to be
a slickly-produced mass-market best-seller to have value to someone.

Beyond that, though, are best-in-class pieces of software like the Linux kernel, the
Apache and nginx web servers, a vast array of programming languages and tools, and
so much more. Very often the FOSS packages available merely work differently from
their non-free alternatives, even if they work just as well, or represent a different set
of design trade-offs. These differences may read to someone invested in a non-free
tool as deficits even if the free software is cheaper and more flexible to use and
deploy. This bias against the free tool becomes more pronounced when the costs
of negotiating license agreements for the proprietary software are hidden from or
subsidized for the end user (cf, systems of centrally-administered site licenses and
educational loss-leader type discounts).

Further, when a piece of free and open source software has a proprietary counterpart,
users of that proprietary counterpart benefit because the free and open source
software program at the very least functions as a substitution good. These FOSS
programs offer a concrete comparison against which to evaluate their proprietary
counterparts. When the FOSS software is technically better, it offers an aspirational
goal for the proprietary program’s developers and users. Even if the FOSS program is
less functional, it still may provide a real-world tether on the price for getting licenses
for the proprietary program and a floor below which the proprietary program’s
functionality should not drop.

© 2020 by D. Joe Anderson. This document is licensed for use by others under
the Creative Commons Attribution-ShareAlike 4.0 International

9

http://creativecommons.org/licenses/by-sa/4.0/

	Free and Open: A (rough) Primer
	Software
	Source code
	Free and open source software communities
	Free and open source software criteria
	Intellectual property
	IP comes to software
	Free and Open Source software emerges
	Myths
	Myth: I'm not a programmer, so I can't benefit at all from having free access to source code.
	Myth: If you find source code on the Internet without a copyright statement or a license, you can use it however you want.
	Myth: Open source is free which means you can't make money with it.
	Myth: Free and open source software is poor quality.



