Corrects some dates and encoding

Convert's solderpunk's entry to utf-8.
Corrects the date of issue on a couple pages.
Corrects number of pages needed to print booklet (16 -> 8)
This commit is contained in:
mieum 2021-05-05 21:48:44 +09:00
parent b7e14c873d
commit ada150f184
No known key found for this signature in database
GPG Key ID: E7CD329D4C5AE16B
5 changed files with 6 additions and 6 deletions

View File

@ -18,7 +18,7 @@ inhabitants and marauders like you.
ISSUES
^^^^^^
1Issue One - April 2021 issue001/
1Issue One - May 2021 issue001/
i- - - ------------------------------------------------------- - - - false null.host 1

View File

@ -18,7 +18,7 @@ Circumlunar Transmissions is a smolnet zine written and produced by the sundogs
=> distributing.gmi Publish CT on your own smolnet space!
## Issues
=> issue001/ Issue One - April 2021
=> issue001/ Issue One - May 2021
```
- - - ------------------------------------------------------- - - -

View File

@ -25,7 +25,7 @@ That's a pretty inconvenient property for the official definition of a fundament
## Atomic seconds
Fortunately, in the 1950s, atomic clocks were invented which kept time better than any previous mechanism. I'll gloss right over the details, but suffice it to say, we came up with a new way to define the second which involved measuring the properties of caesium atoms instead of looking at things moving through the sky. In 1967, the relatively young International System (or SI, for the French "Système International") of units redefined the second on this basis. The new atomic second was defined such that it had the same length as the astronomical second in use before it, as far as measurements at the time could tell, but it had the added bonus that the length of the second was then fixed and unchanging. Caesium atoms at a given temperature "vibrate" (very loosely speaking) at a frequency which, as far as we can tell, is completely and perfectly stable, and which can be measured very accurately in a sufficiently advanced laboratory.
Fortunately, in the 1950s, atomic clocks were invented which kept time better than any previous mechanism. I'll gloss right over the details, but suffice it to say, we came up with a new way to define the second which involved measuring the properties of caesium atoms instead of looking at things moving through the sky. In 1967, the relatively young International System (or SI, for the French "Système International") of units redefined the second on this basis. The new atomic second was defined such that it had the same length as the astronomical second in use before it, as far as measurements at the time could tell, but it had the added bonus that the length of the second was then fixed and unchanging. Caesium atoms at a given temperature "vibrate" (very loosely speaking) at a frequency which, as far as we can tell, is completely and perfectly stable, and which can be measured very accurately in a sufficiently advanced laboratory.
With the arrival of atomic seconds, a new time scale was also defined: International Atomic Time (or TAI, for the French "Temps Atomique International"). At midnight on January 1st in 1958, TAI and UT were perfectly synchronised. Ever since then, they have slowly but surely drifted apart. The seconds of TAI are of perfectly unchanging length (as measured by averaging hundreds of atomic clocks all over the world), but the seconds of UT fluctuate with the Earth's rotation. The accumulated drift up until now is a little less than 40 seconds, but it will continue to grow, without limit. And while the perfectly uniform seconds of TAI make it the perfect tool for some tasks, this drift apart from UT makes it problematic for others. If you go outside at noon UT in Greenwich, England (or anywhere else at 0 degrees longitude), the sun will *always* be high in the sky. This is true today and it will be true in a thousand years, Because UT is fundamentally linked to the Earth's rotation. TAI, on the other hand, is fundamentally divorced from it. Thousands of years in the future, there will come a day when, according to TAI, the sun rises in Greenwich at midnight.
@ -35,7 +35,7 @@ This isn't just an abstract concern for the distant future. In the late '50s wh
Instead of broadcasting two different time signals for different purposes, which could easily lead to confusion, on January 1st in 1960 the powers that be (back then that was the International Time Bureau, or BIH, for the French "Bureau International de l'Heure", but today the torch has been passed to a combination of the International Bureau of Weights and Measures, or BIPM, for the French "Bureau International des Poids et Mesures" and the International Earth Rotation Service, who have the gall to abbreviate the *English* version of their name and go by IERS) defined yet another time scale, in an attempt to achieve the best of both worlds and make everybody happy. Enter Coordinated Universal Time, or UTC - at last, something normal people have heard of!
The abbreviation UTC is a strange compromise between the English abbreviation CUT and the French abbreviation TUC (for "Temps Universel Coordonné"). This is somewhat fitting, because UTC itself is a strange compromise time scale between UT and TAI. Like TAI, UTC is an atomic time scale. Every second of UTC is exactly as long as any other, using the SI standard second based on caesium atoms, allowing scientists and engineers around the world to calibrate their instruments and reliably measure time intervals and frequencies very precisely. But whereas TAI is destined to drift ever further away from UT, to the chagrin of sailors and astronomers, UTC is kept synchronised closely enough with UT that it allows seafarers to perform celestial navigation with sufficient accuracy for safe ocean passage. This synchronisation is achieved, like all technical compromises, using ugly hacks. It cannot be any other way, as UTC is a stubborn attempt to reconcile two desirable but fundamentally incompatible properties of a timescale: perfectly regular seconds, and synchronisation with a spinning globe whose rate of rotation is unpredictably irregular.
The abbreviation UTC is a strange compromise between the English abbreviation CUT and the French abbreviation TUC (for "Temps Universel Coordonné"). This is somewhat fitting, because UTC itself is a strange compromise time scale between UT and TAI. Like TAI, UTC is an atomic time scale. Every second of UTC is exactly as long as any other, using the SI standard second based on caesium atoms, allowing scientists and engineers around the world to calibrate their instruments and reliably measure time intervals and frequencies very precisely. But whereas TAI is destined to drift ever further away from UT, to the chagrin of sailors and astronomers, UTC is kept synchronised closely enough with UT that it allows seafarers to perform celestial navigation with sufficient accuracy for safe ocean passage. This synchronisation is achieved, like all technical compromises, using ugly hacks. It cannot be any other way, as UTC is a stubborn attempt to reconcile two desirable but fundamentally incompatible properties of a timescale: perfectly regular seconds, and synchronisation with a spinning globe whose rate of rotation is unpredictably irregular.
The precise nature of the ugly hack underlying UTC has changed somewhat since it was first defined, but for almost 50 years now, starting in 1972, the ugly hack of choice has been the leap second. The way it works is this. The difference between UTC and UT - a quantity denoted DUT - is carefully monitored. Any time it looks like that difference is on track to exceed 0.9 seconds, in either direction, UTC is kicked back into alignment by either inserting or removing a single second on one particular day. This makes UTC the *only* time scale where the number of seconds in a day is not absolutely fixed at 86,400 by definition. There almost always *are* 86,400 seconds in a UTC day, but 86,401 and 86,399 are also allowed when necessary to keep the time scale locked to the movement of the sun across the sky.

View File

@ -19,7 +19,7 @@ then you should likely use the long-side version.
All that is needed to print and bind this booklet (besides a
printer) is:
16 Sheets of standard weight paper (~60-80g)
8 Sheets of standard weight paper (~60-80g)
A stapler
A piece of corrugated cardboard or something similar

View File

@ -17,7 +17,7 @@ For standard home printers, the short-side version should be appropriate. If you
All that is needed to print and bind this booklet (besides a printer) is:
* 16 Sheets of standard weight paper (~60-80g)
* 8 Sheets of standard weight paper (~60-80g)
* A stapler
* A piece of corrugated cardboard or something similar