New port: misc/minidnn: Header-only C++ library for deep neural networks

This commit is contained in:
Yuri Victorovich 2020-03-15 18:01:12 +00:00
parent 461c8efd8e
commit 9f2315a106
Notes: svn2git 2021-03-31 03:12:20 +00:00
svn path=/head/; revision=528496
5 changed files with 73 additions and 0 deletions

View file

@ -239,6 +239,7 @@
SUBDIR += metalink-checker
SUBDIR += metalink-tools
SUBDIR += mime-support
SUBDIR += minidnn
SUBDIR += mirmon
SUBDIR += mmdnn
SUBDIR += mmv

24
misc/minidnn/Makefile Normal file
View file

@ -0,0 +1,24 @@
# $FreeBSD$
PORTNAME= minidnn
DISTVERSION= g20191209
CATEGORIES= misc # machine-learning
MAINTAINER= yuri@FreeBSD.org
COMMENT= Header-only C++ library for deep neural networks
LICENSE= MPL20
USES= eigen:3,run
USE_GITHUB= yes
GH_ACCOUNT= yixuan
GH_PROJECT= MiniDNN
GH_TAGNAME= 57f1653c28859c689e5d8706b35d591a00e37a56
NO_BUILD= yes
NO_ARCH= yes
do-install:
@cd ${WRKSRC}/include && ${COPYTREE_SHARE} . ${STAGEDIR}${PREFIX}/include/${PORTNAME}
.include <bsd.port.mk>

3
misc/minidnn/distinfo Normal file
View file

@ -0,0 +1,3 @@
TIMESTAMP = 1584294694
SHA256 (yixuan-MiniDNN-g20191209-57f1653c28859c689e5d8706b35d591a00e37a56_GH0.tar.gz) = e473a9d74de96bfe9a5dcd1f52b9e87cec8e287132f151570cd9a0c6ef01b8ea
SIZE (yixuan-MiniDNN-g20191209-57f1653c28859c689e5d8706b35d591a00e37a56_GH0.tar.gz) = 138014

5
misc/minidnn/pkg-descr Normal file
View file

@ -0,0 +1,5 @@
MiniDNN is a C++ library that implements a number of popular deep neural network
(DNN) models. It has a mini codebase but is fully functional to construct
different types of feed-forward neural networks.
WWW: https://github.com/yixuan/MiniDNN

40
misc/minidnn/pkg-plist Normal file
View file

@ -0,0 +1,40 @@
include/minidnn/Activation/Identity.h
include/minidnn/Activation/Mish.h
include/minidnn/Activation/ReLU.h
include/minidnn/Activation/Sigmoid.h
include/minidnn/Activation/Softmax.h
include/minidnn/Activation/Tanh.h
include/minidnn/Callback.h
include/minidnn/Callback/VerboseCallback.h
include/minidnn/Config.h
include/minidnn/Layer.h
include/minidnn/Layer/Convolutional.h
include/minidnn/Layer/FullyConnected.h
include/minidnn/Layer/MaxPooling.h
include/minidnn/MiniDNN.h
include/minidnn/Network.h
include/minidnn/Optimizer.h
include/minidnn/Optimizer/AdaGrad.h
include/minidnn/Optimizer/Adam.h
include/minidnn/Optimizer/RMSProp.h
include/minidnn/Optimizer/SGD.h
include/minidnn/Output.h
include/minidnn/Output/BinaryClassEntropy.h
include/minidnn/Output/MultiClassEntropy.h
include/minidnn/Output/RegressionMSE.h
include/minidnn/RNG.h
include/minidnn/Utils/Assert.h
include/minidnn/Utils/Convolution.h
include/minidnn/Utils/FindMax.h
include/minidnn/Utils/MiniDNNStream.h
include/minidnn/Utils/Random.h
include/minidnn/Utils/cnpy.h
include/minidnn/external/sparsepp/spp.h
include/minidnn/external/sparsepp/spp_config.h
include/minidnn/external/sparsepp/spp_dlalloc.h
include/minidnn/external/sparsepp/spp_memory.h
include/minidnn/external/sparsepp/spp_smartptr.h
include/minidnn/external/sparsepp/spp_stdint.h
include/minidnn/external/sparsepp/spp_timer.h
include/minidnn/external/sparsepp/spp_traits.h
include/minidnn/external/sparsepp/spp_utils.h