devel/py-numba: Update 0.47.0 -> 0.51.2

PR:		250937
Approved by:	dave@dal.ca (maintainer's timeout 21 days)
This commit is contained in:
Yuri Victorovich 2020-11-28 21:50:34 +00:00
parent a74e5ea10d
commit e50a2634de
Notes: svn2git 2021-03-31 03:12:20 +00:00
svn path=/head/; revision=556532
5 changed files with 23 additions and 23 deletions

View file

@ -2,8 +2,7 @@
# $FreeBSD$
PORTNAME= numba
DISTVERSION= 0.47.0
PORTREVISION= 3
DISTVERSION= 0.51.2
CATEGORIES= devel python
MASTER_SITES= CHEESESHOP
PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}

View file

@ -1,3 +1,3 @@
TIMESTAMP = 1578995274
SHA256 (numba-0.47.0.tar.gz) = c0703df0a0ea2e29fbef7937d9849cc4734253066cb5820c5d6e0851876e3b0a
SIZE (numba-0.47.0.tar.gz) = 1935290
TIMESTAMP = 1604791415
SHA256 (numba-0.51.2.tar.gz) = 16bd59572114adbf5f600ea383880d7b2071ae45477e84a24994e089ea390768
SIZE (numba-0.51.2.tar.gz) = 2059680

View file

@ -0,0 +1,15 @@
--- numba/np/ufunc/workqueue.c.orig 2020-11-07 23:26:52 UTC
+++ numba/np/ufunc/workqueue.c
@@ -27,7 +27,11 @@ race conditions.
/* PThread */
#include <pthread.h>
#include <unistd.h>
-#include <alloca.h>
+#if defined(__FreeBSD__)
+# include <stdlib.h>
+#else
+# include <alloca.h>
+#endif
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

View file

@ -1,14 +0,0 @@
--- numba/npyufunc/workqueue.c.orig 2018-11-14 22:14:35 UTC
+++ numba/npyufunc/workqueue.c
@@ -19,7 +19,11 @@ race condition.
/* PThread */
#include <pthread.h>
#include <unistd.h>
+#if defined(__FreeBSD__)
+#include <stdlib.h>
+#else
#include <alloca.h>
+#endif
#define NUMBA_PTHREAD
#endif

View file

@ -1,7 +1,7 @@
Numba gives you the power to speed up your applications with high performance
functions written directly in Python. With a few annotations, array-oriented
and math-heavy Python code can be just-in-time compiled to native machine
instructions, similar in performance to C, C++ and Fortran, without having to
Numba gives you the power to speed up your applications with high performance
functions written directly in Python. With a few annotations, array-oriented
and math-heavy Python code can be just-in-time compiled to native machine
instructions, similar in performance to C, C++ and Fortran, without having to
switch languages or Python interpreters.
WWW: https://numba.pydata.org/