linux-hardened/ipc/util.c

953 lines
21 KiB
C
Raw Normal View History

/*
* linux/ipc/util.c
* Copyright (C) 1992 Krishna Balasubramanian
*
* Sep 1997 - Call suser() last after "normal" permission checks so we
* get BSD style process accounting right.
* Occurs in several places in the IPC code.
* Chris Evans, <chris@ferret.lmh.ox.ac.uk>
* Nov 1999 - ipc helper functions, unified SMP locking
* Manfred Spraul <manfred@colorfullife.com>
* Oct 2002 - One lock per IPC id. RCU ipc_free for lock-free grow_ary().
* Mingming Cao <cmm@us.ibm.com>
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-02 23:07:33 +02:00
* Mar 2006 - support for audit of ipc object properties
* Dustin Kirkland <dustin.kirkland@us.ibm.com>
* Jun 2006 - namespaces ssupport
* OpenVZ, SWsoft Inc.
* Pavel Emelianov <xemul@openvz.org>
*/
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/init.h>
#include <linux/msg.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/capability.h>
#include <linux/highuid.h>
#include <linux/security.h>
#include <linux/rcupdate.h>
#include <linux/workqueue.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-02 23:07:33 +02:00
#include <linux/audit.h>
#include <linux/nsproxy.h>
#include <linux/rwsem.h>
#include <asm/unistd.h>
#include "util.h"
struct ipc_proc_iface {
const char *path;
const char *header;
int ids;
int (*show)(struct seq_file *, void *);
};
struct ipc_namespace init_ipc_ns = {
.kref = {
.refcount = ATOMIC_INIT(2),
},
};
static struct ipc_namespace *clone_ipc_ns(struct ipc_namespace *old_ns)
{
int err;
struct ipc_namespace *ns;
err = -ENOMEM;
ns = kmalloc(sizeof(struct ipc_namespace), GFP_KERNEL);
if (ns == NULL)
goto err_mem;
err = sem_init_ns(ns);
if (err)
goto err_sem;
err = msg_init_ns(ns);
if (err)
goto err_msg;
err = shm_init_ns(ns);
if (err)
goto err_shm;
kref_init(&ns->kref);
return ns;
err_shm:
msg_exit_ns(ns);
err_msg:
sem_exit_ns(ns);
err_sem:
kfree(ns);
err_mem:
return ERR_PTR(err);
}
struct ipc_namespace *copy_ipcs(unsigned long flags, struct ipc_namespace *ns)
{
struct ipc_namespace *new_ns;
BUG_ON(!ns);
get_ipc_ns(ns);
if (!(flags & CLONE_NEWIPC))
return ns;
new_ns = clone_ipc_ns(ns);
put_ipc_ns(ns);
return new_ns;
}
void free_ipc_ns(struct kref *kref)
{
struct ipc_namespace *ns;
ns = container_of(kref, struct ipc_namespace, kref);
sem_exit_ns(ns);
msg_exit_ns(ns);
shm_exit_ns(ns);
kfree(ns);
}
/**
* ipc_init - initialise IPC subsystem
*
* The various system5 IPC resources (semaphores, messages and shared
* memory) are initialised
*/
static int __init ipc_init(void)
{
sem_init();
msg_init();
shm_init();
return 0;
}
__initcall(ipc_init);
/**
* ipc_init_ids - initialise IPC identifiers
* @ids: Identifier set
*
* Set up the sequence range to use for the ipc identifier range (limited
* below IPCMNI) then initialise the ids idr.
*/
void ipc_init_ids(struct ipc_ids *ids)
{
init_rwsem(&ids->rw_mutex);
ids->in_use = 0;
ids->seq = 0;
{
int seq_limit = INT_MAX/SEQ_MULTIPLIER;
if(seq_limit > USHRT_MAX)
ids->seq_max = USHRT_MAX;
else
ids->seq_max = seq_limit;
}
idr_init(&ids->ipcs_idr);
}
#ifdef CONFIG_PROC_FS
static const struct file_operations sysvipc_proc_fops;
/**
* ipc_init_proc_interface - Create a proc interface for sysipc types using a seq_file interface.
* @path: Path in procfs
* @header: Banner to be printed at the beginning of the file.
* @ids: ipc id table to iterate.
* @show: show routine.
*/
void __init ipc_init_proc_interface(const char *path, const char *header,
int ids, int (*show)(struct seq_file *, void *))
{
struct proc_dir_entry *pde;
struct ipc_proc_iface *iface;
iface = kmalloc(sizeof(*iface), GFP_KERNEL);
if (!iface)
return;
iface->path = path;
iface->header = header;
iface->ids = ids;
iface->show = show;
pde = create_proc_entry(path,
S_IRUGO, /* world readable */
NULL /* parent dir */);
if (pde) {
pde->data = iface;
pde->proc_fops = &sysvipc_proc_fops;
} else {
kfree(iface);
}
}
#endif
/**
* ipc_findkey - find a key in an ipc identifier set
* @ids: Identifier set
* @key: The key to find
*
* Requires ipc_ids.rw_mutex locked.
* Returns the LOCKED pointer to the ipc structure if found or NULL
* if not.
* If key is found ipc points to the owning ipc structure
*/
static struct kern_ipc_perm *ipc_findkey(struct ipc_ids *ids, key_t key)
{
struct kern_ipc_perm *ipc;
int next_id;
int total;
for (total = 0, next_id = 0; total < ids->in_use; next_id++) {
ipc = idr_find(&ids->ipcs_idr, next_id);
if (ipc == NULL)
continue;
if (ipc->key != key) {
total++;
continue;
}
ipc_lock_by_ptr(ipc);
return ipc;
}
return NULL;
}
/**
* ipc_get_maxid - get the last assigned id
* @ids: IPC identifier set
*
* Called with ipc_ids.rw_mutex held.
*/
int ipc_get_maxid(struct ipc_ids *ids)
{
struct kern_ipc_perm *ipc;
int max_id = -1;
int total, id;
if (ids->in_use == 0)
return -1;
if (ids->in_use == IPCMNI)
return IPCMNI - 1;
/* Look for the last assigned id */
total = 0;
for (id = 0; id < IPCMNI && total < ids->in_use; id++) {
ipc = idr_find(&ids->ipcs_idr, id);
if (ipc != NULL) {
max_id = id;
total++;
}
}
return max_id;
}
/**
* ipc_addid - add an IPC identifier
* @ids: IPC identifier set
* @new: new IPC permission set
* @size: limit for the number of used ids
*
* Add an entry 'new' to the IPC ids idr. The permissions object is
* initialised and the first free entry is set up and the id assigned
* is returned. The 'new' entry is returned in a locked state on success.
* On failure the entry is not locked and a negative err-code is returned.
*
* Called with ipc_ids.rw_mutex held as a writer.
*/
int ipc_addid(struct ipc_ids* ids, struct kern_ipc_perm* new, int size)
{
int id, err;
if (size > IPCMNI)
size = IPCMNI;
if (ids->in_use >= size)
return -ENOSPC;
err = idr_get_new(&ids->ipcs_idr, new, &id);
if (err)
return err;
ids->in_use++;
new->cuid = new->uid = current->euid;
new->gid = new->cgid = current->egid;
new->seq = ids->seq++;
if(ids->seq > ids->seq_max)
ids->seq = 0;
spin_lock_init(&new->lock);
new->deleted = 0;
rcu_read_lock();
spin_lock(&new->lock);
return id;
}
/**
* ipcget_new - create a new ipc object
* @ns: namespace
* @ids: IPC identifer set
* @ops: the actual creation routine to call
* @params: its parameters
*
* This routine is called by sys_msgget, sys_semget() and sys_shmget()
* when the key is IPC_PRIVATE.
*/
int ipcget_new(struct ipc_namespace *ns, struct ipc_ids *ids,
struct ipc_ops *ops, struct ipc_params *params)
{
int err;
retry:
err = idr_pre_get(&ids->ipcs_idr, GFP_KERNEL);
if (!err)
return -ENOMEM;
down_write(&ids->rw_mutex);
err = ops->getnew(ns, params);
up_write(&ids->rw_mutex);
if (err == -EAGAIN)
goto retry;
return err;
}
/**
* ipc_check_perms - check security and permissions for an IPC
* @ipcp: ipc permission set
* @ops: the actual security routine to call
* @params: its parameters
*
* This routine is called by sys_msgget(), sys_semget() and sys_shmget()
* when the key is not IPC_PRIVATE and that key already exists in the
* ids IDR.
*
* On success, the IPC id is returned.
*
* It is called with ipc_ids.rw_mutex and ipcp->lock held.
*/
static int ipc_check_perms(struct kern_ipc_perm *ipcp, struct ipc_ops *ops,
struct ipc_params *params)
{
int err;
if (ipcperms(ipcp, params->flg))
err = -EACCES;
else {
err = ops->associate(ipcp, params->flg);
if (!err)
err = ipcp->id;
}
return err;
}
/**
* ipcget_public - get an ipc object or create a new one
* @ns: namespace
* @ids: IPC identifer set
* @ops: the actual creation routine to call
* @params: its parameters
*
* This routine is called by sys_msgget, sys_semget() and sys_shmget()
* when the key is not IPC_PRIVATE.
* It adds a new entry if the key is not found and does some permission
* / security checkings if the key is found.
*
* On success, the ipc id is returned.
*/
int ipcget_public(struct ipc_namespace *ns, struct ipc_ids *ids,
struct ipc_ops *ops, struct ipc_params *params)
{
struct kern_ipc_perm *ipcp;
int flg = params->flg;
int err;
retry:
err = idr_pre_get(&ids->ipcs_idr, GFP_KERNEL);
/*
* Take the lock as a writer since we are potentially going to add
* a new entry + read locks are not "upgradable"
*/
down_write(&ids->rw_mutex);
ipcp = ipc_findkey(ids, params->key);
if (ipcp == NULL) {
/* key not used */
if (!(flg & IPC_CREAT))
err = -ENOENT;
else if (!err)
err = -ENOMEM;
else
err = ops->getnew(ns, params);
} else {
/* ipc object has been locked by ipc_findkey() */
if (flg & IPC_CREAT && flg & IPC_EXCL)
err = -EEXIST;
else {
err = 0;
if (ops->more_checks)
err = ops->more_checks(ipcp, params);
if (!err)
/*
* ipc_check_perms returns the IPC id on
* success
*/
err = ipc_check_perms(ipcp, ops, params);
}
ipc_unlock(ipcp);
}
up_write(&ids->rw_mutex);
if (err == -EAGAIN)
goto retry;
return err;
}
/**
* ipc_rmid - remove an IPC identifier
* @ids: IPC identifier set
* @ipcp: ipc perm structure containing the identifier to remove
*
* ipc_ids.rw_mutex (as a writer) and the spinlock for this ID are held
* before this function is called, and remain locked on the exit.
*/
void ipc_rmid(struct ipc_ids *ids, struct kern_ipc_perm *ipcp)
{
int lid = ipcid_to_idx(ipcp->id);
idr_remove(&ids->ipcs_idr, lid);
ids->in_use--;
ipcp->deleted = 1;
return;
}
/**
* ipc_alloc - allocate ipc space
* @size: size desired
*
* Allocate memory from the appropriate pools and return a pointer to it.
* NULL is returned if the allocation fails
*/
void* ipc_alloc(int size)
{
void* out;
if(size > PAGE_SIZE)
out = vmalloc(size);
else
out = kmalloc(size, GFP_KERNEL);
return out;
}
/**
* ipc_free - free ipc space
* @ptr: pointer returned by ipc_alloc
* @size: size of block
*
* Free a block created with ipc_alloc(). The caller must know the size
* used in the allocation call.
*/
void ipc_free(void* ptr, int size)
{
if(size > PAGE_SIZE)
vfree(ptr);
else
kfree(ptr);
}
/*
* rcu allocations:
* There are three headers that are prepended to the actual allocation:
* - during use: ipc_rcu_hdr.
* - during the rcu grace period: ipc_rcu_grace.
* - [only if vmalloc]: ipc_rcu_sched.
* Their lifetime doesn't overlap, thus the headers share the same memory.
* Unlike a normal union, they are right-aligned, thus some container_of
* forward/backward casting is necessary:
*/
struct ipc_rcu_hdr
{
int refcount;
int is_vmalloc;
void *data[0];
};
struct ipc_rcu_grace
{
struct rcu_head rcu;
/* "void *" makes sure alignment of following data is sane. */
void *data[0];
};
struct ipc_rcu_sched
{
struct work_struct work;
/* "void *" makes sure alignment of following data is sane. */
void *data[0];
};
#define HDRLEN_KMALLOC (sizeof(struct ipc_rcu_grace) > sizeof(struct ipc_rcu_hdr) ? \
sizeof(struct ipc_rcu_grace) : sizeof(struct ipc_rcu_hdr))
#define HDRLEN_VMALLOC (sizeof(struct ipc_rcu_sched) > HDRLEN_KMALLOC ? \
sizeof(struct ipc_rcu_sched) : HDRLEN_KMALLOC)
static inline int rcu_use_vmalloc(int size)
{
/* Too big for a single page? */
if (HDRLEN_KMALLOC + size > PAGE_SIZE)
return 1;
return 0;
}
/**
* ipc_rcu_alloc - allocate ipc and rcu space
* @size: size desired
*
* Allocate memory for the rcu header structure + the object.
* Returns the pointer to the object.
* NULL is returned if the allocation fails.
*/
void* ipc_rcu_alloc(int size)
{
void* out;
/*
* We prepend the allocation with the rcu struct, and
* workqueue if necessary (for vmalloc).
*/
if (rcu_use_vmalloc(size)) {
out = vmalloc(HDRLEN_VMALLOC + size);
if (out) {
out += HDRLEN_VMALLOC;
container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 1;
container_of(out, struct ipc_rcu_hdr, data)->refcount = 1;
}
} else {
out = kmalloc(HDRLEN_KMALLOC + size, GFP_KERNEL);
if (out) {
out += HDRLEN_KMALLOC;
container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 0;
container_of(out, struct ipc_rcu_hdr, data)->refcount = 1;
}
}
return out;
}
void ipc_rcu_getref(void *ptr)
{
container_of(ptr, struct ipc_rcu_hdr, data)->refcount++;
}
2006-11-22 15:55:48 +01:00
static void ipc_do_vfree(struct work_struct *work)
{
vfree(container_of(work, struct ipc_rcu_sched, work));
}
/**
* ipc_schedule_free - free ipc + rcu space
* @head: RCU callback structure for queued work
*
* Since RCU callback function is called in bh,
* we need to defer the vfree to schedule_work().
*/
static void ipc_schedule_free(struct rcu_head *head)
{
struct ipc_rcu_grace *grace;
struct ipc_rcu_sched *sched;
grace = container_of(head, struct ipc_rcu_grace, rcu);
sched = container_of(&(grace->data[0]), struct ipc_rcu_sched,
data[0]);
2006-11-22 15:55:48 +01:00
INIT_WORK(&sched->work, ipc_do_vfree);
schedule_work(&sched->work);
}
/**
* ipc_immediate_free - free ipc + rcu space
* @head: RCU callback structure that contains pointer to be freed
*
* Free from the RCU callback context.
*/
static void ipc_immediate_free(struct rcu_head *head)
{
struct ipc_rcu_grace *free =
container_of(head, struct ipc_rcu_grace, rcu);
kfree(free);
}
void ipc_rcu_putref(void *ptr)
{
if (--container_of(ptr, struct ipc_rcu_hdr, data)->refcount > 0)
return;
if (container_of(ptr, struct ipc_rcu_hdr, data)->is_vmalloc) {
call_rcu(&container_of(ptr, struct ipc_rcu_grace, data)->rcu,
ipc_schedule_free);
} else {
call_rcu(&container_of(ptr, struct ipc_rcu_grace, data)->rcu,
ipc_immediate_free);
}
}
/**
* ipcperms - check IPC permissions
* @ipcp: IPC permission set
* @flag: desired permission set.
*
* Check user, group, other permissions for access
* to ipc resources. return 0 if allowed
*/
int ipcperms (struct kern_ipc_perm *ipcp, short flag)
{ /* flag will most probably be 0 or S_...UGO from <linux/stat.h> */
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-02 23:07:33 +02:00
int requested_mode, granted_mode, err;
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-02 23:07:33 +02:00
if (unlikely((err = audit_ipc_obj(ipcp))))
return err;
requested_mode = (flag >> 6) | (flag >> 3) | flag;
granted_mode = ipcp->mode;
if (current->euid == ipcp->cuid || current->euid == ipcp->uid)
granted_mode >>= 6;
else if (in_group_p(ipcp->cgid) || in_group_p(ipcp->gid))
granted_mode >>= 3;
/* is there some bit set in requested_mode but not in granted_mode? */
if ((requested_mode & ~granted_mode & 0007) &&
!capable(CAP_IPC_OWNER))
return -1;
return security_ipc_permission(ipcp, flag);
}
/*
* Functions to convert between the kern_ipc_perm structure and the
* old/new ipc_perm structures
*/
/**
* kernel_to_ipc64_perm - convert kernel ipc permissions to user
* @in: kernel permissions
* @out: new style IPC permissions
*
* Turn the kernel object @in into a set of permissions descriptions
* for returning to userspace (@out).
*/
void kernel_to_ipc64_perm (struct kern_ipc_perm *in, struct ipc64_perm *out)
{
out->key = in->key;
out->uid = in->uid;
out->gid = in->gid;
out->cuid = in->cuid;
out->cgid = in->cgid;
out->mode = in->mode;
out->seq = in->seq;
}
/**
* ipc64_perm_to_ipc_perm - convert new ipc permissions to old
* @in: new style IPC permissions
* @out: old style IPC permissions
*
* Turn the new style permissions object @in into a compatibility
* object and store it into the @out pointer.
*/
void ipc64_perm_to_ipc_perm (struct ipc64_perm *in, struct ipc_perm *out)
{
out->key = in->key;
SET_UID(out->uid, in->uid);
SET_GID(out->gid, in->gid);
SET_UID(out->cuid, in->cuid);
SET_GID(out->cgid, in->cgid);
out->mode = in->mode;
out->seq = in->seq;
}
/**
* ipc_lock - Lock an ipc structure without rw_mutex held
* @ids: IPC identifier set
* @id: ipc id to look for
*
* Look for an id in the ipc ids idr and lock the associated ipc object.
*
* The ipc object is locked on exit.
*
* This is the routine that should be called when the rw_mutex is not already
* held, i.e. idr tree not protected: it protects the idr tree in read mode
* during the idr_find().
*/
struct kern_ipc_perm *ipc_lock(struct ipc_ids *ids, int id)
{
struct kern_ipc_perm *out;
int lid = ipcid_to_idx(id);
down_read(&ids->rw_mutex);
rcu_read_lock();
out = idr_find(&ids->ipcs_idr, lid);
if (out == NULL) {
rcu_read_unlock();
up_read(&ids->rw_mutex);
return ERR_PTR(-EINVAL);
}
up_read(&ids->rw_mutex);
spin_lock(&out->lock);
/* ipc_rmid() may have already freed the ID while ipc_lock
* was spinning: here verify that the structure is still valid
*/
if (out->deleted) {
spin_unlock(&out->lock);
rcu_read_unlock();
return ERR_PTR(-EINVAL);
}
return out;
}
/**
* ipc_lock_down - Lock an ipc structure with rw_sem held
* @ids: IPC identifier set
* @id: ipc id to look for
*
* Look for an id in the ipc ids idr and lock the associated ipc object.
*
* The ipc object is locked on exit.
*
* This is the routine that should be called when the rw_mutex is already
* held, i.e. idr tree protected.
*/
struct kern_ipc_perm *ipc_lock_down(struct ipc_ids *ids, int id)
{
struct kern_ipc_perm *out;
int lid = ipcid_to_idx(id);
rcu_read_lock();
out = idr_find(&ids->ipcs_idr, lid);
if (out == NULL) {
rcu_read_unlock();
return ERR_PTR(-EINVAL);
}
spin_lock(&out->lock);
/*
* No need to verify that the structure is still valid since the
* rw_mutex is held.
*/
return out;
}
#ifdef __ARCH_WANT_IPC_PARSE_VERSION
/**
* ipc_parse_version - IPC call version
* @cmd: pointer to command
*
* Return IPC_64 for new style IPC and IPC_OLD for old style IPC.
* The @cmd value is turned from an encoding command and version into
* just the command code.
*/
int ipc_parse_version (int *cmd)
{
if (*cmd & IPC_64) {
*cmd ^= IPC_64;
return IPC_64;
} else {
return IPC_OLD;
}
}
#endif /* __ARCH_WANT_IPC_PARSE_VERSION */
#ifdef CONFIG_PROC_FS
struct ipc_proc_iter {
struct ipc_namespace *ns;
struct ipc_proc_iface *iface;
};
/*
* This routine locks the ipc structure found at least at position pos.
*/
struct kern_ipc_perm *sysvipc_find_ipc(struct ipc_ids *ids, loff_t pos,
loff_t *new_pos)
{
struct kern_ipc_perm *ipc;
int total, id;
total = 0;
for (id = 0; id < pos && total < ids->in_use; id++) {
ipc = idr_find(&ids->ipcs_idr, id);
if (ipc != NULL)
total++;
}
if (total >= ids->in_use)
return NULL;
for ( ; pos < IPCMNI; pos++) {
ipc = idr_find(&ids->ipcs_idr, pos);
if (ipc != NULL) {
*new_pos = pos + 1;
ipc_lock_by_ptr(ipc);
return ipc;
}
}
/* Out of range - return NULL to terminate iteration */
return NULL;
}
static void *sysvipc_proc_next(struct seq_file *s, void *it, loff_t *pos)
{
struct ipc_proc_iter *iter = s->private;
struct ipc_proc_iface *iface = iter->iface;
struct kern_ipc_perm *ipc = it;
/* If we had an ipc id locked before, unlock it */
if (ipc && ipc != SEQ_START_TOKEN)
ipc_unlock(ipc);
return sysvipc_find_ipc(iter->ns->ids[iface->ids], *pos, pos);
}
/*
* File positions: pos 0 -> header, pos n -> ipc id = n - 1.
* SeqFile iterator: iterator value locked ipc pointer or SEQ_TOKEN_START.
*/
static void *sysvipc_proc_start(struct seq_file *s, loff_t *pos)
{
struct ipc_proc_iter *iter = s->private;
struct ipc_proc_iface *iface = iter->iface;
struct ipc_ids *ids;
ids = iter->ns->ids[iface->ids];
/*
* Take the lock - this will be released by the corresponding
* call to stop().
*/
down_read(&ids->rw_mutex);
/* pos < 0 is invalid */
if (*pos < 0)
return NULL;
/* pos == 0 means header */
if (*pos == 0)
return SEQ_START_TOKEN;
/* Find the (pos-1)th ipc */
return sysvipc_find_ipc(ids, *pos - 1, pos);
}
static void sysvipc_proc_stop(struct seq_file *s, void *it)
{
struct kern_ipc_perm *ipc = it;
struct ipc_proc_iter *iter = s->private;
struct ipc_proc_iface *iface = iter->iface;
struct ipc_ids *ids;
/* If we had a locked structure, release it */
if (ipc && ipc != SEQ_START_TOKEN)
ipc_unlock(ipc);
ids = iter->ns->ids[iface->ids];
/* Release the lock we took in start() */
up_read(&ids->rw_mutex);
}
static int sysvipc_proc_show(struct seq_file *s, void *it)
{
struct ipc_proc_iter *iter = s->private;
struct ipc_proc_iface *iface = iter->iface;
if (it == SEQ_START_TOKEN)
return seq_puts(s, iface->header);
return iface->show(s, it);
}
static struct seq_operations sysvipc_proc_seqops = {
.start = sysvipc_proc_start,
.stop = sysvipc_proc_stop,
.next = sysvipc_proc_next,
.show = sysvipc_proc_show,
};
static int sysvipc_proc_open(struct inode *inode, struct file *file)
{
int ret;
struct seq_file *seq;
struct ipc_proc_iter *iter;
ret = -ENOMEM;
iter = kmalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
goto out;
ret = seq_open(file, &sysvipc_proc_seqops);
if (ret)
goto out_kfree;
seq = file->private_data;
seq->private = iter;
iter->iface = PDE(inode)->data;
iter->ns = get_ipc_ns(current->nsproxy->ipc_ns);
out:
return ret;
out_kfree:
kfree(iter);
goto out;
}
static int sysvipc_proc_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
struct ipc_proc_iter *iter = seq->private;
put_ipc_ns(iter->ns);
return seq_release_private(inode, file);
}
static const struct file_operations sysvipc_proc_fops = {
.open = sysvipc_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = sysvipc_proc_release,
};
#endif /* CONFIG_PROC_FS */