linux-hardened/drivers/media/video/cafe_ccic.c

2337 lines
57 KiB
C
Raw Normal View History

/*
* A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
* multifunction chip. Currently works with the Omnivision OV7670
* sensor.
*
* The data sheet for this device can be found at:
* http://www.marvell.com/products/pcconn/88ALP01.jsp
*
* Copyright 2006 One Laptop Per Child Association, Inc.
* Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
*
* Written by Jonathan Corbet, corbet@lwn.net.
*
* This file may be distributed under the terms of the GNU General
* Public License, version 2.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/pci.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/videodev2.h>
#include <media/v4l2-common.h>
#include <media/v4l2-chip-ident.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/list.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/debugfs.h>
#include <linux/jiffies.h>
#include <linux/vmalloc.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include "cafe_ccic-regs.h"
#define CAFE_VERSION 0x000002
/*
* Parameters.
*/
MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("Video");
/*
* Internal DMA buffer management. Since the controller cannot do S/G I/O,
* we must have physically contiguous buffers to bring frames into.
* These parameters control how many buffers we use, whether we
* allocate them at load time (better chance of success, but nails down
* memory) or when somebody tries to use the camera (riskier), and,
* for load-time allocation, how big they should be.
*
* The controller can cycle through three buffers. We could use
* more by flipping pointers around, but it probably makes little
* sense.
*/
#define MAX_DMA_BUFS 3
static int alloc_bufs_at_read = 0;
module_param(alloc_bufs_at_read, bool, 0444);
MODULE_PARM_DESC(alloc_bufs_at_read,
"Non-zero value causes DMA buffers to be allocated when the "
"video capture device is read, rather than at module load "
"time. This saves memory, but decreases the chances of "
"successfully getting those buffers.");
static int n_dma_bufs = 3;
module_param(n_dma_bufs, uint, 0644);
MODULE_PARM_DESC(n_dma_bufs,
"The number of DMA buffers to allocate. Can be either two "
"(saves memory, makes timing tighter) or three.");
static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
module_param(dma_buf_size, uint, 0444);
MODULE_PARM_DESC(dma_buf_size,
"The size of the allocated DMA buffers. If actual operating "
"parameters require larger buffers, an attempt to reallocate "
"will be made.");
static int min_buffers = 1;
module_param(min_buffers, uint, 0644);
MODULE_PARM_DESC(min_buffers,
"The minimum number of streaming I/O buffers we are willing "
"to work with.");
static int max_buffers = 10;
module_param(max_buffers, uint, 0644);
MODULE_PARM_DESC(max_buffers,
"The maximum number of streaming I/O buffers an application "
"will be allowed to allocate. These buffers are big and live "
"in vmalloc space.");
static int flip = 0;
module_param(flip, bool, 0444);
MODULE_PARM_DESC(flip,
"If set, the sensor will be instructed to flip the image "
"vertically.");
enum cafe_state {
S_NOTREADY, /* Not yet initialized */
S_IDLE, /* Just hanging around */
S_FLAKED, /* Some sort of problem */
S_SINGLEREAD, /* In read() */
S_SPECREAD, /* Speculative read (for future read()) */
S_STREAMING /* Streaming data */
};
/*
* Tracking of streaming I/O buffers.
*/
struct cafe_sio_buffer {
struct list_head list;
struct v4l2_buffer v4lbuf;
char *buffer; /* Where it lives in kernel space */
int mapcount;
struct cafe_camera *cam;
};
/*
* A description of one of our devices.
* Locking: controlled by s_mutex. Certain fields, however, require
* the dev_lock spinlock; they are marked as such by comments.
* dev_lock is also required for access to device registers.
*/
struct cafe_camera
{
enum cafe_state state;
unsigned long flags; /* Buffer status, mainly (dev_lock) */
int users; /* How many open FDs */
struct file *owner; /* Who has data access (v4l2) */
/*
* Subsystem structures.
*/
struct pci_dev *pdev;
struct video_device v4ldev;
struct i2c_adapter i2c_adapter;
struct i2c_client *sensor;
unsigned char __iomem *regs;
struct list_head dev_list; /* link to other devices */
/* DMA buffers */
unsigned int nbufs; /* How many are alloc'd */
int next_buf; /* Next to consume (dev_lock) */
unsigned int dma_buf_size; /* allocated size */
void *dma_bufs[MAX_DMA_BUFS]; /* Internal buffer addresses */
dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */
unsigned int specframes; /* Unconsumed spec frames (dev_lock) */
unsigned int sequence; /* Frame sequence number */
unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */
/* Streaming buffers */
unsigned int n_sbufs; /* How many we have */
struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */
struct list_head sb_avail; /* Available for data (we own) (dev_lock) */
struct list_head sb_full; /* With data (user space owns) (dev_lock) */
struct tasklet_struct s_tasklet;
/* Current operating parameters */
u32 sensor_type; /* Currently ov7670 only */
struct v4l2_pix_format pix_format;
/* Locks */
struct mutex s_mutex; /* Access to this structure */
spinlock_t dev_lock; /* Access to device */
/* Misc */
wait_queue_head_t smbus_wait; /* Waiting on i2c events */
wait_queue_head_t iowait; /* Waiting on frame data */
#ifdef CONFIG_VIDEO_ADV_DEBUG
struct dentry *dfs_regs;
struct dentry *dfs_cam_regs;
#endif
};
/*
* Status flags. Always manipulated with bit operations.
*/
#define CF_BUF0_VALID 0 /* Buffers valid - first three */
#define CF_BUF1_VALID 1
#define CF_BUF2_VALID 2
#define CF_DMA_ACTIVE 3 /* A frame is incoming */
#define CF_CONFIG_NEEDED 4 /* Must configure hardware */
/*
* Start over with DMA buffers - dev_lock needed.
*/
static void cafe_reset_buffers(struct cafe_camera *cam)
{
int i;
cam->next_buf = -1;
for (i = 0; i < cam->nbufs; i++)
clear_bit(i, &cam->flags);
cam->specframes = 0;
}
static inline int cafe_needs_config(struct cafe_camera *cam)
{
return test_bit(CF_CONFIG_NEEDED, &cam->flags);
}
static void cafe_set_config_needed(struct cafe_camera *cam, int needed)
{
if (needed)
set_bit(CF_CONFIG_NEEDED, &cam->flags);
else
clear_bit(CF_CONFIG_NEEDED, &cam->flags);
}
/*
* Debugging and related.
*/
#define cam_err(cam, fmt, arg...) \
dev_err(&(cam)->pdev->dev, fmt, ##arg);
#define cam_warn(cam, fmt, arg...) \
dev_warn(&(cam)->pdev->dev, fmt, ##arg);
#define cam_dbg(cam, fmt, arg...) \
dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
/* ---------------------------------------------------------------------*/
/*
* We keep a simple list of known devices to search at open time.
*/
static LIST_HEAD(cafe_dev_list);
static DEFINE_MUTEX(cafe_dev_list_lock);
static void cafe_add_dev(struct cafe_camera *cam)
{
mutex_lock(&cafe_dev_list_lock);
list_add_tail(&cam->dev_list, &cafe_dev_list);
mutex_unlock(&cafe_dev_list_lock);
}
static void cafe_remove_dev(struct cafe_camera *cam)
{
mutex_lock(&cafe_dev_list_lock);
list_del(&cam->dev_list);
mutex_unlock(&cafe_dev_list_lock);
}
static struct cafe_camera *cafe_find_dev(int minor)
{
struct cafe_camera *cam;
mutex_lock(&cafe_dev_list_lock);
list_for_each_entry(cam, &cafe_dev_list, dev_list) {
if (cam->v4ldev.minor == minor)
goto done;
}
cam = NULL;
done:
mutex_unlock(&cafe_dev_list_lock);
return cam;
}
static struct cafe_camera *cafe_find_by_pdev(struct pci_dev *pdev)
{
struct cafe_camera *cam;
mutex_lock(&cafe_dev_list_lock);
list_for_each_entry(cam, &cafe_dev_list, dev_list) {
if (cam->pdev == pdev)
goto done;
}
cam = NULL;
done:
mutex_unlock(&cafe_dev_list_lock);
return cam;
}
/* ------------------------------------------------------------------------ */
/*
* Device register I/O
*/
static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg,
unsigned int val)
{
iowrite32(val, cam->regs + reg);
}
static inline unsigned int cafe_reg_read(struct cafe_camera *cam,
unsigned int reg)
{
return ioread32(cam->regs + reg);
}
static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg,
unsigned int val, unsigned int mask)
{
unsigned int v = cafe_reg_read(cam, reg);
v = (v & ~mask) | (val & mask);
cafe_reg_write(cam, reg, v);
}
static inline void cafe_reg_clear_bit(struct cafe_camera *cam,
unsigned int reg, unsigned int val)
{
cafe_reg_write_mask(cam, reg, 0, val);
}
static inline void cafe_reg_set_bit(struct cafe_camera *cam,
unsigned int reg, unsigned int val)
{
cafe_reg_write_mask(cam, reg, val, val);
}
/* -------------------------------------------------------------------- */
/*
* The I2C/SMBUS interface to the camera itself starts here. The
* controller handles SMBUS itself, presenting a relatively simple register
* interface; all we have to do is to tell it where to route the data.
*/
#define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
static int cafe_smbus_write_done(struct cafe_camera *cam)
{
unsigned long flags;
int c1;
/*
* We must delay after the interrupt, or the controller gets confused
* and never does give us good status. Fortunately, we don't do this
* often.
*/
udelay(20);
spin_lock_irqsave(&cam->dev_lock, flags);
c1 = cafe_reg_read(cam, REG_TWSIC1);
spin_unlock_irqrestore(&cam->dev_lock, flags);
return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
}
static int cafe_smbus_write_data(struct cafe_camera *cam,
u16 addr, u8 command, u8 value)
{
unsigned int rval;
unsigned long flags;
DEFINE_WAIT(the_wait);
spin_lock_irqsave(&cam->dev_lock, flags);
rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
/*
* Marvell sez set clkdiv to all 1's for now.
*/
rval |= TWSIC0_CLKDIV;
cafe_reg_write(cam, REG_TWSIC0, rval);
(void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
cafe_reg_write(cam, REG_TWSIC1, rval);
spin_unlock_irqrestore(&cam->dev_lock, flags);
/*
* Time to wait for the write to complete. THIS IS A RACY
* WAY TO DO IT, but the sad fact is that reading the TWSIC1
* register too quickly after starting the operation sends
* the device into a place that may be kinder and better, but
* which is absolutely useless for controlling the sensor. In
* practice we have plenty of time to get into our sleep state
* before the interrupt hits, and the worst case is that we
* time out and then see that things completed, so this seems
* the best way for now.
*/
do {
prepare_to_wait(&cam->smbus_wait, &the_wait,
TASK_UNINTERRUPTIBLE);
schedule_timeout(1); /* even 1 jiffy is too long */
finish_wait(&cam->smbus_wait, &the_wait);
} while (!cafe_smbus_write_done(cam));
#ifdef IF_THE_CAFE_HARDWARE_WORKED_RIGHT
wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam),
CAFE_SMBUS_TIMEOUT);
#endif
spin_lock_irqsave(&cam->dev_lock, flags);
rval = cafe_reg_read(cam, REG_TWSIC1);
spin_unlock_irqrestore(&cam->dev_lock, flags);
if (rval & TWSIC1_WSTAT) {
cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
command, value);
return -EIO;
}
if (rval & TWSIC1_ERROR) {
cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
command, value);
return -EIO;
}
return 0;
}
static int cafe_smbus_read_done(struct cafe_camera *cam)
{
unsigned long flags;
int c1;
/*
* We must delay after the interrupt, or the controller gets confused
* and never does give us good status. Fortunately, we don't do this
* often.
*/
udelay(20);
spin_lock_irqsave(&cam->dev_lock, flags);
c1 = cafe_reg_read(cam, REG_TWSIC1);
spin_unlock_irqrestore(&cam->dev_lock, flags);
return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
}
static int cafe_smbus_read_data(struct cafe_camera *cam,
u16 addr, u8 command, u8 *value)
{
unsigned int rval;
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
/*
* Marvel sez set clkdiv to all 1's for now.
*/
rval |= TWSIC0_CLKDIV;
cafe_reg_write(cam, REG_TWSIC0, rval);
(void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
cafe_reg_write(cam, REG_TWSIC1, rval);
spin_unlock_irqrestore(&cam->dev_lock, flags);
wait_event_timeout(cam->smbus_wait,
cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT);
spin_lock_irqsave(&cam->dev_lock, flags);
rval = cafe_reg_read(cam, REG_TWSIC1);
spin_unlock_irqrestore(&cam->dev_lock, flags);
if (rval & TWSIC1_ERROR) {
cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
return -EIO;
}
if (! (rval & TWSIC1_RVALID)) {
cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
command);
return -EIO;
}
*value = rval & 0xff;
return 0;
}
/*
* Perform a transfer over SMBUS. This thing is called under
* the i2c bus lock, so we shouldn't race with ourselves...
*/
static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
unsigned short flags, char rw, u8 command,
int size, union i2c_smbus_data *data)
{
struct cafe_camera *cam = i2c_get_adapdata(adapter);
int ret = -EINVAL;
/*
* Refuse to talk to anything but OV cam chips. We should
* never even see an attempt to do so, but one never knows.
*/
if (cam->sensor && addr != cam->sensor->addr) {
cam_err(cam, "funky smbus addr %d\n", addr);
return -EINVAL;
}
/*
* This interface would appear to only do byte data ops. OK
* it can do word too, but the cam chip has no use for that.
*/
if (size != I2C_SMBUS_BYTE_DATA) {
cam_err(cam, "funky xfer size %d\n", size);
return -EINVAL;
}
if (rw == I2C_SMBUS_WRITE)
ret = cafe_smbus_write_data(cam, addr, command, data->byte);
else if (rw == I2C_SMBUS_READ)
ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
return ret;
}
static void cafe_smbus_enable_irq(struct cafe_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
static u32 cafe_smbus_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_SMBUS_READ_BYTE_DATA |
I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
}
static struct i2c_algorithm cafe_smbus_algo = {
.smbus_xfer = cafe_smbus_xfer,
.functionality = cafe_smbus_func
};
/* Somebody is on the bus */
static int cafe_cam_init(struct cafe_camera *cam);
static void cafe_ctlr_stop_dma(struct cafe_camera *cam);
static void cafe_ctlr_power_down(struct cafe_camera *cam);
static int cafe_smbus_attach(struct i2c_client *client)
{
struct cafe_camera *cam = i2c_get_adapdata(client->adapter);
/*
* Don't talk to chips we don't recognize.
*/
if (client->driver->id == I2C_DRIVERID_OV7670) {
cam->sensor = client;
return cafe_cam_init(cam);
}
return -EINVAL;
}
static int cafe_smbus_detach(struct i2c_client *client)
{
struct cafe_camera *cam = i2c_get_adapdata(client->adapter);
if (cam->sensor == client) {
cafe_ctlr_stop_dma(cam);
cafe_ctlr_power_down(cam);
cam_err(cam, "lost the sensor!\n");
cam->sensor = NULL; /* Bummer, no camera */
cam->state = S_NOTREADY;
}
return 0;
}
static int cafe_smbus_setup(struct cafe_camera *cam)
{
struct i2c_adapter *adap = &cam->i2c_adapter;
int ret;
cafe_smbus_enable_irq(cam);
adap->id = I2C_HW_SMBUS_CAFE;
adap->class = I2C_CLASS_CAM_DIGITAL;
adap->owner = THIS_MODULE;
adap->client_register = cafe_smbus_attach;
adap->client_unregister = cafe_smbus_detach;
adap->algo = &cafe_smbus_algo;
strcpy(adap->name, "cafe_ccic");
adap->dev.parent = &cam->pdev->dev;
i2c_set_adapdata(adap, cam);
ret = i2c_add_adapter(adap);
if (ret)
printk(KERN_ERR "Unable to register cafe i2c adapter\n");
return ret;
}
static void cafe_smbus_shutdown(struct cafe_camera *cam)
{
i2c_del_adapter(&cam->i2c_adapter);
}
/* ------------------------------------------------------------------- */
/*
* Deal with the controller.
*/
/*
* Do everything we think we need to have the interface operating
* according to the desired format.
*/
static void cafe_ctlr_dma(struct cafe_camera *cam)
{
/*
* Store the first two Y buffers (we aren't supporting
* planar formats for now, so no UV bufs). Then either
* set the third if it exists, or tell the controller
* to just use two.
*/
cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
if (cam->nbufs > 2) {
cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
}
else
cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */
}
static void cafe_ctlr_image(struct cafe_camera *cam)
{
int imgsz;
struct v4l2_pix_format *fmt = &cam->pix_format;
imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
(fmt->bytesperline & IMGSZ_H_MASK);
cafe_reg_write(cam, REG_IMGSIZE, imgsz);
cafe_reg_write(cam, REG_IMGOFFSET, 0);
/* YPITCH just drops the last two bits */
cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
IMGP_YP_MASK);
/*
* Tell the controller about the image format we are using.
*/
switch (cam->pix_format.pixelformat) {
case V4L2_PIX_FMT_YUYV:
cafe_reg_write_mask(cam, REG_CTRL0,
C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
C0_DF_MASK);
break;
case V4L2_PIX_FMT_RGB444:
cafe_reg_write_mask(cam, REG_CTRL0,
C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
C0_DF_MASK);
/* Alpha value? */
break;
case V4L2_PIX_FMT_RGB565:
cafe_reg_write_mask(cam, REG_CTRL0,
C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
C0_DF_MASK);
break;
default:
cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
break;
}
/*
* Make sure it knows we want to use hsync/vsync.
*/
cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
C0_SIFM_MASK);
}
/*
* Configure the controller for operation; caller holds the
* device mutex.
*/
static int cafe_ctlr_configure(struct cafe_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
cafe_ctlr_dma(cam);
cafe_ctlr_image(cam);
cafe_set_config_needed(cam, 0);
spin_unlock_irqrestore(&cam->dev_lock, flags);
return 0;
}
static void cafe_ctlr_irq_enable(struct cafe_camera *cam)
{
/*
* Clear any pending interrupts, since we do not
* expect to have I/O active prior to enabling.
*/
cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
}
static void cafe_ctlr_irq_disable(struct cafe_camera *cam)
{
cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
}
/*
* Make the controller start grabbing images. Everything must
* be set up before doing this.
*/
static void cafe_ctlr_start(struct cafe_camera *cam)
{
/* set_bit performs a read, so no other barrier should be
needed here */
cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
}
static void cafe_ctlr_stop(struct cafe_camera *cam)
{
cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
}
static void cafe_ctlr_init(struct cafe_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
/*
* Added magic to bring up the hardware on the B-Test board
*/
cafe_reg_write(cam, 0x3038, 0x8);
cafe_reg_write(cam, 0x315c, 0x80008);
/*
* Go through the dance needed to wake the device up.
* Note that these registers are global and shared
* with the NAND and SD devices. Interaction between the
* three still needs to be examined.
*/
cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
/*
* Here we must wait a bit for the controller to come around.
*/
spin_unlock_irqrestore(&cam->dev_lock, flags);
msleep(5);
spin_lock_irqsave(&cam->dev_lock, flags);
cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN);
/*
* Make sure it's not powered down.
*/
cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
/*
* Turn off the enable bit. It sure should be off anyway,
* but it's good to be sure.
*/
cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
/*
* Mask all interrupts.
*/
cafe_reg_write(cam, REG_IRQMASK, 0);
/*
* Clock the sensor appropriately. Controller clock should
* be 48MHz, sensor "typical" value is half that.
*/
cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/*
* Stop the controller, and don't return until we're really sure that no
* further DMA is going on.
*/
static void cafe_ctlr_stop_dma(struct cafe_camera *cam)
{
unsigned long flags;
/*
* Theory: stop the camera controller (whether it is operating
* or not). Delay briefly just in case we race with the SOF
* interrupt, then wait until no DMA is active.
*/
spin_lock_irqsave(&cam->dev_lock, flags);
cafe_ctlr_stop(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
mdelay(1);
wait_event_timeout(cam->iowait,
!test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
if (test_bit(CF_DMA_ACTIVE, &cam->flags))
cam_err(cam, "Timeout waiting for DMA to end\n");
/* This would be bad news - what now? */
spin_lock_irqsave(&cam->dev_lock, flags);
cam->state = S_IDLE;
cafe_ctlr_irq_disable(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/*
* Power up and down.
*/
static void cafe_ctlr_power_up(struct cafe_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
/*
* Part one of the sensor dance: turn the global
* GPIO signal on.
*/
cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
/*
* Put the sensor into operational mode (assumes OLPC-style
* wiring). Control 0 is reset - set to 1 to operate.
* Control 1 is power down, set to 0 to operate.
*/
cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
// mdelay(1); /* Marvell says 1ms will do it */
cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
// mdelay(1); /* Enough? */
spin_unlock_irqrestore(&cam->dev_lock, flags);
msleep(5); /* Just to be sure */
}
static void cafe_ctlr_power_down(struct cafe_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT);
cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/* -------------------------------------------------------------------- */
/*
* Communications with the sensor.
*/
static int __cafe_cam_cmd(struct cafe_camera *cam, int cmd, void *arg)
{
struct i2c_client *sc = cam->sensor;
int ret;
if (sc == NULL || sc->driver == NULL || sc->driver->command == NULL)
return -EINVAL;
ret = sc->driver->command(sc, cmd, arg);
if (ret == -EPERM) /* Unsupported command */
return 0;
return ret;
}
static int __cafe_cam_reset(struct cafe_camera *cam)
{
int zero = 0;
return __cafe_cam_cmd(cam, VIDIOC_INT_RESET, &zero);
}
/*
* We have found the sensor on the i2c. Let's try to have a
* conversation.
*/
static int cafe_cam_init(struct cafe_camera *cam)
{
struct v4l2_chip_ident chip = { V4L2_CHIP_MATCH_I2C_ADDR, 0, 0, 0 };
int ret;
mutex_lock(&cam->s_mutex);
if (cam->state != S_NOTREADY)
cam_warn(cam, "Cam init with device in funky state %d",
cam->state);
ret = __cafe_cam_reset(cam);
if (ret)
goto out;
chip.match_chip = cam->sensor->addr;
ret = __cafe_cam_cmd(cam, VIDIOC_G_CHIP_IDENT, &chip);
if (ret)
goto out;
cam->sensor_type = chip.ident;
// if (cam->sensor->addr != OV7xx0_SID) {
if (cam->sensor_type != V4L2_IDENT_OV7670) {
cam_err(cam, "Unsupported sensor type %d", cam->sensor->addr);
ret = -EINVAL;
goto out;
}
/* Get/set parameters? */
ret = 0;
cam->state = S_IDLE;
out:
cafe_ctlr_power_down(cam);
mutex_unlock(&cam->s_mutex);
return ret;
}
/*
* Configure the sensor to match the parameters we have. Caller should
* hold s_mutex
*/
static int cafe_cam_set_flip(struct cafe_camera *cam)
{
struct v4l2_control ctrl;
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_VFLIP;
ctrl.value = flip;
return __cafe_cam_cmd(cam, VIDIOC_S_CTRL, &ctrl);
}
static int cafe_cam_configure(struct cafe_camera *cam)
{
struct v4l2_format fmt;
int ret, zero = 0;
if (cam->state != S_IDLE)
return -EINVAL;
fmt.fmt.pix = cam->pix_format;
ret = __cafe_cam_cmd(cam, VIDIOC_INT_INIT, &zero);
if (ret == 0)
ret = __cafe_cam_cmd(cam, VIDIOC_S_FMT, &fmt);
/*
* OV7670 does weird things if flip is set *before* format...
*/
ret += cafe_cam_set_flip(cam);
return ret;
}
/* -------------------------------------------------------------------- */
/*
* DMA buffer management. These functions need s_mutex held.
*/
/* FIXME: this is inefficient as hell, since dma_alloc_coherent just
* does a get_free_pages() call, and we waste a good chunk of an orderN
* allocation. Should try to allocate the whole set in one chunk.
*/
static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime)
{
int i;
cafe_set_config_needed(cam, 1);
if (loadtime)
cam->dma_buf_size = dma_buf_size;
else
cam->dma_buf_size = cam->pix_format.sizeimage;
if (n_dma_bufs > 3)
n_dma_bufs = 3;
cam->nbufs = 0;
for (i = 0; i < n_dma_bufs; i++) {
cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev,
cam->dma_buf_size, cam->dma_handles + i,
GFP_KERNEL);
if (cam->dma_bufs[i] == NULL) {
cam_warn(cam, "Failed to allocate DMA buffer\n");
break;
}
/* For debug, remove eventually */
memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
(cam->nbufs)++;
}
switch (cam->nbufs) {
case 1:
dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
cam->dma_bufs[0], cam->dma_handles[0]);
cam->nbufs = 0;
case 0:
cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
return -ENOMEM;
case 2:
if (n_dma_bufs > 2)
cam_warn(cam, "Will limp along with only 2 buffers\n");
break;
}
return 0;
}
static void cafe_free_dma_bufs(struct cafe_camera *cam)
{
int i;
for (i = 0; i < cam->nbufs; i++) {
dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
cam->dma_bufs[i], cam->dma_handles[i]);
cam->dma_bufs[i] = NULL;
}
cam->nbufs = 0;
}
/* ----------------------------------------------------------------------- */
/*
* Here starts the V4L2 interface code.
*/
/*
* Read an image from the device.
*/
static ssize_t cafe_deliver_buffer(struct cafe_camera *cam,
char __user *buffer, size_t len, loff_t *pos)
{
int bufno;
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
if (cam->next_buf < 0) {
cam_err(cam, "deliver_buffer: No next buffer\n");
spin_unlock_irqrestore(&cam->dev_lock, flags);
return -EIO;
}
bufno = cam->next_buf;
clear_bit(bufno, &cam->flags);
if (++(cam->next_buf) >= cam->nbufs)
cam->next_buf = 0;
if (! test_bit(cam->next_buf, &cam->flags))
cam->next_buf = -1;
cam->specframes = 0;
spin_unlock_irqrestore(&cam->dev_lock, flags);
if (len > cam->pix_format.sizeimage)
len = cam->pix_format.sizeimage;
if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
return -EFAULT;
(*pos) += len;
return len;
}
/*
* Get everything ready, and start grabbing frames.
*/
static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state)
{
int ret;
unsigned long flags;
/*
* Configuration. If we still don't have DMA buffers,
* make one last, desperate attempt.
*/
if (cam->nbufs == 0)
if (cafe_alloc_dma_bufs(cam, 0))
return -ENOMEM;
if (cafe_needs_config(cam)) {
cafe_cam_configure(cam);
ret = cafe_ctlr_configure(cam);
if (ret)
return ret;
}
/*
* Turn it loose.
*/
spin_lock_irqsave(&cam->dev_lock, flags);
cafe_reset_buffers(cam);
cafe_ctlr_irq_enable(cam);
cam->state = state;
cafe_ctlr_start(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
return 0;
}
static ssize_t cafe_v4l_read(struct file *filp,
char __user *buffer, size_t len, loff_t *pos)
{
struct cafe_camera *cam = filp->private_data;
int ret = 0;
/*
* Perhaps we're in speculative read mode and already
* have data?
*/
mutex_lock(&cam->s_mutex);
if (cam->state == S_SPECREAD) {
if (cam->next_buf >= 0) {
ret = cafe_deliver_buffer(cam, buffer, len, pos);
if (ret != 0)
goto out_unlock;
}
} else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
ret = -EIO;
goto out_unlock;
} else if (cam->state != S_IDLE) {
ret = -EBUSY;
goto out_unlock;
}
/*
* v4l2: multiple processes can open the device, but only
* one gets to grab data from it.
*/
if (cam->owner && cam->owner != filp) {
ret = -EBUSY;
goto out_unlock;
}
cam->owner = filp;
/*
* Do setup if need be.
*/
if (cam->state != S_SPECREAD) {
ret = cafe_read_setup(cam, S_SINGLEREAD);
if (ret)
goto out_unlock;
}
/*
* Wait for something to happen. This should probably
* be interruptible (FIXME).
*/
wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
if (cam->next_buf < 0) {
cam_err(cam, "read() operation timed out\n");
cafe_ctlr_stop_dma(cam);
ret = -EIO;
goto out_unlock;
}
/*
* Give them their data and we should be done.
*/
ret = cafe_deliver_buffer(cam, buffer, len, pos);
out_unlock:
mutex_unlock(&cam->s_mutex);
return ret;
}
/*
* Streaming I/O support.
*/
static int cafe_vidioc_streamon(struct file *filp, void *priv,
enum v4l2_buf_type type)
{
struct cafe_camera *cam = filp->private_data;
int ret = -EINVAL;
if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
goto out;
mutex_lock(&cam->s_mutex);
if (cam->state != S_IDLE || cam->n_sbufs == 0)
goto out_unlock;
cam->sequence = 0;
ret = cafe_read_setup(cam, S_STREAMING);
out_unlock:
mutex_unlock(&cam->s_mutex);
out:
return ret;
}
static int cafe_vidioc_streamoff(struct file *filp, void *priv,
enum v4l2_buf_type type)
{
struct cafe_camera *cam = filp->private_data;
int ret = -EINVAL;
if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
goto out;
mutex_lock(&cam->s_mutex);
if (cam->state != S_STREAMING)
goto out_unlock;
cafe_ctlr_stop_dma(cam);
ret = 0;
out_unlock:
mutex_unlock(&cam->s_mutex);
out:
return ret;
}
static int cafe_setup_siobuf(struct cafe_camera *cam, int index)
{
struct cafe_sio_buffer *buf = cam->sb_bufs + index;
INIT_LIST_HEAD(&buf->list);
buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
buf->buffer = vmalloc_user(buf->v4lbuf.length);
if (buf->buffer == NULL)
return -ENOMEM;
buf->mapcount = 0;
buf->cam = cam;
buf->v4lbuf.index = index;
buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf->v4lbuf.field = V4L2_FIELD_NONE;
buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
/*
* Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
* just uses the length times the index, but the spec warns
* against doing just that - vma merging problems. So we
* leave a gap between each pair of buffers.
*/
buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
return 0;
}
static int cafe_free_sio_buffers(struct cafe_camera *cam)
{
int i;
/*
* If any buffers are mapped, we cannot free them at all.
*/
for (i = 0; i < cam->n_sbufs; i++)
if (cam->sb_bufs[i].mapcount > 0)
return -EBUSY;
/*
* OK, let's do it.
*/
for (i = 0; i < cam->n_sbufs; i++)
vfree(cam->sb_bufs[i].buffer);
cam->n_sbufs = 0;
kfree(cam->sb_bufs);
cam->sb_bufs = NULL;
INIT_LIST_HEAD(&cam->sb_avail);
INIT_LIST_HEAD(&cam->sb_full);
return 0;
}
static int cafe_vidioc_reqbufs(struct file *filp, void *priv,
struct v4l2_requestbuffers *req)
{
struct cafe_camera *cam = filp->private_data;
int ret = 0; /* Silence warning */
/*
* Make sure it's something we can do. User pointers could be
* implemented without great pain, but that's not been done yet.
*/
if (req->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (req->memory != V4L2_MEMORY_MMAP)
return -EINVAL;
/*
* If they ask for zero buffers, they really want us to stop streaming
* (if it's happening) and free everything. Should we check owner?
*/
mutex_lock(&cam->s_mutex);
if (req->count == 0) {
if (cam->state == S_STREAMING)
cafe_ctlr_stop_dma(cam);
ret = cafe_free_sio_buffers (cam);
goto out;
}
/*
* Device needs to be idle and working. We *could* try to do the
* right thing in S_SPECREAD by shutting things down, but it
* probably doesn't matter.
*/
if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
ret = -EBUSY;
goto out;
}
cam->owner = filp;
if (req->count < min_buffers)
req->count = min_buffers;
else if (req->count > max_buffers)
req->count = max_buffers;
if (cam->n_sbufs > 0) {
ret = cafe_free_sio_buffers(cam);
if (ret)
goto out;
}
cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer),
GFP_KERNEL);
if (cam->sb_bufs == NULL) {
ret = -ENOMEM;
goto out;
}
for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
ret = cafe_setup_siobuf(cam, cam->n_sbufs);
if (ret)
break;
}
if (cam->n_sbufs == 0) /* no luck at all - ret already set */
kfree(cam->sb_bufs);
req->count = cam->n_sbufs; /* In case of partial success */
out:
mutex_unlock(&cam->s_mutex);
return ret;
}
static int cafe_vidioc_querybuf(struct file *filp, void *priv,
struct v4l2_buffer *buf)
{
struct cafe_camera *cam = filp->private_data;
int ret = -EINVAL;
mutex_lock(&cam->s_mutex);
if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
goto out;
if (buf->index < 0 || buf->index >= cam->n_sbufs)
goto out;
*buf = cam->sb_bufs[buf->index].v4lbuf;
ret = 0;
out:
mutex_unlock(&cam->s_mutex);
return ret;
}
static int cafe_vidioc_qbuf(struct file *filp, void *priv,
struct v4l2_buffer *buf)
{
struct cafe_camera *cam = filp->private_data;
struct cafe_sio_buffer *sbuf;
int ret = -EINVAL;
unsigned long flags;
mutex_lock(&cam->s_mutex);
if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
goto out;
if (buf->index < 0 || buf->index >= cam->n_sbufs)
goto out;
sbuf = cam->sb_bufs + buf->index;
if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
ret = 0; /* Already queued?? */
goto out;
}
if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
/* Spec doesn't say anything, seems appropriate tho */
ret = -EBUSY;
goto out;
}
sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
spin_lock_irqsave(&cam->dev_lock, flags);
list_add(&sbuf->list, &cam->sb_avail);
spin_unlock_irqrestore(&cam->dev_lock, flags);
ret = 0;
out:
mutex_unlock(&cam->s_mutex);
return ret;
}
static int cafe_vidioc_dqbuf(struct file *filp, void *priv,
struct v4l2_buffer *buf)
{
struct cafe_camera *cam = filp->private_data;
struct cafe_sio_buffer *sbuf;
int ret = -EINVAL;
unsigned long flags;
mutex_lock(&cam->s_mutex);
if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
goto out_unlock;
if (cam->state != S_STREAMING)
goto out_unlock;
if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
goto out_unlock;
}
while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
mutex_unlock(&cam->s_mutex);
if (wait_event_interruptible(cam->iowait,
!list_empty(&cam->sb_full))) {
ret = -ERESTARTSYS;
goto out;
}
mutex_lock(&cam->s_mutex);
}
if (cam->state != S_STREAMING)
ret = -EINTR;
else {
spin_lock_irqsave(&cam->dev_lock, flags);
/* Should probably recheck !list_empty() here */
sbuf = list_entry(cam->sb_full.next,
struct cafe_sio_buffer, list);
list_del_init(&sbuf->list);
spin_unlock_irqrestore(&cam->dev_lock, flags);
sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
*buf = sbuf->v4lbuf;
ret = 0;
}
out_unlock:
mutex_unlock(&cam->s_mutex);
out:
return ret;
}
static void cafe_v4l_vm_open(struct vm_area_struct *vma)
{
struct cafe_sio_buffer *sbuf = vma->vm_private_data;
/*
* Locking: done under mmap_sem, so we don't need to
* go back to the camera lock here.
*/
sbuf->mapcount++;
}
static void cafe_v4l_vm_close(struct vm_area_struct *vma)
{
struct cafe_sio_buffer *sbuf = vma->vm_private_data;
mutex_lock(&sbuf->cam->s_mutex);
sbuf->mapcount--;
/* Docs say we should stop I/O too... */
if (sbuf->mapcount == 0)
sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
mutex_unlock(&sbuf->cam->s_mutex);
}
static struct vm_operations_struct cafe_v4l_vm_ops = {
.open = cafe_v4l_vm_open,
.close = cafe_v4l_vm_close
};
static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct cafe_camera *cam = filp->private_data;
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
int ret = -EINVAL;
int i;
struct cafe_sio_buffer *sbuf = NULL;
if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED))
return -EINVAL;
/*
* Find the buffer they are looking for.
*/
mutex_lock(&cam->s_mutex);
for (i = 0; i < cam->n_sbufs; i++)
if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
sbuf = cam->sb_bufs + i;
break;
}
if (sbuf == NULL)
goto out;
ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
if (ret)
goto out;
vma->vm_flags |= VM_DONTEXPAND;
vma->vm_private_data = sbuf;
vma->vm_ops = &cafe_v4l_vm_ops;
sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
cafe_v4l_vm_open(vma);
ret = 0;
out:
mutex_unlock(&cam->s_mutex);
return ret;
}
static int cafe_v4l_open(struct inode *inode, struct file *filp)
{
struct cafe_camera *cam;
cam = cafe_find_dev(iminor(inode));
if (cam == NULL)
return -ENODEV;
filp->private_data = cam;
mutex_lock(&cam->s_mutex);
if (cam->users == 0) {
cafe_ctlr_power_up(cam);
__cafe_cam_reset(cam);
cafe_set_config_needed(cam, 1);
/* FIXME make sure this is complete */
}
(cam->users)++;
mutex_unlock(&cam->s_mutex);
return 0;
}
static int cafe_v4l_release(struct inode *inode, struct file *filp)
{
struct cafe_camera *cam = filp->private_data;
mutex_lock(&cam->s_mutex);
(cam->users)--;
if (filp == cam->owner) {
cafe_ctlr_stop_dma(cam);
cafe_free_sio_buffers(cam);
cam->owner = NULL;
}
if (cam->users == 0) {
cafe_ctlr_power_down(cam);
if (alloc_bufs_at_read)
cafe_free_dma_bufs(cam);
}
mutex_unlock(&cam->s_mutex);
return 0;
}
static unsigned int cafe_v4l_poll(struct file *filp,
struct poll_table_struct *pt)
{
struct cafe_camera *cam = filp->private_data;
poll_wait(filp, &cam->iowait, pt);
if (cam->next_buf >= 0)
return POLLIN | POLLRDNORM;
return 0;
}
static int cafe_vidioc_queryctrl(struct file *filp, void *priv,
struct v4l2_queryctrl *qc)
{
struct cafe_camera *cam = filp->private_data;
int ret;
mutex_lock(&cam->s_mutex);
ret = __cafe_cam_cmd(cam, VIDIOC_QUERYCTRL, qc);
mutex_unlock(&cam->s_mutex);
return ret;
}
static int cafe_vidioc_g_ctrl(struct file *filp, void *priv,
struct v4l2_control *ctrl)
{
struct cafe_camera *cam = filp->private_data;
int ret;
mutex_lock(&cam->s_mutex);
ret = __cafe_cam_cmd(cam, VIDIOC_G_CTRL, ctrl);
mutex_unlock(&cam->s_mutex);
return ret;
}
static int cafe_vidioc_s_ctrl(struct file *filp, void *priv,
struct v4l2_control *ctrl)
{
struct cafe_camera *cam = filp->private_data;
int ret;
mutex_lock(&cam->s_mutex);
ret = __cafe_cam_cmd(cam, VIDIOC_S_CTRL, ctrl);
mutex_unlock(&cam->s_mutex);
return ret;
}
static int cafe_vidioc_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strcpy(cap->driver, "cafe_ccic");
strcpy(cap->card, "cafe_ccic");
cap->version = CAFE_VERSION;
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
return 0;
}
/*
* The default format we use until somebody says otherwise.
*/
static struct v4l2_pix_format cafe_def_pix_format = {
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.pixelformat = V4L2_PIX_FMT_YUYV,
.field = V4L2_FIELD_NONE,
.bytesperline = VGA_WIDTH*2,
.sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
};
static int cafe_vidioc_enum_fmt_cap(struct file *filp,
void *priv, struct v4l2_fmtdesc *fmt)
{
struct cafe_camera *cam = priv;
int ret;
if (fmt->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
mutex_lock(&cam->s_mutex);
ret = __cafe_cam_cmd(cam, VIDIOC_ENUM_FMT, fmt);
mutex_unlock(&cam->s_mutex);
return ret;
}
static int cafe_vidioc_try_fmt_cap (struct file *filp, void *priv,
struct v4l2_format *fmt)
{
struct cafe_camera *cam = priv;
int ret;
mutex_lock(&cam->s_mutex);
ret = __cafe_cam_cmd(cam, VIDIOC_TRY_FMT, fmt);
mutex_unlock(&cam->s_mutex);
return ret;
}
static int cafe_vidioc_s_fmt_cap(struct file *filp, void *priv,
struct v4l2_format *fmt)
{
struct cafe_camera *cam = priv;
int ret;
/*
* Can't do anything if the device is not idle
* Also can't if there are streaming buffers in place.
*/
if (cam->state != S_IDLE || cam->n_sbufs > 0)
return -EBUSY;
/*
* See if the formatting works in principle.
*/
ret = cafe_vidioc_try_fmt_cap(filp, priv, fmt);
if (ret)
return ret;
/*
* Now we start to change things for real, so let's do it
* under lock.
*/
mutex_lock(&cam->s_mutex);
cam->pix_format = fmt->fmt.pix;
/*
* Make sure we have appropriate DMA buffers.
*/
ret = -ENOMEM;
if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
cafe_free_dma_bufs(cam);
if (cam->nbufs == 0) {
if (cafe_alloc_dma_bufs(cam, 0))
goto out;
}
/*
* It looks like this might work, so let's program the sensor.
*/
ret = cafe_cam_configure(cam);
if (! ret)
ret = cafe_ctlr_configure(cam);
out:
mutex_unlock(&cam->s_mutex);
return ret;
}
/*
* Return our stored notion of how the camera is/should be configured.
* The V4l2 spec wants us to be smarter, and actually get this from
* the camera (and not mess with it at open time). Someday.
*/
static int cafe_vidioc_g_fmt_cap(struct file *filp, void *priv,
struct v4l2_format *f)
{
struct cafe_camera *cam = priv;
f->fmt.pix = cam->pix_format;
return 0;
}
/*
* We only have one input - the sensor - so minimize the nonsense here.
*/
static int cafe_vidioc_enum_input(struct file *filp, void *priv,
struct v4l2_input *input)
{
if (input->index != 0)
return -EINVAL;
input->type = V4L2_INPUT_TYPE_CAMERA;
input->std = V4L2_STD_ALL; /* Not sure what should go here */
strcpy(input->name, "Camera");
return 0;
}
static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
{
*i = 0;
return 0;
}
static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
{
if (i != 0)
return -EINVAL;
return 0;
}
/* from vivi.c */
static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
{
return 0;
}
/*
* G/S_PARM. Most of this is done by the sensor, but we are
* the level which controls the number of read buffers.
*/
static int cafe_vidioc_g_parm(struct file *filp, void *priv,
struct v4l2_streamparm *parms)
{
struct cafe_camera *cam = priv;
int ret;
mutex_lock(&cam->s_mutex);
ret = __cafe_cam_cmd(cam, VIDIOC_G_PARM, parms);
mutex_unlock(&cam->s_mutex);
parms->parm.capture.readbuffers = n_dma_bufs;
return ret;
}
static int cafe_vidioc_s_parm(struct file *filp, void *priv,
struct v4l2_streamparm *parms)
{
struct cafe_camera *cam = priv;
int ret;
mutex_lock(&cam->s_mutex);
ret = __cafe_cam_cmd(cam, VIDIOC_S_PARM, parms);
mutex_unlock(&cam->s_mutex);
parms->parm.capture.readbuffers = n_dma_bufs;
return ret;
}
static void cafe_v4l_dev_release(struct video_device *vd)
{
struct cafe_camera *cam = container_of(vd, struct cafe_camera, v4ldev);
kfree(cam);
}
/*
* This template device holds all of those v4l2 methods; we
* clone it for specific real devices.
*/
static const struct file_operations cafe_v4l_fops = {
.owner = THIS_MODULE,
.open = cafe_v4l_open,
.release = cafe_v4l_release,
.read = cafe_v4l_read,
.poll = cafe_v4l_poll,
.mmap = cafe_v4l_mmap,
.ioctl = video_ioctl2,
.llseek = no_llseek,
};
static struct video_device cafe_v4l_template = {
.name = "cafe",
.type = VFL_TYPE_GRABBER,
.type2 = VID_TYPE_CAPTURE,
.minor = -1, /* Get one dynamically */
.tvnorms = V4L2_STD_NTSC_M,
.current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */
.fops = &cafe_v4l_fops,
.release = cafe_v4l_dev_release,
.vidioc_querycap = cafe_vidioc_querycap,
.vidioc_enum_fmt_cap = cafe_vidioc_enum_fmt_cap,
.vidioc_try_fmt_cap = cafe_vidioc_try_fmt_cap,
.vidioc_s_fmt_cap = cafe_vidioc_s_fmt_cap,
.vidioc_g_fmt_cap = cafe_vidioc_g_fmt_cap,
.vidioc_enum_input = cafe_vidioc_enum_input,
.vidioc_g_input = cafe_vidioc_g_input,
.vidioc_s_input = cafe_vidioc_s_input,
.vidioc_s_std = cafe_vidioc_s_std,
.vidioc_reqbufs = cafe_vidioc_reqbufs,
.vidioc_querybuf = cafe_vidioc_querybuf,
.vidioc_qbuf = cafe_vidioc_qbuf,
.vidioc_dqbuf = cafe_vidioc_dqbuf,
.vidioc_streamon = cafe_vidioc_streamon,
.vidioc_streamoff = cafe_vidioc_streamoff,
.vidioc_queryctrl = cafe_vidioc_queryctrl,
.vidioc_g_ctrl = cafe_vidioc_g_ctrl,
.vidioc_s_ctrl = cafe_vidioc_s_ctrl,
.vidioc_g_parm = cafe_vidioc_g_parm,
.vidioc_s_parm = cafe_vidioc_s_parm,
};
/* ---------------------------------------------------------------------- */
/*
* Interrupt handler stuff
*/
static void cafe_frame_tasklet(unsigned long data)
{
struct cafe_camera *cam = (struct cafe_camera *) data;
int i;
unsigned long flags;
struct cafe_sio_buffer *sbuf;
spin_lock_irqsave(&cam->dev_lock, flags);
for (i = 0; i < cam->nbufs; i++) {
int bufno = cam->next_buf;
if (bufno < 0) { /* "will never happen" */
cam_err(cam, "No valid bufs in tasklet!\n");
break;
}
if (++(cam->next_buf) >= cam->nbufs)
cam->next_buf = 0;
if (! test_bit(bufno, &cam->flags))
continue;
if (list_empty(&cam->sb_avail))
break; /* Leave it valid, hope for better later */
clear_bit(bufno, &cam->flags);
sbuf = list_entry(cam->sb_avail.next,
struct cafe_sio_buffer, list);
/*
* Drop the lock during the big copy. This *should* be safe...
*/
spin_unlock_irqrestore(&cam->dev_lock, flags);
memcpy(sbuf->buffer, cam->dma_bufs[bufno],
cam->pix_format.sizeimage);
sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
spin_lock_irqsave(&cam->dev_lock, flags);
list_move_tail(&sbuf->list, &cam->sb_full);
}
if (! list_empty(&cam->sb_full))
wake_up(&cam->iowait);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
static void cafe_frame_complete(struct cafe_camera *cam, int frame)
{
/*
* Basic frame housekeeping.
*/
if (test_bit(frame, &cam->flags) && printk_ratelimit())
cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
set_bit(frame, &cam->flags);
clear_bit(CF_DMA_ACTIVE, &cam->flags);
if (cam->next_buf < 0)
cam->next_buf = frame;
cam->buf_seq[frame] = ++(cam->sequence);
switch (cam->state) {
/*
* If in single read mode, try going speculative.
*/
case S_SINGLEREAD:
cam->state = S_SPECREAD;
cam->specframes = 0;
wake_up(&cam->iowait);
break;
/*
* If we are already doing speculative reads, and nobody is
* reading them, just stop.
*/
case S_SPECREAD:
if (++(cam->specframes) >= cam->nbufs) {
cafe_ctlr_stop(cam);
cafe_ctlr_irq_disable(cam);
cam->state = S_IDLE;
}
wake_up(&cam->iowait);
break;
/*
* For the streaming case, we defer the real work to the
* camera tasklet.
*
* FIXME: if the application is not consuming the buffers,
* we should eventually put things on hold and restart in
* vidioc_dqbuf().
*/
case S_STREAMING:
tasklet_schedule(&cam->s_tasklet);
break;
default:
cam_err(cam, "Frame interrupt in non-operational state\n");
break;
}
}
static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs)
{
unsigned int frame;
cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
/*
* Handle any frame completions. There really should
* not be more than one of these, or we have fallen
* far behind.
*/
for (frame = 0; frame < cam->nbufs; frame++)
if (irqs & (IRQ_EOF0 << frame))
cafe_frame_complete(cam, frame);
/*
* If a frame starts, note that we have DMA active. This
* code assumes that we won't get multiple frame interrupts
* at once; may want to rethink that.
*/
if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2))
set_bit(CF_DMA_ACTIVE, &cam->flags);
}
static irqreturn_t cafe_irq(int irq, void *data)
{
struct cafe_camera *cam = data;
unsigned int irqs;
spin_lock(&cam->dev_lock);
irqs = cafe_reg_read(cam, REG_IRQSTAT);
if ((irqs & ALLIRQS) == 0) {
spin_unlock(&cam->dev_lock);
return IRQ_NONE;
}
if (irqs & FRAMEIRQS)
cafe_frame_irq(cam, irqs);
if (irqs & TWSIIRQS) {
cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS);
wake_up(&cam->smbus_wait);
}
spin_unlock(&cam->dev_lock);
return IRQ_HANDLED;
}
/* -------------------------------------------------------------------------- */
#ifdef CONFIG_VIDEO_ADV_DEBUG
/*
* Debugfs stuff.
*/
static char cafe_debug_buf[1024];
static struct dentry *cafe_dfs_root;
static void cafe_dfs_setup(void)
{
cafe_dfs_root = debugfs_create_dir("cafe_ccic", NULL);
if (IS_ERR(cafe_dfs_root)) {
cafe_dfs_root = NULL; /* Never mind */
printk(KERN_NOTICE "cafe_ccic unable to set up debugfs\n");
}
}
static void cafe_dfs_shutdown(void)
{
if (cafe_dfs_root)
debugfs_remove(cafe_dfs_root);
}
static int cafe_dfs_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t cafe_dfs_read_regs(struct file *file,
char __user *buf, size_t count, loff_t *ppos)
{
struct cafe_camera *cam = file->private_data;
char *s = cafe_debug_buf;
int offset;
for (offset = 0; offset < 0x44; offset += 4)
s += sprintf(s, "%02x: %08x\n", offset,
cafe_reg_read(cam, offset));
for (offset = 0x88; offset <= 0x90; offset += 4)
s += sprintf(s, "%02x: %08x\n", offset,
cafe_reg_read(cam, offset));
for (offset = 0xb4; offset <= 0xbc; offset += 4)
s += sprintf(s, "%02x: %08x\n", offset,
cafe_reg_read(cam, offset));
for (offset = 0x3000; offset <= 0x300c; offset += 4)
s += sprintf(s, "%04x: %08x\n", offset,
cafe_reg_read(cam, offset));
return simple_read_from_buffer(buf, count, ppos, cafe_debug_buf,
s - cafe_debug_buf);
}
static const struct file_operations cafe_dfs_reg_ops = {
.owner = THIS_MODULE,
.read = cafe_dfs_read_regs,
.open = cafe_dfs_open
};
static ssize_t cafe_dfs_read_cam(struct file *file,
char __user *buf, size_t count, loff_t *ppos)
{
struct cafe_camera *cam = file->private_data;
char *s = cafe_debug_buf;
int offset;
if (! cam->sensor)
return -EINVAL;
for (offset = 0x0; offset < 0x8a; offset++)
{
u8 v;
cafe_smbus_read_data(cam, cam->sensor->addr, offset, &v);
s += sprintf(s, "%02x: %02x\n", offset, v);
}
return simple_read_from_buffer(buf, count, ppos, cafe_debug_buf,
s - cafe_debug_buf);
}
static const struct file_operations cafe_dfs_cam_ops = {
.owner = THIS_MODULE,
.read = cafe_dfs_read_cam,
.open = cafe_dfs_open
};
static void cafe_dfs_cam_setup(struct cafe_camera *cam)
{
char fname[40];
if (!cafe_dfs_root)
return;
sprintf(fname, "regs-%d", cam->v4ldev.minor);
cam->dfs_regs = debugfs_create_file(fname, 0444, cafe_dfs_root,
cam, &cafe_dfs_reg_ops);
sprintf(fname, "cam-%d", cam->v4ldev.minor);
cam->dfs_cam_regs = debugfs_create_file(fname, 0444, cafe_dfs_root,
cam, &cafe_dfs_cam_ops);
}
static void cafe_dfs_cam_shutdown(struct cafe_camera *cam)
{
if (! IS_ERR(cam->dfs_regs))
debugfs_remove(cam->dfs_regs);
if (! IS_ERR(cam->dfs_cam_regs))
debugfs_remove(cam->dfs_cam_regs);
}
#else
#define cafe_dfs_setup()
#define cafe_dfs_shutdown()
#define cafe_dfs_cam_setup(cam)
#define cafe_dfs_cam_shutdown(cam)
#endif /* CONFIG_VIDEO_ADV_DEBUG */
/* ------------------------------------------------------------------------*/
/*
* PCI interface stuff.
*/
static int cafe_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
int ret;
u16 classword;
struct cafe_camera *cam;
/*
* Make sure we have a camera here - we'll get calls for
* the other cafe devices as well.
*/
pci_read_config_word(pdev, PCI_CLASS_DEVICE, &classword);
if (classword != PCI_CLASS_MULTIMEDIA_VIDEO)
return -ENODEV;
/*
* Start putting together one of our big camera structures.
*/
ret = -ENOMEM;
cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
if (cam == NULL)
goto out;
mutex_init(&cam->s_mutex);
mutex_lock(&cam->s_mutex);
spin_lock_init(&cam->dev_lock);
cam->state = S_NOTREADY;
cafe_set_config_needed(cam, 1);
init_waitqueue_head(&cam->smbus_wait);
init_waitqueue_head(&cam->iowait);
cam->pdev = pdev;
cam->pix_format = cafe_def_pix_format;
INIT_LIST_HEAD(&cam->dev_list);
INIT_LIST_HEAD(&cam->sb_avail);
INIT_LIST_HEAD(&cam->sb_full);
tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam);
/*
* Get set up on the PCI bus.
*/
ret = pci_enable_device(pdev);
if (ret)
goto out_free;
pci_set_master(pdev);
ret = -EIO;
cam->regs = pci_iomap(pdev, 0, 0);
if (! cam->regs) {
printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
goto out_free;
}
ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
if (ret)
goto out_iounmap;
/*
* Initialize the controller and leave it powered up. It will
* stay that way until the sensor driver shows up.
*/
cafe_ctlr_init(cam);
cafe_ctlr_power_up(cam);
/*
* Set up I2C/SMBUS communications. We have to drop the mutex here
* because the sensor could attach in this call chain, leading to
* unsightly deadlocks.
*/
mutex_unlock(&cam->s_mutex); /* attach can deadlock */
ret = cafe_smbus_setup(cam);
if (ret)
goto out_freeirq;
/*
* Get the v4l2 setup done.
*/
mutex_lock(&cam->s_mutex);
cam->v4ldev = cafe_v4l_template;
cam->v4ldev.debug = 0;
// cam->v4ldev.debug = V4L2_DEBUG_IOCTL_ARG;
cam->v4ldev.dev = &pdev->dev;
ret = video_register_device(&cam->v4ldev, VFL_TYPE_GRABBER, -1);
if (ret)
goto out_smbus;
/*
* If so requested, try to get our DMA buffers now.
*/
if (!alloc_bufs_at_read) {
if (cafe_alloc_dma_bufs(cam, 1))
cam_warn(cam, "Unable to alloc DMA buffers at load"
" will try again later.");
}
cafe_dfs_cam_setup(cam);
mutex_unlock(&cam->s_mutex);
cafe_add_dev(cam);
return 0;
out_smbus:
cafe_smbus_shutdown(cam);
out_freeirq:
cafe_ctlr_power_down(cam);
free_irq(pdev->irq, cam);
out_iounmap:
pci_iounmap(pdev, cam->regs);
out_free:
kfree(cam);
out:
return ret;
}
/*
* Shut down an initialized device
*/
static void cafe_shutdown(struct cafe_camera *cam)
{
/* FIXME: Make sure we take care of everything here */
cafe_dfs_cam_shutdown(cam);
if (cam->n_sbufs > 0)
/* What if they are still mapped? Shouldn't be, but... */
cafe_free_sio_buffers(cam);
cafe_remove_dev(cam);
cafe_ctlr_stop_dma(cam);
cafe_ctlr_power_down(cam);
cafe_smbus_shutdown(cam);
cafe_free_dma_bufs(cam);
free_irq(cam->pdev->irq, cam);
pci_iounmap(cam->pdev, cam->regs);
video_unregister_device(&cam->v4ldev);
/* kfree(cam); done in v4l_release () */
}
static void cafe_pci_remove(struct pci_dev *pdev)
{
struct cafe_camera *cam = cafe_find_by_pdev(pdev);
if (cam == NULL) {
printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
return;
}
mutex_lock(&cam->s_mutex);
if (cam->users > 0)
cam_warn(cam, "Removing a device with users!\n");
cafe_shutdown(cam);
/* No unlock - it no longer exists */
}
#ifdef CONFIG_PM
/*
* Basic power management.
*/
static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct cafe_camera *cam = cafe_find_by_pdev(pdev);
int ret;
enum cafe_state cstate;
ret = pci_save_state(pdev);
if (ret)
return ret;
cstate = cam->state; /* HACK - stop_dma sets to idle */
cafe_ctlr_stop_dma(cam);
cafe_ctlr_power_down(cam);
pci_disable_device(pdev);
cam->state = cstate;
return 0;
}
static int cafe_pci_resume(struct pci_dev *pdev)
{
struct cafe_camera *cam = cafe_find_by_pdev(pdev);
int ret = 0;
ret = pci_restore_state(pdev);
if (ret)
return ret;
ret = pci_enable_device(pdev);
if (ret) {
cam_warn(cam, "Unable to re-enable device on resume!\n");
return ret;
}
cafe_ctlr_init(cam);
cafe_ctlr_power_down(cam);
mutex_lock(&cam->s_mutex);
if (cam->users > 0) {
cafe_ctlr_power_up(cam);
__cafe_cam_reset(cam);
}
mutex_unlock(&cam->s_mutex);
set_bit(CF_CONFIG_NEEDED, &cam->flags);
if (cam->state == S_SPECREAD)
cam->state = S_IDLE; /* Don't bother restarting */
else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
ret = cafe_read_setup(cam, cam->state);
return ret;
}
#endif /* CONFIG_PM */
static struct pci_device_id cafe_ids[] = {
{ PCI_DEVICE(0x11ab, 0x4100) }, /* Eventual real ID */
{ PCI_DEVICE(0x11ab, 0x4102) }, /* Really eventual real ID */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, cafe_ids);
static struct pci_driver cafe_pci_driver = {
.name = "cafe1000-ccic",
.id_table = cafe_ids,
.probe = cafe_pci_probe,
.remove = cafe_pci_remove,
#ifdef CONFIG_PM
.suspend = cafe_pci_suspend,
.resume = cafe_pci_resume,
#endif
};
static int __init cafe_init(void)
{
int ret;
printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
CAFE_VERSION);
cafe_dfs_setup();
ret = pci_register_driver(&cafe_pci_driver);
if (ret) {
printk(KERN_ERR "Unable to register cafe_ccic driver\n");
goto out;
}
request_module("ov7670"); /* FIXME want something more general */
ret = 0;
out:
return ret;
}
static void __exit cafe_exit(void)
{
pci_unregister_driver(&cafe_pci_driver);
cafe_dfs_shutdown();
}
module_init(cafe_init);
module_exit(cafe_exit);