linux-hardened/drivers/crypto/nx/nx-aes-xcbc.c

379 lines
10 KiB
C
Raw Normal View History

/**
* AES XCBC routines supporting the Power 7+ Nest Accelerators driver
*
* Copyright (C) 2011-2012 International Business Machines Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 only.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Author: Kent Yoder <yoder1@us.ibm.com>
*/
#include <crypto/internal/hash.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <asm/vio.h>
#include "nx_csbcpb.h"
#include "nx.h"
struct xcbc_state {
u8 state[AES_BLOCK_SIZE];
unsigned int count;
u8 buffer[AES_BLOCK_SIZE];
};
static int nx_xcbc_set_key(struct crypto_shash *desc,
const u8 *in_key,
unsigned int key_len)
{
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
switch (key_len) {
case AES_KEYSIZE_128:
nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
break;
default:
return -EINVAL;
}
memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);
return 0;
}
/*
* Based on RFC 3566, for a zero-length message:
*
* n = 1
* K1 = E(K, 0x01010101010101010101010101010101)
* K3 = E(K, 0x03030303030303030303030303030303)
* E[0] = 0x00000000000000000000000000000000
* M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
* E[1] = (K1, M[1] ^ E[0] ^ K3)
* Tag = M[1]
*/
static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
{
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
u8 keys[2][AES_BLOCK_SIZE];
u8 key[32];
int rc = 0;
int len;
/* Change to ECB mode */
csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
/* K1 and K3 base patterns */
memset(keys[0], 0x01, sizeof(keys[0]));
memset(keys[1], 0x03, sizeof(keys[1]));
len = sizeof(keys);
/* Generate K1 and K3 encrypting the patterns */
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
nx_ctx->ap->sglen);
if (len != sizeof(keys))
return -EINVAL;
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
nx_ctx->ap->sglen);
if (len != sizeof(keys))
return -EINVAL;
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
/* XOr K3 with the padding for a 0 length message */
keys[1][0] ^= 0x80;
len = sizeof(keys[1]);
/* Encrypt the final result */
memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
nx_ctx->ap->sglen);
if (len != sizeof(keys[1]))
return -EINVAL;
len = AES_BLOCK_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
nx_ctx->ap->sglen);
if (len != AES_BLOCK_SIZE)
return -EINVAL;
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
out:
/* Restore XCBC mode */
csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
return rc;
}
static int nx_xcbc_init(struct shash_desc *desc)
{
struct xcbc_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *out_sg;
int len;
nx_ctx_init(nx_ctx, HCOP_FC_AES);
memset(sctx, 0, sizeof *sctx);
NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);
len = AES_BLOCK_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
&len, nx_ctx->ap->sglen);
if (len != AES_BLOCK_SIZE)
return -EINVAL;
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
return 0;
}
static int nx_xcbc_update(struct shash_desc *desc,
const u8 *data,
unsigned int len)
{
struct xcbc_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *in_sg;
u32 to_process = 0, leftover, total;
unsigned int max_sg_len;
unsigned long irq_flags;
int rc = 0;
int data_len;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
total = sctx->count + len;
/* 2 cases for total data len:
* 1: <= AES_BLOCK_SIZE: copy into state, return 0
* 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
*/
if (total <= AES_BLOCK_SIZE) {
memcpy(sctx->buffer + sctx->count, data, len);
sctx->count += len;
goto out;
}
in_sg = nx_ctx->in_sg;
max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
max_sg_len = min_t(u64, max_sg_len,
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
do {
to_process = total - to_process;
to_process = to_process & ~(AES_BLOCK_SIZE - 1);
leftover = total - to_process;
/* the hardware will not accept a 0 byte operation for this
* algorithm and the operation MUST be finalized to be correct.
* So if we happen to get an update that falls on a block sized
* boundary, we must save off the last block to finalize with
* later. */
if (!leftover) {
to_process -= AES_BLOCK_SIZE;
leftover = AES_BLOCK_SIZE;
}
if (sctx->count) {
data_len = sctx->count;
in_sg = nx_build_sg_list(nx_ctx->in_sg,
(u8 *) sctx->buffer,
&data_len,
max_sg_len);
if (data_len != sctx->count)
return -EINVAL;
}
data_len = to_process - sctx->count;
in_sg = nx_build_sg_list(in_sg,
(u8 *) data,
&data_len,
max_sg_len);
if (data_len != to_process - sctx->count)
return -EINVAL;
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
/* we've hit the nx chip previously and we're updating again,
* so copy over the partial digest */
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
memcpy(csbcpb->cpb.aes_xcbc.cv,
csbcpb->cpb.aes_xcbc.out_cv_mac,
AES_BLOCK_SIZE);
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
total -= to_process;
data += to_process - sctx->count;
sctx->count = 0;
in_sg = nx_ctx->in_sg;
} while (leftover > AES_BLOCK_SIZE);
/* copy the leftover back into the state struct */
memcpy(sctx->buffer, data, leftover);
sctx->count = leftover;
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
{
struct xcbc_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
unsigned long irq_flags;
int rc = 0;
int len;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */
memcpy(csbcpb->cpb.aes_xcbc.cv,
csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
} else if (sctx->count == 0) {
/*
* we've never seen an update, so this is a 0 byte op. The
* hardware cannot handle a 0 byte op, so just ECB to
* generate the hash.
*/
rc = nx_xcbc_empty(desc, out);
goto out;
}
/* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
len = sctx->count;
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
&len, nx_ctx->ap->sglen);
if (len != sctx->count)
return -EINVAL;
len = AES_BLOCK_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
nx_ctx->ap->sglen);
if (len != AES_BLOCK_SIZE)
return -EINVAL;
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
if (!nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
struct shash_alg nx_shash_aes_xcbc_alg = {
.digestsize = AES_BLOCK_SIZE,
.init = nx_xcbc_init,
.update = nx_xcbc_update,
.final = nx_xcbc_final,
.setkey = nx_xcbc_set_key,
.descsize = sizeof(struct xcbc_state),
.statesize = sizeof(struct xcbc_state),
.base = {
.cra_name = "xcbc(aes)",
.cra_driver_name = "xcbc-aes-nx",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
.cra_init = nx_crypto_ctx_aes_xcbc_init,
.cra_exit = nx_crypto_ctx_exit,
}
};