linux-hardened/sound/oss/sequencer.c

1678 lines
34 KiB
C
Raw Normal View History

/*
* sound/sequencer.c
*
* The sequencer personality manager.
*/
/*
* Copyright (C) by Hannu Savolainen 1993-1997
*
* OSS/Free for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL)
* Version 2 (June 1991). See the "COPYING" file distributed with this software
* for more info.
*/
/*
* Thomas Sailer : ioctl code reworked (vmalloc/vfree removed)
* Alan Cox : reformatted and fixed a pair of null pointer bugs
*/
#include <linux/kmod.h>
#include <linux/spinlock.h>
#define SEQUENCER_C
#include "sound_config.h"
#include "midi_ctrl.h"
static int sequencer_ok;
static struct sound_timer_operations *tmr;
static int tmr_no = -1; /* Currently selected timer */
static int pending_timer = -1; /* For timer change operation */
extern unsigned long seq_time;
static int obsolete_api_used;
static DEFINE_SPINLOCK(lock);
/*
* Local counts for number of synth and MIDI devices. These are initialized
* by the sequencer_open.
*/
static int max_mididev;
static int max_synthdev;
/*
* The seq_mode gives the operating mode of the sequencer:
* 1 = level1 (the default)
* 2 = level2 (extended capabilities)
*/
#define SEQ_1 1
#define SEQ_2 2
static int seq_mode = SEQ_1;
static DECLARE_WAIT_QUEUE_HEAD(seq_sleeper);
static DECLARE_WAIT_QUEUE_HEAD(midi_sleeper);
static int midi_opened[MAX_MIDI_DEV];
static int midi_written[MAX_MIDI_DEV];
static unsigned long prev_input_time;
static int prev_event_time;
#include "tuning.h"
#define EV_SZ 8
#define IEV_SZ 8
static unsigned char *queue;
static unsigned char *iqueue;
static volatile int qhead, qtail, qlen;
static volatile int iqhead, iqtail, iqlen;
static volatile int seq_playing;
static volatile int sequencer_busy;
static int output_threshold;
static long pre_event_timeout;
static unsigned synth_open_mask;
static int seq_queue(unsigned char *note, char nonblock);
static void seq_startplay(void);
static int seq_sync(void);
static void seq_reset(void);
#if MAX_SYNTH_DEV > 15
#error Too many synthesizer devices enabled.
#endif
int sequencer_read(int dev, struct file *file, char __user *buf, int count)
{
int c = count, p = 0;
int ev_len;
unsigned long flags;
dev = dev >> 4;
ev_len = seq_mode == SEQ_1 ? 4 : 8;
spin_lock_irqsave(&lock,flags);
if (!iqlen)
{
spin_unlock_irqrestore(&lock,flags);
if (file->f_flags & O_NONBLOCK) {
return -EAGAIN;
}
interruptible_sleep_on_timeout(&midi_sleeper,
pre_event_timeout);
spin_lock_irqsave(&lock,flags);
if (!iqlen)
{
spin_unlock_irqrestore(&lock,flags);
return 0;
}
}
while (iqlen && c >= ev_len)
{
char *fixit = (char *) &iqueue[iqhead * IEV_SZ];
spin_unlock_irqrestore(&lock,flags);
if (copy_to_user(&(buf)[p], fixit, ev_len))
return count - c;
p += ev_len;
c -= ev_len;
spin_lock_irqsave(&lock,flags);
iqhead = (iqhead + 1) % SEQ_MAX_QUEUE;
iqlen--;
}
spin_unlock_irqrestore(&lock,flags);
return count - c;
}
static void sequencer_midi_output(int dev)
{
/*
* Currently NOP
*/
}
void seq_copy_to_input(unsigned char *event_rec, int len)
{
unsigned long flags;
/*
* Verify that the len is valid for the current mode.
*/
if (len != 4 && len != 8)
return;
if ((seq_mode == SEQ_1) != (len == 4))
return;
if (iqlen >= (SEQ_MAX_QUEUE - 1))
return; /* Overflow */
spin_lock_irqsave(&lock,flags);
memcpy(&iqueue[iqtail * IEV_SZ], event_rec, len);
iqlen++;
iqtail = (iqtail + 1) % SEQ_MAX_QUEUE;
wake_up(&midi_sleeper);
spin_unlock_irqrestore(&lock,flags);
}
static void sequencer_midi_input(int dev, unsigned char data)
{
unsigned int tstamp;
unsigned char event_rec[4];
if (data == 0xfe) /* Ignore active sensing */
return;
tstamp = jiffies - seq_time;
if (tstamp != prev_input_time)
{
tstamp = (tstamp << 8) | SEQ_WAIT;
seq_copy_to_input((unsigned char *) &tstamp, 4);
prev_input_time = tstamp;
}
event_rec[0] = SEQ_MIDIPUTC;
event_rec[1] = data;
event_rec[2] = dev;
event_rec[3] = 0;
seq_copy_to_input(event_rec, 4);
}
void seq_input_event(unsigned char *event_rec, int len)
{
unsigned long this_time;
if (seq_mode == SEQ_2)
this_time = tmr->get_time(tmr_no);
else
this_time = jiffies - seq_time;
if (this_time != prev_input_time)
{
unsigned char tmp_event[8];
tmp_event[0] = EV_TIMING;
tmp_event[1] = TMR_WAIT_ABS;
tmp_event[2] = 0;
tmp_event[3] = 0;
*(unsigned int *) &tmp_event[4] = this_time;
seq_copy_to_input(tmp_event, 8);
prev_input_time = this_time;
}
seq_copy_to_input(event_rec, len);
}
int sequencer_write(int dev, struct file *file, const char __user *buf, int count)
{
unsigned char event_rec[EV_SZ], ev_code;
int p = 0, c, ev_size;
int err;
int mode = translate_mode(file);
dev = dev >> 4;
DEB(printk("sequencer_write(dev=%d, count=%d)\n", dev, count));
if (mode == OPEN_READ)
return -EIO;
c = count;
while (c >= 4)
{
if (copy_from_user((char *) event_rec, &(buf)[p], 4))
goto out;
ev_code = event_rec[0];
if (ev_code == SEQ_FULLSIZE)
{
int err, fmt;
dev = *(unsigned short *) &event_rec[2];
if (dev < 0 || dev >= max_synthdev || synth_devs[dev] == NULL)
return -ENXIO;
if (!(synth_open_mask & (1 << dev)))
return -ENXIO;
fmt = (*(short *) &event_rec[0]) & 0xffff;
err = synth_devs[dev]->load_patch(dev, fmt, buf, p + 4, c, 0);
if (err < 0)
return err;
return err;
}
if (ev_code >= 128)
{
if (seq_mode == SEQ_2 && ev_code == SEQ_EXTENDED)
{
printk(KERN_WARNING "Sequencer: Invalid level 2 event %x\n", ev_code);
return -EINVAL;
}
ev_size = 8;
if (c < ev_size)
{
if (!seq_playing)
seq_startplay();
return count - c;
}
if (copy_from_user((char *)&event_rec[4],
&(buf)[p + 4], 4))
goto out;
}
else
{
if (seq_mode == SEQ_2)
{
printk(KERN_WARNING "Sequencer: 4 byte event in level 2 mode\n");
return -EINVAL;
}
ev_size = 4;
if (event_rec[0] != SEQ_MIDIPUTC)
obsolete_api_used = 1;
}
if (event_rec[0] == SEQ_MIDIPUTC)
{
if (!midi_opened[event_rec[2]])
{
int mode;
int dev = event_rec[2];
if (dev >= max_mididev || midi_devs[dev]==NULL)
{
/*printk("Sequencer Error: Nonexistent MIDI device %d\n", dev);*/
return -ENXIO;
}
mode = translate_mode(file);
if ((err = midi_devs[dev]->open(dev, mode,
sequencer_midi_input, sequencer_midi_output)) < 0)
{
seq_reset();
printk(KERN_WARNING "Sequencer Error: Unable to open Midi #%d\n", dev);
return err;
}
midi_opened[dev] = 1;
}
}
if (!seq_queue(event_rec, (file->f_flags & (O_NONBLOCK) ? 1 : 0)))
{
int processed = count - c;
if (!seq_playing)
seq_startplay();
if (!processed && (file->f_flags & O_NONBLOCK))
return -EAGAIN;
else
return processed;
}
p += ev_size;
c -= ev_size;
}
if (!seq_playing)
seq_startplay();
out:
return count;
}
static int seq_queue(unsigned char *note, char nonblock)
{
/*
* Test if there is space in the queue
*/
if (qlen >= SEQ_MAX_QUEUE)
if (!seq_playing)
seq_startplay(); /*
* Give chance to drain the queue
*/
if (!nonblock && qlen >= SEQ_MAX_QUEUE && !waitqueue_active(&seq_sleeper)) {
/*
* Sleep until there is enough space on the queue
*/
interruptible_sleep_on(&seq_sleeper);
}
if (qlen >= SEQ_MAX_QUEUE)
{
return 0; /*
* To be sure
*/
}
memcpy(&queue[qtail * EV_SZ], note, EV_SZ);
qtail = (qtail + 1) % SEQ_MAX_QUEUE;
qlen++;
return 1;
}
static int extended_event(unsigned char *q)
{
int dev = q[2];
if (dev < 0 || dev >= max_synthdev)
return -ENXIO;
if (!(synth_open_mask & (1 << dev)))
return -ENXIO;
switch (q[1])
{
case SEQ_NOTEOFF:
synth_devs[dev]->kill_note(dev, q[3], q[4], q[5]);
break;
case SEQ_NOTEON:
if (q[4] > 127 && q[4] != 255)
return 0;
if (q[5] == 0)
{
synth_devs[dev]->kill_note(dev, q[3], q[4], q[5]);
break;
}
synth_devs[dev]->start_note(dev, q[3], q[4], q[5]);
break;
case SEQ_PGMCHANGE:
synth_devs[dev]->set_instr(dev, q[3], q[4]);
break;
case SEQ_AFTERTOUCH:
synth_devs[dev]->aftertouch(dev, q[3], q[4]);
break;
case SEQ_BALANCE:
synth_devs[dev]->panning(dev, q[3], (char) q[4]);
break;
case SEQ_CONTROLLER:
synth_devs[dev]->controller(dev, q[3], q[4], (short) (q[5] | (q[6] << 8)));
break;
case SEQ_VOLMODE:
if (synth_devs[dev]->volume_method != NULL)
synth_devs[dev]->volume_method(dev, q[3]);
break;
default:
return -EINVAL;
}
return 0;
}
static int find_voice(int dev, int chn, int note)
{
unsigned short key;
int i;
key = (chn << 8) | (note + 1);
for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++)
if (synth_devs[dev]->alloc.map[i] == key)
return i;
return -1;
}
static int alloc_voice(int dev, int chn, int note)
{
unsigned short key;
int voice;
key = (chn << 8) | (note + 1);
voice = synth_devs[dev]->alloc_voice(dev, chn, note,
&synth_devs[dev]->alloc);
synth_devs[dev]->alloc.map[voice] = key;
synth_devs[dev]->alloc.alloc_times[voice] =
synth_devs[dev]->alloc.timestamp++;
return voice;
}
static void seq_chn_voice_event(unsigned char *event_rec)
{
#define dev event_rec[1]
#define cmd event_rec[2]
#define chn event_rec[3]
#define note event_rec[4]
#define parm event_rec[5]
int voice = -1;
if ((int) dev > max_synthdev || synth_devs[dev] == NULL)
return;
if (!(synth_open_mask & (1 << dev)))
return;
if (!synth_devs[dev])
return;
if (seq_mode == SEQ_2)
{
if (synth_devs[dev]->alloc_voice)
voice = find_voice(dev, chn, note);
if (cmd == MIDI_NOTEON && parm == 0)
{
cmd = MIDI_NOTEOFF;
parm = 64;
}
}
switch (cmd)
{
case MIDI_NOTEON:
if (note > 127 && note != 255) /* Not a seq2 feature */
return;
if (voice == -1 && seq_mode == SEQ_2 && synth_devs[dev]->alloc_voice)
{
/* Internal synthesizer (FM, GUS, etc) */
voice = alloc_voice(dev, chn, note);
}
if (voice == -1)
voice = chn;
if (seq_mode == SEQ_2 && (int) dev < num_synths)
{
/*
* The MIDI channel 10 is a percussive channel. Use the note
* number to select the proper patch (128 to 255) to play.
*/
if (chn == 9)
{
synth_devs[dev]->set_instr(dev, voice, 128 + note);
synth_devs[dev]->chn_info[chn].pgm_num = 128 + note;
}
synth_devs[dev]->setup_voice(dev, voice, chn);
}
synth_devs[dev]->start_note(dev, voice, note, parm);
break;
case MIDI_NOTEOFF:
if (voice == -1)
voice = chn;
synth_devs[dev]->kill_note(dev, voice, note, parm);
break;
case MIDI_KEY_PRESSURE:
if (voice == -1)
voice = chn;
synth_devs[dev]->aftertouch(dev, voice, parm);
break;
default:;
}
#undef dev
#undef cmd
#undef chn
#undef note
#undef parm
}
static void seq_chn_common_event(unsigned char *event_rec)
{
unsigned char dev = event_rec[1];
unsigned char cmd = event_rec[2];
unsigned char chn = event_rec[3];
unsigned char p1 = event_rec[4];
/* unsigned char p2 = event_rec[5]; */
unsigned short w14 = *(short *) &event_rec[6];
if ((int) dev > max_synthdev || synth_devs[dev] == NULL)
return;
if (!(synth_open_mask & (1 << dev)))
return;
if (!synth_devs[dev])
return;
switch (cmd)
{
case MIDI_PGM_CHANGE:
if (seq_mode == SEQ_2)
{
synth_devs[dev]->chn_info[chn].pgm_num = p1;
if ((int) dev >= num_synths)
synth_devs[dev]->set_instr(dev, chn, p1);
}
else
synth_devs[dev]->set_instr(dev, chn, p1);
break;
case MIDI_CTL_CHANGE:
if (seq_mode == SEQ_2)
{
if (chn > 15 || p1 > 127)
break;
synth_devs[dev]->chn_info[chn].controllers[p1] = w14 & 0x7f;
if (p1 < 32) /* Setting MSB should clear LSB to 0 */
synth_devs[dev]->chn_info[chn].controllers[p1 + 32] = 0;
if ((int) dev < num_synths)
{
int val = w14 & 0x7f;
int i, key;
if (p1 < 64) /* Combine MSB and LSB */
{
val = ((synth_devs[dev]->
chn_info[chn].controllers[p1 & ~32] & 0x7f) << 7)
| (synth_devs[dev]->
chn_info[chn].controllers[p1 | 32] & 0x7f);
p1 &= ~32;
}
/* Handle all playing notes on this channel */
key = ((int) chn << 8);
for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++)
if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key)
synth_devs[dev]->controller(dev, i, p1, val);
}
else
synth_devs[dev]->controller(dev, chn, p1, w14);
}
else /* Mode 1 */
synth_devs[dev]->controller(dev, chn, p1, w14);
break;
case MIDI_PITCH_BEND:
if (seq_mode == SEQ_2)
{
synth_devs[dev]->chn_info[chn].bender_value = w14;
if ((int) dev < num_synths)
{
/* Handle all playing notes on this channel */
int i, key;
key = (chn << 8);
for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++)
if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key)
synth_devs[dev]->bender(dev, i, w14);
}
else
synth_devs[dev]->bender(dev, chn, w14);
}
else /* MODE 1 */
synth_devs[dev]->bender(dev, chn, w14);
break;
default:;
}
}
static int seq_timing_event(unsigned char *event_rec)
{
unsigned char cmd = event_rec[1];
unsigned int parm = *(int *) &event_rec[4];
if (seq_mode == SEQ_2)
{
int ret;
if ((ret = tmr->event(tmr_no, event_rec)) == TIMER_ARMED)
if ((SEQ_MAX_QUEUE - qlen) >= output_threshold)
wake_up(&seq_sleeper);
return ret;
}
switch (cmd)
{
case TMR_WAIT_REL:
parm += prev_event_time;
/*
* NOTE! No break here. Execution of TMR_WAIT_REL continues in the
* next case (TMR_WAIT_ABS)
*/
case TMR_WAIT_ABS:
if (parm > 0)
{
long time;
time = parm;
prev_event_time = time;
seq_playing = 1;
request_sound_timer(time);
if ((SEQ_MAX_QUEUE - qlen) >= output_threshold)
wake_up(&seq_sleeper);
return TIMER_ARMED;
}
break;
case TMR_START:
seq_time = jiffies;
prev_input_time = 0;
prev_event_time = 0;
break;
case TMR_STOP:
break;
case TMR_CONTINUE:
break;
case TMR_TEMPO:
break;
case TMR_ECHO:
if (seq_mode == SEQ_2)
seq_copy_to_input(event_rec, 8);
else
{
parm = (parm << 8 | SEQ_ECHO);
seq_copy_to_input((unsigned char *) &parm, 4);
}
break;
default:;
}
return TIMER_NOT_ARMED;
}
static void seq_local_event(unsigned char *event_rec)
{
unsigned char cmd = event_rec[1];
unsigned int parm = *((unsigned int *) &event_rec[4]);
switch (cmd)
{
case LOCL_STARTAUDIO:
DMAbuf_start_devices(parm);
break;
default:;
}
}
static void seq_sysex_message(unsigned char *event_rec)
{
unsigned int dev = event_rec[1];
int i, l = 0;
unsigned char *buf = &event_rec[2];
if (dev > max_synthdev)
return;
if (!(synth_open_mask & (1 << dev)))
return;
if (!synth_devs[dev])
return;
l = 0;
for (i = 0; i < 6 && buf[i] != 0xff; i++)
l = i + 1;
if (!synth_devs[dev]->send_sysex)
return;
if (l > 0)
synth_devs[dev]->send_sysex(dev, buf, l);
}
static int play_event(unsigned char *q)
{
/*
* NOTE! This routine returns
* 0 = normal event played.
* 1 = Timer armed. Suspend playback until timer callback.
* 2 = MIDI output buffer full. Restore queue and suspend until timer
*/
unsigned int *delay;
switch (q[0])
{
case SEQ_NOTEOFF:
if (synth_open_mask & (1 << 0))
if (synth_devs[0])
synth_devs[0]->kill_note(0, q[1], 255, q[3]);
break;
case SEQ_NOTEON:
if (q[4] < 128 || q[4] == 255)
if (synth_open_mask & (1 << 0))
if (synth_devs[0])
synth_devs[0]->start_note(0, q[1], q[2], q[3]);
break;
case SEQ_WAIT:
delay = (unsigned int *) q; /*
* Bytes 1 to 3 are containing the *
* delay in 'ticks'
*/
*delay = (*delay >> 8) & 0xffffff;
if (*delay > 0)
{
long time;
seq_playing = 1;
time = *delay;
prev_event_time = time;
request_sound_timer(time);
if ((SEQ_MAX_QUEUE - qlen) >= output_threshold)
wake_up(&seq_sleeper);
/*
* The timer is now active and will reinvoke this function
* after the timer expires. Return to the caller now.
*/
return 1;
}
break;
case SEQ_PGMCHANGE:
if (synth_open_mask & (1 << 0))
if (synth_devs[0])
synth_devs[0]->set_instr(0, q[1], q[2]);
break;
case SEQ_SYNCTIMER: /*
* Reset timer
*/
seq_time = jiffies;
prev_input_time = 0;
prev_event_time = 0;
break;
case SEQ_MIDIPUTC: /*
* Put a midi character
*/
if (midi_opened[q[2]])
{
int dev;
dev = q[2];
if (dev < 0 || dev >= num_midis || midi_devs[dev] == NULL)
break;
if (!midi_devs[dev]->outputc(dev, q[1]))
{
/*
* Output FIFO is full. Wait one timer cycle and try again.
*/
seq_playing = 1;
request_sound_timer(-1);
return 2;
}
else
midi_written[dev] = 1;
}
break;
case SEQ_ECHO:
seq_copy_to_input(q, 4); /*
* Echo back to the process
*/
break;
case SEQ_PRIVATE:
if ((int) q[1] < max_synthdev)
synth_devs[q[1]]->hw_control(q[1], q);
break;
case SEQ_EXTENDED:
extended_event(q);
break;
case EV_CHN_VOICE:
seq_chn_voice_event(q);
break;
case EV_CHN_COMMON:
seq_chn_common_event(q);
break;
case EV_TIMING:
if (seq_timing_event(q) == TIMER_ARMED)
{
return 1;
}
break;
case EV_SEQ_LOCAL:
seq_local_event(q);
break;
case EV_SYSEX:
seq_sysex_message(q);
break;
default:;
}
return 0;
}
/* called also as timer in irq context */
static void seq_startplay(void)
{
int this_one, action;
unsigned long flags;
while (qlen > 0)
{
spin_lock_irqsave(&lock,flags);
qhead = ((this_one = qhead) + 1) % SEQ_MAX_QUEUE;
qlen--;
spin_unlock_irqrestore(&lock,flags);
seq_playing = 1;
if ((action = play_event(&queue[this_one * EV_SZ])))
{ /* Suspend playback. Next timer routine invokes this routine again */
if (action == 2)
{
qlen++;
qhead = this_one;
}
return;
}
}
seq_playing = 0;
if ((SEQ_MAX_QUEUE - qlen) >= output_threshold)
wake_up(&seq_sleeper);
}
static void reset_controllers(int dev, unsigned char *controller, int update_dev)
{
int i;
for (i = 0; i < 128; i++)
controller[i] = ctrl_def_values[i];
}
static void setup_mode2(void)
{
int dev;
max_synthdev = num_synths;
for (dev = 0; dev < num_midis; dev++)
{
if (midi_devs[dev] && midi_devs[dev]->converter != NULL)
{
synth_devs[max_synthdev++] = midi_devs[dev]->converter;
}
}
for (dev = 0; dev < max_synthdev; dev++)
{
int chn;
synth_devs[dev]->sysex_ptr = 0;
synth_devs[dev]->emulation = 0;
for (chn = 0; chn < 16; chn++)
{
synth_devs[dev]->chn_info[chn].pgm_num = 0;
reset_controllers(dev,
synth_devs[dev]->chn_info[chn].controllers,0);
synth_devs[dev]->chn_info[chn].bender_value = (1 << 7); /* Neutral */
synth_devs[dev]->chn_info[chn].bender_range = 200;
}
}
max_mididev = 0;
seq_mode = SEQ_2;
}
int sequencer_open(int dev, struct file *file)
{
int retval, mode, i;
int level, tmp;
if (!sequencer_ok)
sequencer_init();
level = ((dev & 0x0f) == SND_DEV_SEQ2) ? 2 : 1;
dev = dev >> 4;
mode = translate_mode(file);
DEB(printk("sequencer_open(dev=%d)\n", dev));
if (!sequencer_ok)
{
/* printk("Sound card: sequencer not initialized\n");*/
return -ENXIO;
}
if (dev) /* Patch manager device (obsolete) */
return -ENXIO;
if(synth_devs[dev] == NULL)
request_module("synth0");
if (mode == OPEN_READ)
{
if (!num_midis)
{
/*printk("Sequencer: No MIDI devices. Input not possible\n");*/
sequencer_busy = 0;
return -ENXIO;
}
}
if (sequencer_busy)
{
return -EBUSY;
}
sequencer_busy = 1;
obsolete_api_used = 0;
max_mididev = num_midis;
max_synthdev = num_synths;
pre_event_timeout = MAX_SCHEDULE_TIMEOUT;
seq_mode = SEQ_1;
if (pending_timer != -1)
{
tmr_no = pending_timer;
pending_timer = -1;
}
if (tmr_no == -1) /* Not selected yet */
{
int i, best;
best = -1;
for (i = 0; i < num_sound_timers; i++)
if (sound_timer_devs[i] && sound_timer_devs[i]->priority > best)
{
tmr_no = i;
best = sound_timer_devs[i]->priority;
}
if (tmr_no == -1) /* Should not be */
tmr_no = 0;
}
tmr = sound_timer_devs[tmr_no];
if (level == 2)
{
if (tmr == NULL)
{
/*printk("sequencer: No timer for level 2\n");*/
sequencer_busy = 0;
return -ENXIO;
}
setup_mode2();
}
if (!max_synthdev && !max_mididev)
{
sequencer_busy=0;
return -ENXIO;
}
synth_open_mask = 0;
for (i = 0; i < max_mididev; i++)
{
midi_opened[i] = 0;
midi_written[i] = 0;
}
for (i = 0; i < max_synthdev; i++)
{
if (synth_devs[i]==NULL)
continue;
if (!try_module_get(synth_devs[i]->owner))
continue;
if ((tmp = synth_devs[i]->open(i, mode)) < 0)
{
printk(KERN_WARNING "Sequencer: Warning! Cannot open synth device #%d (%d)\n", i, tmp);
if (synth_devs[i]->midi_dev)
printk(KERN_WARNING "(Maps to MIDI dev #%d)\n", synth_devs[i]->midi_dev);
}
else
{
synth_open_mask |= (1 << i);
if (synth_devs[i]->midi_dev)
midi_opened[synth_devs[i]->midi_dev] = 1;
}
}
seq_time = jiffies;
prev_input_time = 0;
prev_event_time = 0;
if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE))
{
/*
* Initialize midi input devices
*/
for (i = 0; i < max_mididev; i++)
if (!midi_opened[i] && midi_devs[i])
{
if (!try_module_get(midi_devs[i]->owner))
continue;
if ((retval = midi_devs[i]->open(i, mode,
sequencer_midi_input, sequencer_midi_output)) >= 0)
{
midi_opened[i] = 1;
}
}
}
if (seq_mode == SEQ_2) {
if (try_module_get(tmr->owner))
tmr->open(tmr_no, seq_mode);
}
init_waitqueue_head(&seq_sleeper);
init_waitqueue_head(&midi_sleeper);
output_threshold = SEQ_MAX_QUEUE / 2;
return 0;
}
static void seq_drain_midi_queues(void)
{
int i, n;
/*
* Give the Midi drivers time to drain their output queues
*/
n = 1;
while (!signal_pending(current) && n)
{
n = 0;
for (i = 0; i < max_mididev; i++)
if (midi_opened[i] && midi_written[i])
if (midi_devs[i]->buffer_status != NULL)
if (midi_devs[i]->buffer_status(i))
n++;
/*
* Let's have a delay
*/
if (n)
interruptible_sleep_on_timeout(&seq_sleeper,
HZ/10);
}
}
void sequencer_release(int dev, struct file *file)
{
int i;
int mode = translate_mode(file);
dev = dev >> 4;
DEB(printk("sequencer_release(dev=%d)\n", dev));
/*
* Wait until the queue is empty (if we don't have nonblock)
*/
if (mode != OPEN_READ && !(file->f_flags & O_NONBLOCK))
{
while (!signal_pending(current) && qlen > 0)
{
seq_sync();
interruptible_sleep_on_timeout(&seq_sleeper,
3*HZ);
/* Extra delay */
}
}
if (mode != OPEN_READ)
seq_drain_midi_queues(); /*
* Ensure the output queues are empty
*/
seq_reset();
if (mode != OPEN_READ)
seq_drain_midi_queues(); /*
* Flush the all notes off messages
*/
for (i = 0; i < max_synthdev; i++)
{
if (synth_open_mask & (1 << i)) /*
* Actually opened
*/
if (synth_devs[i])
{
synth_devs[i]->close(i);
module_put(synth_devs[i]->owner);
if (synth_devs[i]->midi_dev)
midi_opened[synth_devs[i]->midi_dev] = 0;
}
}
for (i = 0; i < max_mididev; i++)
{
if (midi_opened[i]) {
midi_devs[i]->close(i);
module_put(midi_devs[i]->owner);
}
}
if (seq_mode == SEQ_2) {
tmr->close(tmr_no);
module_put(tmr->owner);
}
if (obsolete_api_used)
printk(KERN_WARNING "/dev/music: Obsolete (4 byte) API was used by %s\n", current->comm);
sequencer_busy = 0;
}
static int seq_sync(void)
{
if (qlen && !seq_playing && !signal_pending(current))
seq_startplay();
if (qlen > 0)
interruptible_sleep_on_timeout(&seq_sleeper, HZ);
return qlen;
}
static void midi_outc(int dev, unsigned char data)
{
/*
* NOTE! Calls sleep(). Don't call this from interrupt.
*/
int n;
unsigned long flags;
/*
* This routine sends one byte to the Midi channel.
* If the output FIFO is full, it waits until there
* is space in the queue
*/
n = 3 * HZ; /* Timeout */
spin_lock_irqsave(&lock,flags);
while (n && !midi_devs[dev]->outputc(dev, data)) {
interruptible_sleep_on_timeout(&seq_sleeper, HZ/25);
n--;
}
spin_unlock_irqrestore(&lock,flags);
}
static void seq_reset(void)
{
/*
* NOTE! Calls sleep(). Don't call this from interrupt.
*/
int i;
int chn;
unsigned long flags;
sound_stop_timer();
seq_time = jiffies;
prev_input_time = 0;
prev_event_time = 0;
qlen = qhead = qtail = 0;
iqlen = iqhead = iqtail = 0;
for (i = 0; i < max_synthdev; i++)
if (synth_open_mask & (1 << i))
if (synth_devs[i])
synth_devs[i]->reset(i);
if (seq_mode == SEQ_2)
{
for (chn = 0; chn < 16; chn++)
for (i = 0; i < max_synthdev; i++)
if (synth_open_mask & (1 << i))
if (synth_devs[i])
{
synth_devs[i]->controller(i, chn, 123, 0); /* All notes off */
synth_devs[i]->controller(i, chn, 121, 0); /* Reset all ctl */
synth_devs[i]->bender(i, chn, 1 << 13); /* Bender off */
}
}
else /* seq_mode == SEQ_1 */
{
for (i = 0; i < max_mididev; i++)
if (midi_written[i]) /*
* Midi used. Some notes may still be playing
*/
{
/*
* Sending just a ACTIVE SENSING message should be enough to stop all
* playing notes. Since there are devices not recognizing the
* active sensing, we have to send some all notes off messages also.
*/
midi_outc(i, 0xfe);
for (chn = 0; chn < 16; chn++)
{
midi_outc(i, (unsigned char) (0xb0 + (chn & 0x0f))); /* control change */
midi_outc(i, 0x7b); /* All notes off */
midi_outc(i, 0); /* Dummy parameter */
}
midi_devs[i]->close(i);
midi_written[i] = 0;
midi_opened[i] = 0;
}
}
seq_playing = 0;
spin_lock_irqsave(&lock,flags);
if (waitqueue_active(&seq_sleeper)) {
/* printk( "Sequencer Warning: Unexpected sleeping process - Waking up\n"); */
wake_up(&seq_sleeper);
}
spin_unlock_irqrestore(&lock,flags);
}
static void seq_panic(void)
{
/*
* This routine is called by the application in case the user
* wants to reset the system to the default state.
*/
seq_reset();
/*
* Since some of the devices don't recognize the active sensing and
* all notes off messages, we have to shut all notes manually.
*
* TO BE IMPLEMENTED LATER
*/
/*
* Also return the controllers to their default states
*/
}
int sequencer_ioctl(int dev, struct file *file, unsigned int cmd, void __user *arg)
{
int midi_dev, orig_dev, val, err;
int mode = translate_mode(file);
struct synth_info inf;
struct seq_event_rec event_rec;
unsigned long flags;
int __user *p = arg;
orig_dev = dev = dev >> 4;
switch (cmd)
{
case SNDCTL_TMR_TIMEBASE:
case SNDCTL_TMR_TEMPO:
case SNDCTL_TMR_START:
case SNDCTL_TMR_STOP:
case SNDCTL_TMR_CONTINUE:
case SNDCTL_TMR_METRONOME:
case SNDCTL_TMR_SOURCE:
if (seq_mode != SEQ_2)
return -EINVAL;
return tmr->ioctl(tmr_no, cmd, arg);
case SNDCTL_TMR_SELECT:
if (seq_mode != SEQ_2)
return -EINVAL;
if (get_user(pending_timer, p))
return -EFAULT;
if (pending_timer < 0 || pending_timer >= num_sound_timers || sound_timer_devs[pending_timer] == NULL)
{
pending_timer = -1;
return -EINVAL;
}
val = pending_timer;
break;
case SNDCTL_SEQ_PANIC:
seq_panic();
return -EINVAL;
case SNDCTL_SEQ_SYNC:
if (mode == OPEN_READ)
return 0;
while (qlen > 0 && !signal_pending(current))
seq_sync();
return qlen ? -EINTR : 0;
case SNDCTL_SEQ_RESET:
seq_reset();
return 0;
case SNDCTL_SEQ_TESTMIDI:
if (__get_user(midi_dev, p))
return -EFAULT;
if (midi_dev < 0 || midi_dev >= max_mididev || !midi_devs[midi_dev])
return -ENXIO;
if (!midi_opened[midi_dev] &&
(err = midi_devs[midi_dev]->open(midi_dev, mode, sequencer_midi_input,
sequencer_midi_output)) < 0)
return err;
midi_opened[midi_dev] = 1;
return 0;
case SNDCTL_SEQ_GETINCOUNT:
if (mode == OPEN_WRITE)
return 0;
val = iqlen;
break;
case SNDCTL_SEQ_GETOUTCOUNT:
if (mode == OPEN_READ)
return 0;
val = SEQ_MAX_QUEUE - qlen;
break;
case SNDCTL_SEQ_GETTIME:
if (seq_mode == SEQ_2)
return tmr->ioctl(tmr_no, cmd, arg);
val = jiffies - seq_time;
break;
case SNDCTL_SEQ_CTRLRATE:
/*
* If *arg == 0, just return the current rate
*/
if (seq_mode == SEQ_2)
return tmr->ioctl(tmr_no, cmd, arg);
if (get_user(val, p))
return -EFAULT;
if (val != 0)
return -EINVAL;
val = HZ;
break;
case SNDCTL_SEQ_RESETSAMPLES:
case SNDCTL_SYNTH_REMOVESAMPLE:
case SNDCTL_SYNTH_CONTROL:
if (get_user(dev, p))
return -EFAULT;
if (dev < 0 || dev >= num_synths || synth_devs[dev] == NULL)
return -ENXIO;
if (!(synth_open_mask & (1 << dev)) && !orig_dev)
return -EBUSY;
return synth_devs[dev]->ioctl(dev, cmd, arg);
case SNDCTL_SEQ_NRSYNTHS:
val = max_synthdev;
break;
case SNDCTL_SEQ_NRMIDIS:
val = max_mididev;
break;
case SNDCTL_SYNTH_MEMAVL:
if (get_user(dev, p))
return -EFAULT;
if (dev < 0 || dev >= num_synths || synth_devs[dev] == NULL)
return -ENXIO;
if (!(synth_open_mask & (1 << dev)) && !orig_dev)
return -EBUSY;
val = synth_devs[dev]->ioctl(dev, cmd, arg);
break;
case SNDCTL_FM_4OP_ENABLE:
if (get_user(dev, p))
return -EFAULT;
if (dev < 0 || dev >= num_synths || synth_devs[dev] == NULL)
return -ENXIO;
if (!(synth_open_mask & (1 << dev)))
return -ENXIO;
synth_devs[dev]->ioctl(dev, cmd, arg);
return 0;
case SNDCTL_SYNTH_INFO:
if (get_user(dev, &((struct synth_info __user *)arg)->device))
return -EFAULT;
if (dev < 0 || dev >= max_synthdev)
return -ENXIO;
if (!(synth_open_mask & (1 << dev)) && !orig_dev)
return -EBUSY;
return synth_devs[dev]->ioctl(dev, cmd, arg);
/* Like SYNTH_INFO but returns ID in the name field */
case SNDCTL_SYNTH_ID:
if (get_user(dev, &((struct synth_info __user *)arg)->device))
return -EFAULT;
if (dev < 0 || dev >= max_synthdev)
return -ENXIO;
if (!(synth_open_mask & (1 << dev)) && !orig_dev)
return -EBUSY;
memcpy(&inf, synth_devs[dev]->info, sizeof(inf));
strlcpy(inf.name, synth_devs[dev]->id, sizeof(inf.name));
inf.device = dev;
return copy_to_user(arg, &inf, sizeof(inf))?-EFAULT:0;
case SNDCTL_SEQ_OUTOFBAND:
if (copy_from_user(&event_rec, arg, sizeof(event_rec)))
return -EFAULT;
spin_lock_irqsave(&lock,flags);
play_event(event_rec.arr);
spin_unlock_irqrestore(&lock,flags);
return 0;
case SNDCTL_MIDI_INFO:
if (get_user(dev, &((struct midi_info __user *)arg)->device))
return -EFAULT;
if (dev < 0 || dev >= max_mididev || !midi_devs[dev])
return -ENXIO;
midi_devs[dev]->info.device = dev;
return copy_to_user(arg, &midi_devs[dev]->info, sizeof(struct midi_info))?-EFAULT:0;
case SNDCTL_SEQ_THRESHOLD:
if (get_user(val, p))
return -EFAULT;
if (val < 1)
val = 1;
if (val >= SEQ_MAX_QUEUE)
val = SEQ_MAX_QUEUE - 1;
output_threshold = val;
return 0;
case SNDCTL_MIDI_PRETIME:
if (get_user(val, p))
return -EFAULT;
if (val < 0)
val = 0;
val = (HZ * val) / 10;
pre_event_timeout = val;
break;
default:
if (mode == OPEN_READ)
return -EIO;
if (!synth_devs[0])
return -ENXIO;
if (!(synth_open_mask & (1 << 0)))
return -ENXIO;
if (!synth_devs[0]->ioctl)
return -EINVAL;
return synth_devs[0]->ioctl(0, cmd, arg);
}
return put_user(val, p);
}
/* No kernel lock - we're using the global irq lock here */
unsigned int sequencer_poll(int dev, struct file *file, poll_table * wait)
{
unsigned long flags;
unsigned int mask = 0;
dev = dev >> 4;
spin_lock_irqsave(&lock,flags);
/* input */
poll_wait(file, &midi_sleeper, wait);
if (iqlen)
mask |= POLLIN | POLLRDNORM;
/* output */
poll_wait(file, &seq_sleeper, wait);
if ((SEQ_MAX_QUEUE - qlen) >= output_threshold)
mask |= POLLOUT | POLLWRNORM;
spin_unlock_irqrestore(&lock,flags);
return mask;
}
void sequencer_timer(unsigned long dummy)
{
seq_startplay();
}
int note_to_freq(int note_num)
{
/*
* This routine converts a midi note to a frequency (multiplied by 1000)
*/
int note, octave, note_freq;
static int notes[] =
{
261632, 277189, 293671, 311132, 329632, 349232,
369998, 391998, 415306, 440000, 466162, 493880
};
#define BASE_OCTAVE 5
octave = note_num / 12;
note = note_num % 12;
note_freq = notes[note];
if (octave < BASE_OCTAVE)
note_freq >>= (BASE_OCTAVE - octave);
else if (octave > BASE_OCTAVE)
note_freq <<= (octave - BASE_OCTAVE);
/*
* note_freq >>= 1;
*/
return note_freq;
}
unsigned long compute_finetune(unsigned long base_freq, int bend, int range,
int vibrato_cents)
{
unsigned long amount;
int negative, semitones, cents, multiplier = 1;
if (!bend)
return base_freq;
if (!range)
return base_freq;
if (!base_freq)
return base_freq;
if (range >= 8192)
range = 8192;
bend = bend * range / 8192; /* Convert to cents */
bend += vibrato_cents;
if (!bend)
return base_freq;
negative = bend < 0 ? 1 : 0;
if (bend < 0)
bend *= -1;
if (bend > range)
bend = range;
/*
if (bend > 2399)
bend = 2399;
*/
while (bend > 2399)
{
multiplier *= 4;
bend -= 2400;
}
semitones = bend / 100;
if (semitones > 99)
semitones = 99;
cents = bend % 100;
amount = (int) (semitone_tuning[semitones] * multiplier * cent_tuning[cents]) / 10000;
if (negative)
return (base_freq * 10000) / amount; /* Bend down */
else
return (base_freq * amount) / 10000; /* Bend up */
}
void sequencer_init(void)
{
/* drag in sequencer_syms.o */
{
extern char sequencer_syms_symbol;
sequencer_syms_symbol = 0;
}
if (sequencer_ok)
return;
MIDIbuf_init();
queue = (unsigned char *)vmalloc(SEQ_MAX_QUEUE * EV_SZ);
if (queue == NULL)
{
printk(KERN_ERR "sequencer: Can't allocate memory for sequencer output queue\n");
return;
}
iqueue = (unsigned char *)vmalloc(SEQ_MAX_QUEUE * IEV_SZ);
if (iqueue == NULL)
{
printk(KERN_ERR "sequencer: Can't allocate memory for sequencer input queue\n");
vfree(queue);
return;
}
sequencer_ok = 1;
}
void sequencer_unload(void)
{
vfree(queue);
vfree(iqueue);
queue = iqueue = NULL;
}