linux-hardened/drivers/net/skfp/drvfbi.c

585 lines
12 KiB
C
Raw Normal View History

/******************************************************************************
*
* (C)Copyright 1998,1999 SysKonnect,
* a business unit of Schneider & Koch & Co. Datensysteme GmbH.
*
* See the file "skfddi.c" for further information.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The information in this file is provided "AS IS" without warranty.
*
******************************************************************************/
/*
* FBI board dependent Driver for SMT and LLC
*/
#include "h/types.h"
#include "h/fddi.h"
#include "h/smc.h"
#include "h/supern_2.h"
#include "h/skfbiinc.h"
#include <linux/bitrev.h>
#ifndef lint
static const char ID_sccs[] = "@(#)drvfbi.c 1.63 99/02/11 (C) SK " ;
#endif
/*
* PCM active state
*/
#define PC8_ACTIVE 8
#define LED_Y_ON 0x11 /* Used for ring up/down indication */
#define LED_Y_OFF 0x10
#define MS2BCLK(x) ((x)*12500L)
/*
* valid configuration values are:
*/
/*
* xPOS_ID:xxxx
* | \ /
* | \/
* | --------------------- the patched POS_ID of the Adapter
* | xxxx = (Vendor ID low byte,
* | Vendor ID high byte,
* | Device ID low byte,
* | Device ID high byte)
* +------------------------------ the patched oem_id must be
* 'S' for SK or 'I' for IBM
* this is a short id for the driver.
*/
#ifndef MULT_OEM
#ifndef OEM_CONCEPT
const u_char oem_id[] = "xPOS_ID:xxxx" ;
#else /* OEM_CONCEPT */
const u_char oem_id[] = OEM_ID ;
#endif /* OEM_CONCEPT */
#define ID_BYTE0 8
#define OEMID(smc,i) oem_id[ID_BYTE0 + i]
#else /* MULT_OEM */
const struct s_oem_ids oem_ids[] = {
#include "oemids.h"
{0}
};
#define OEMID(smc,i) smc->hw.oem_id->oi_id[i]
#endif /* MULT_OEM */
/* Prototypes of external functions */
#ifdef AIX
extern int AIX_vpdReadByte() ;
#endif
/* Prototype of a local function. */
static void smt_stop_watchdog(struct s_smc *smc);
/*
* FDDI card reset
*/
static void card_start(struct s_smc *smc)
{
int i ;
#ifdef PCI
u_char rev_id ;
u_short word;
#endif
smt_stop_watchdog(smc) ;
#ifdef PCI
/*
* make sure no transfer activity is pending
*/
outpw(FM_A(FM_MDREG1),FM_MINIT) ;
outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
/*
* now reset everything
*/
outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
i = (int) inp(ADDR(B0_CTRL)) ; /* do dummy read */
SK_UNUSED(i) ; /* Make LINT happy. */
outp(ADDR(B0_CTRL), CTRL_RST_CLR) ;
/*
* Reset all bits in the PCI STATUS register
*/
outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ; /* enable for writes */
word = inpw(PCI_C(PCI_STATUS)) ;
outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ;
outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ; /* disable writes */
/*
* Release the reset of all the State machines
* Release Master_Reset
* Release HPI_SM_Reset
*/
outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ;
/*
* determine the adapter type
* Note: Do it here, because some drivers may call card_start() once
* at very first before any other initialization functions is
* executed.
*/
rev_id = inp(PCI_C(PCI_REV_ID)) ;
if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) {
smc->hw.hw_is_64bit = TRUE ;
} else {
smc->hw.hw_is_64bit = FALSE ;
}
/*
* Watermark initialization
*/
if (!smc->hw.hw_is_64bit) {
outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
}
outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* clear the reset chips */
outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */
/* init the timer value for the watch dog 2,5 minutes */
outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ;
/* initialize the ISR mask */
smc->hw.is_imask = ISR_MASK ;
smc->hw.hw_state = STOPPED ;
#endif
GET_PAGE(0) ; /* necessary for BOOT */
}
void card_stop(struct s_smc *smc)
{
smt_stop_watchdog(smc) ;
smc->hw.mac_ring_is_up = 0 ; /* ring down */
#ifdef PCI
/*
* make sure no transfer activity is pending
*/
outpw(FM_A(FM_MDREG1),FM_MINIT) ;
outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
/*
* now reset everything
*/
outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* reset for all chips */
outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */
smc->hw.hw_state = STOPPED ;
#endif
}
/*--------------------------- ISR handling ----------------------------------*/
void mac1_irq(struct s_smc *smc, u_short stu, u_short stl)
{
int restart_tx = 0 ;
again:
/*
* parity error: note encoding error is not possible in tag mode
*/
if (stl & (FM_SPCEPDS | /* parity err. syn.q.*/
FM_SPCEPDA0 | /* parity err. a.q.0 */
FM_SPCEPDA1)) { /* parity err. a.q.1 */
SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ;
}
/*
* buffer underrun: can only occur if a tx threshold is specified
*/
if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/
FM_STBURA0 | /* tx buffer underrun a.q.0 */
FM_STBURA1)) { /* tx buffer underrun a.q.2 */
SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
}
if ( (stu & (FM_SXMTABT | /* transmit abort */
FM_STXABRS | /* syn. tx abort */
FM_STXABRA0)) || /* asyn. tx abort */
(stl & (FM_SQLCKS | /* lock for syn. q. */
FM_SQLCKA0)) ) { /* lock for asyn. q. */
formac_tx_restart(smc) ; /* init tx */
restart_tx = 1 ;
stu = inpw(FM_A(FM_ST1U)) ;
stl = inpw(FM_A(FM_ST1L)) ;
stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
if (stu || stl)
goto again ;
}
if (stu & (FM_STEFRMA0 | /* end of asyn tx */
FM_STEFRMS)) { /* end of sync tx */
restart_tx = 1 ;
}
if (restart_tx)
llc_restart_tx(smc) ;
}
/*
* interrupt source= plc1
* this function is called in nwfbisr.asm
*/
void plc1_irq(struct s_smc *smc)
{
u_short st = inpw(PLC(PB,PL_INTR_EVENT)) ;
plc_irq(smc,PB,st) ;
}
/*
* interrupt source= plc2
* this function is called in nwfbisr.asm
*/
void plc2_irq(struct s_smc *smc)
{
u_short st = inpw(PLC(PA,PL_INTR_EVENT)) ;
plc_irq(smc,PA,st) ;
}
/*
* interrupt source= timer
*/
void timer_irq(struct s_smc *smc)
{
hwt_restart(smc);
smc->hw.t_stop = smc->hw.t_start;
smt_timer_done(smc) ;
}
/*
* return S-port (PA or PB)
*/
int pcm_get_s_port(struct s_smc *smc)
{
SK_UNUSED(smc) ;
return(PS) ;
}
/*
* Station Label = "FDDI-XYZ" where
*
* X = connector type
* Y = PMD type
* Z = port type
*/
#define STATION_LABEL_CONNECTOR_OFFSET 5
#define STATION_LABEL_PMD_OFFSET 6
#define STATION_LABEL_PORT_OFFSET 7
void read_address(struct s_smc *smc, u_char *mac_addr)
{
char ConnectorType ;
char PmdType ;
int i ;
#ifdef PCI
for (i = 0; i < 6; i++) { /* read mac address from board */
smc->hw.fddi_phys_addr.a[i] =
bitrev8(inp(ADDR(B2_MAC_0+i)));
}
#endif
ConnectorType = inp(ADDR(B2_CONN_TYP)) ;
PmdType = inp(ADDR(B2_PMD_TYP)) ;
smc->y[PA].pmd_type[PMD_SK_CONN] =
smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ;
smc->y[PA].pmd_type[PMD_SK_PMD ] =
smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ;
if (mac_addr) {
for (i = 0; i < 6 ;i++) {
smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ;
smc->hw.fddi_home_addr.a[i] = bitrev8(mac_addr[i]);
}
return ;
}
smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ;
for (i = 0; i < 6 ;i++) {
smc->hw.fddi_canon_addr.a[i] =
bitrev8(smc->hw.fddi_phys_addr.a[i]);
}
}
/*
* FDDI card soft reset
*/
void init_board(struct s_smc *smc, u_char *mac_addr)
{
card_start(smc) ;
read_address(smc,mac_addr) ;
if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL))
smc->s.sas = SMT_SAS ; /* Single att. station */
else
smc->s.sas = SMT_DAS ; /* Dual att. station */
if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST))
smc->mib.fddiSMTBypassPresent = 0 ;
/* without opt. bypass */
else
smc->mib.fddiSMTBypassPresent = 1 ;
/* with opt. bypass */
}
/*
* insert or deinsert optical bypass (called by ECM)
*/
void sm_pm_bypass_req(struct s_smc *smc, int mode)
{
DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ?
"BP_INSERT" : "BP_DEINSERT",0) ;
if (smc->s.sas != SMT_DAS)
return ;
#ifdef PCI
switch(mode) {
case BP_INSERT :
outp(ADDR(B0_DAS),DAS_BYP_INS) ; /* insert station */
break ;
case BP_DEINSERT :
outp(ADDR(B0_DAS),DAS_BYP_RMV) ; /* bypass station */
break ;
}
#endif
}
/*
* check if bypass connected
*/
int sm_pm_bypass_present(struct s_smc *smc)
{
return( (inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ;
}
void plc_clear_irq(struct s_smc *smc, int p)
{
SK_UNUSED(p) ;
SK_UNUSED(smc) ;
}
/*
* led_indication called by rmt_indication() and
* pcm_state_change()
*
* Input:
* smc: SMT context
* led_event:
* 0 Only switch green LEDs according to their respective PCM state
* LED_Y_OFF just switch yellow LED off
* LED_Y_ON just switch yello LED on
*/
static void led_indication(struct s_smc *smc, int led_event)
{
/* use smc->hw.mac_ring_is_up == TRUE
* as indication for Ring Operational
*/
u_short led_state ;
struct s_phy *phy ;
struct fddi_mib_p *mib_a ;
struct fddi_mib_p *mib_b ;
phy = &smc->y[PA] ;
mib_a = phy->mib ;
phy = &smc->y[PB] ;
mib_b = phy->mib ;
#ifdef PCI
led_state = 0 ;
/* Ring up = yellow led OFF*/
if (led_event == LED_Y_ON) {
led_state |= LED_MY_ON ;
}
else if (led_event == LED_Y_OFF) {
led_state |= LED_MY_OFF ;
}
else { /* PCM state changed */
/* Link at Port A/S = green led A ON */
if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
led_state |= LED_GA_ON ;
}
else {
led_state |= LED_GA_OFF ;
}
/* Link at Port B = green led B ON */
if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
led_state |= LED_GB_ON ;
}
else {
led_state |= LED_GB_OFF ;
}
}
outp(ADDR(B0_LED), led_state) ;
#endif /* PCI */
}
void pcm_state_change(struct s_smc *smc, int plc, int p_state)
{
/*
* the current implementation of pcm_state_change() in the driver
* parts must be renamed to drv_pcm_state_change() which will be called
* now after led_indication.
*/
DRV_PCM_STATE_CHANGE(smc,plc,p_state) ;
led_indication(smc,0) ;
}
void rmt_indication(struct s_smc *smc, int i)
{
/* Call a driver special function if defined */
DRV_RMT_INDICATION(smc,i) ;
led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ;
}
/*
* llc_recover_tx called by init_tx (fplus.c)
*/
void llc_recover_tx(struct s_smc *smc)
{
#ifdef LOAD_GEN
extern int load_gen_flag ;
load_gen_flag = 0 ;
#endif
#ifndef SYNC
smc->hw.n_a_send= 0 ;
#else
SK_UNUSED(smc) ;
#endif
}
#ifdef MULT_OEM
static int is_equal_num(char comp1[], char comp2[], int num)
{
int i ;
for (i = 0 ; i < num ; i++) {
if (comp1[i] != comp2[i])
return (0) ;
}
return (1) ;
} /* is_equal_num */
/*
* set the OEM ID defaults, and test the contents of the OEM data base
* The default OEM is the first ACTIVE entry in the OEM data base
*
* returns: 0 success
* 1 error in data base
* 2 data base empty
* 3 no active entry
*/
int set_oi_id_def(struct s_smc *smc)
{
int sel_id ;
int i ;
int act_entries ;
i = 0 ;
sel_id = -1 ;
act_entries = FALSE ;
smc->hw.oem_id = 0 ;
smc->hw.oem_min_status = OI_STAT_ACTIVE ;
/* check OEM data base */
while (oem_ids[i].oi_status) {
switch (oem_ids[i].oi_status) {
case OI_STAT_ACTIVE:
act_entries = TRUE ; /* we have active IDs */
if (sel_id == -1)
sel_id = i ; /* save the first active ID */
case OI_STAT_VALID:
case OI_STAT_PRESENT:
i++ ;
break ; /* entry ok */
default:
return (1) ; /* invalid oi_status */
}
}
if (i == 0)
return (2) ;
if (!act_entries)
return (3) ;
/* ok, we have a valid OEM data base with an active entry */
smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[sel_id] ;
return (0) ;
}
#endif /* MULT_OEM */
void driver_get_bia(struct s_smc *smc, struct fddi_addr *bia_addr)
{
int i ;
for (i = 0 ; i < 6 ; i++)
bia_addr->a[i] = bitrev8(smc->hw.fddi_phys_addr.a[i]);
}
void smt_start_watchdog(struct s_smc *smc)
{
SK_UNUSED(smc) ; /* Make LINT happy. */
#ifndef DEBUG
#ifdef PCI
if (smc->hw.wdog_used) {
outpw(ADDR(B2_WDOG_CRTL),TIM_START) ; /* Start timer. */
}
#endif
#endif /* DEBUG */
}
static void smt_stop_watchdog(struct s_smc *smc)
{
SK_UNUSED(smc) ; /* Make LINT happy. */
#ifndef DEBUG
#ifdef PCI
if (smc->hw.wdog_used) {
outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ; /* Stop timer. */
}
#endif
#endif /* DEBUG */
}
#ifdef PCI
void mac_do_pci_fix(struct s_smc *smc)
{
SK_UNUSED(smc) ;
}
#endif /* PCI */