2015-05-16 01:26:10 +02:00
|
|
|
/*
|
|
|
|
* This contains encryption functions for per-file encryption.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2015, Google, Inc.
|
|
|
|
* Copyright (C) 2015, Motorola Mobility
|
|
|
|
*
|
|
|
|
* Written by Michael Halcrow, 2014.
|
|
|
|
*
|
|
|
|
* Filename encryption additions
|
|
|
|
* Uday Savagaonkar, 2014
|
|
|
|
* Encryption policy handling additions
|
|
|
|
* Ildar Muslukhov, 2014
|
|
|
|
* Add fscrypt_pullback_bio_page()
|
|
|
|
* Jaegeuk Kim, 2015.
|
|
|
|
*
|
|
|
|
* This has not yet undergone a rigorous security audit.
|
|
|
|
*
|
|
|
|
* The usage of AES-XTS should conform to recommendations in NIST
|
|
|
|
* Special Publication 800-38E and IEEE P1619/D16.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <linux/mempool.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include <linux/ratelimit.h>
|
|
|
|
#include <linux/bio.h>
|
|
|
|
#include <linux/dcache.h>
|
2016-04-13 01:05:36 +02:00
|
|
|
#include <linux/namei.h>
|
2015-05-16 01:26:10 +02:00
|
|
|
#include <linux/fscrypto.h>
|
|
|
|
|
|
|
|
static unsigned int num_prealloc_crypto_pages = 32;
|
|
|
|
static unsigned int num_prealloc_crypto_ctxs = 128;
|
|
|
|
|
|
|
|
module_param(num_prealloc_crypto_pages, uint, 0444);
|
|
|
|
MODULE_PARM_DESC(num_prealloc_crypto_pages,
|
|
|
|
"Number of crypto pages to preallocate");
|
|
|
|
module_param(num_prealloc_crypto_ctxs, uint, 0444);
|
|
|
|
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
|
|
|
|
"Number of crypto contexts to preallocate");
|
|
|
|
|
|
|
|
static mempool_t *fscrypt_bounce_page_pool = NULL;
|
|
|
|
|
|
|
|
static LIST_HEAD(fscrypt_free_ctxs);
|
|
|
|
static DEFINE_SPINLOCK(fscrypt_ctx_lock);
|
|
|
|
|
|
|
|
static struct workqueue_struct *fscrypt_read_workqueue;
|
|
|
|
static DEFINE_MUTEX(fscrypt_init_mutex);
|
|
|
|
|
|
|
|
static struct kmem_cache *fscrypt_ctx_cachep;
|
|
|
|
struct kmem_cache *fscrypt_info_cachep;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscrypt_release_ctx() - Releases an encryption context
|
|
|
|
* @ctx: The encryption context to release.
|
|
|
|
*
|
|
|
|
* If the encryption context was allocated from the pre-allocated pool, returns
|
|
|
|
* it to that pool. Else, frees it.
|
|
|
|
*
|
|
|
|
* If there's a bounce page in the context, this frees that.
|
|
|
|
*/
|
|
|
|
void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
|
|
|
|
mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
|
|
|
|
ctx->w.bounce_page = NULL;
|
|
|
|
}
|
|
|
|
ctx->w.control_page = NULL;
|
|
|
|
if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
|
|
|
|
kmem_cache_free(fscrypt_ctx_cachep, ctx);
|
|
|
|
} else {
|
|
|
|
spin_lock_irqsave(&fscrypt_ctx_lock, flags);
|
|
|
|
list_add(&ctx->free_list, &fscrypt_free_ctxs);
|
|
|
|
spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscrypt_release_ctx);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscrypt_get_ctx() - Gets an encryption context
|
|
|
|
* @inode: The inode for which we are doing the crypto
|
2016-04-12 00:51:57 +02:00
|
|
|
* @gfp_flags: The gfp flag for memory allocation
|
2015-05-16 01:26:10 +02:00
|
|
|
*
|
|
|
|
* Allocates and initializes an encryption context.
|
|
|
|
*
|
|
|
|
* Return: An allocated and initialized encryption context on success; error
|
|
|
|
* value or NULL otherwise.
|
|
|
|
*/
|
2016-04-12 00:51:57 +02:00
|
|
|
struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
|
2015-05-16 01:26:10 +02:00
|
|
|
{
|
|
|
|
struct fscrypt_ctx *ctx = NULL;
|
|
|
|
struct fscrypt_info *ci = inode->i_crypt_info;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (ci == NULL)
|
|
|
|
return ERR_PTR(-ENOKEY);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We first try getting the ctx from a free list because in
|
|
|
|
* the common case the ctx will have an allocated and
|
|
|
|
* initialized crypto tfm, so it's probably a worthwhile
|
|
|
|
* optimization. For the bounce page, we first try getting it
|
|
|
|
* from the kernel allocator because that's just about as fast
|
|
|
|
* as getting it from a list and because a cache of free pages
|
|
|
|
* should generally be a "last resort" option for a filesystem
|
|
|
|
* to be able to do its job.
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&fscrypt_ctx_lock, flags);
|
|
|
|
ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
|
|
|
|
struct fscrypt_ctx, free_list);
|
|
|
|
if (ctx)
|
|
|
|
list_del(&ctx->free_list);
|
|
|
|
spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
|
|
|
|
if (!ctx) {
|
2016-04-12 00:51:57 +02:00
|
|
|
ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (!ctx)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
|
} else {
|
|
|
|
ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
|
}
|
|
|
|
ctx->flags &= ~FS_WRITE_PATH_FL;
|
|
|
|
return ctx;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscrypt_get_ctx);
|
|
|
|
|
|
|
|
/**
|
2016-09-15 22:51:01 +02:00
|
|
|
* page_crypt_complete() - completion callback for page crypto
|
|
|
|
* @req: The asynchronous cipher request context
|
|
|
|
* @res: The result of the cipher operation
|
2015-05-16 01:26:10 +02:00
|
|
|
*/
|
2016-09-15 22:51:01 +02:00
|
|
|
static void page_crypt_complete(struct crypto_async_request *req, int res)
|
2015-05-16 01:26:10 +02:00
|
|
|
{
|
|
|
|
struct fscrypt_completion_result *ecr = req->data;
|
|
|
|
|
|
|
|
if (res == -EINPROGRESS)
|
|
|
|
return;
|
|
|
|
ecr->res = res;
|
|
|
|
complete(&ecr->completion);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
FS_DECRYPT = 0,
|
|
|
|
FS_ENCRYPT,
|
|
|
|
} fscrypt_direction_t;
|
|
|
|
|
|
|
|
static int do_page_crypto(struct inode *inode,
|
|
|
|
fscrypt_direction_t rw, pgoff_t index,
|
2016-04-12 00:51:57 +02:00
|
|
|
struct page *src_page, struct page *dest_page,
|
2016-11-13 22:20:46 +01:00
|
|
|
unsigned int src_len, unsigned int src_offset,
|
2016-04-12 00:51:57 +02:00
|
|
|
gfp_t gfp_flags)
|
2015-05-16 01:26:10 +02:00
|
|
|
{
|
2016-10-13 05:30:16 +02:00
|
|
|
struct {
|
|
|
|
__le64 index;
|
|
|
|
u8 padding[FS_XTS_TWEAK_SIZE - sizeof(__le64)];
|
|
|
|
} xts_tweak;
|
2016-03-21 19:03:02 +01:00
|
|
|
struct skcipher_request *req = NULL;
|
2015-05-16 01:26:10 +02:00
|
|
|
DECLARE_FS_COMPLETION_RESULT(ecr);
|
|
|
|
struct scatterlist dst, src;
|
|
|
|
struct fscrypt_info *ci = inode->i_crypt_info;
|
2016-03-21 19:03:02 +01:00
|
|
|
struct crypto_skcipher *tfm = ci->ci_ctfm;
|
2015-05-16 01:26:10 +02:00
|
|
|
int res = 0;
|
|
|
|
|
2016-04-12 00:51:57 +02:00
|
|
|
req = skcipher_request_alloc(tfm, gfp_flags);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (!req) {
|
|
|
|
printk_ratelimited(KERN_ERR
|
|
|
|
"%s: crypto_request_alloc() failed\n",
|
|
|
|
__func__);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
2016-03-21 19:03:02 +01:00
|
|
|
skcipher_request_set_callback(
|
2015-05-16 01:26:10 +02:00
|
|
|
req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
2016-09-15 22:51:01 +02:00
|
|
|
page_crypt_complete, &ecr);
|
2015-05-16 01:26:10 +02:00
|
|
|
|
2016-10-13 05:30:16 +02:00
|
|
|
BUILD_BUG_ON(sizeof(xts_tweak) != FS_XTS_TWEAK_SIZE);
|
|
|
|
xts_tweak.index = cpu_to_le64(index);
|
|
|
|
memset(xts_tweak.padding, 0, sizeof(xts_tweak.padding));
|
2015-05-16 01:26:10 +02:00
|
|
|
|
|
|
|
sg_init_table(&dst, 1);
|
2016-11-13 22:20:46 +01:00
|
|
|
sg_set_page(&dst, dest_page, src_len, src_offset);
|
2015-05-16 01:26:10 +02:00
|
|
|
sg_init_table(&src, 1);
|
2016-11-13 22:20:46 +01:00
|
|
|
sg_set_page(&src, src_page, src_len, src_offset);
|
|
|
|
skcipher_request_set_crypt(req, &src, &dst, src_len, &xts_tweak);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (rw == FS_DECRYPT)
|
2016-03-21 19:03:02 +01:00
|
|
|
res = crypto_skcipher_decrypt(req);
|
2015-05-16 01:26:10 +02:00
|
|
|
else
|
2016-03-21 19:03:02 +01:00
|
|
|
res = crypto_skcipher_encrypt(req);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (res == -EINPROGRESS || res == -EBUSY) {
|
|
|
|
BUG_ON(req->base.data != &ecr);
|
|
|
|
wait_for_completion(&ecr.completion);
|
|
|
|
res = ecr.res;
|
|
|
|
}
|
2016-03-21 19:03:02 +01:00
|
|
|
skcipher_request_free(req);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (res) {
|
|
|
|
printk_ratelimited(KERN_ERR
|
2016-03-21 19:03:02 +01:00
|
|
|
"%s: crypto_skcipher_encrypt() returned %d\n",
|
2015-05-16 01:26:10 +02:00
|
|
|
__func__, res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-04-12 00:51:57 +02:00
|
|
|
static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
|
2015-05-16 01:26:10 +02:00
|
|
|
{
|
2016-04-12 00:51:57 +02:00
|
|
|
ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (ctx->w.bounce_page == NULL)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ctx->flags |= FS_WRITE_PATH_FL;
|
|
|
|
return ctx->w.bounce_page;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscypt_encrypt_page() - Encrypts a page
|
2016-11-13 22:20:46 +01:00
|
|
|
* @inode: The inode for which the encryption should take place
|
|
|
|
* @plaintext_page: The page to encrypt. Must be locked.
|
|
|
|
* @plaintext_len: Length of plaintext within page
|
|
|
|
* @plaintext_offset: Offset of plaintext within page
|
|
|
|
* @gfp_flags: The gfp flag for memory allocation
|
2015-05-16 01:26:10 +02:00
|
|
|
*
|
2016-11-13 22:20:44 +01:00
|
|
|
* Encrypts plaintext_page using the ctx encryption context. If
|
|
|
|
* the filesystem supports it, encryption is performed in-place, otherwise a
|
|
|
|
* new ciphertext_page is allocated and returned.
|
2015-05-16 01:26:10 +02:00
|
|
|
*
|
|
|
|
* Called on the page write path. The caller must call
|
|
|
|
* fscrypt_restore_control_page() on the returned ciphertext page to
|
|
|
|
* release the bounce buffer and the encryption context.
|
|
|
|
*
|
|
|
|
* Return: An allocated page with the encrypted content on success. Else, an
|
|
|
|
* error value or NULL.
|
|
|
|
*/
|
|
|
|
struct page *fscrypt_encrypt_page(struct inode *inode,
|
2016-11-13 22:20:46 +01:00
|
|
|
struct page *plaintext_page,
|
|
|
|
unsigned int plaintext_len,
|
|
|
|
unsigned int plaintext_offset,
|
|
|
|
gfp_t gfp_flags)
|
|
|
|
|
2015-05-16 01:26:10 +02:00
|
|
|
{
|
|
|
|
struct fscrypt_ctx *ctx;
|
2016-11-13 22:20:44 +01:00
|
|
|
struct page *ciphertext_page = plaintext_page;
|
2015-05-16 01:26:10 +02:00
|
|
|
int err;
|
|
|
|
|
2016-11-13 22:20:46 +01:00
|
|
|
BUG_ON(plaintext_len % FS_CRYPTO_BLOCK_SIZE != 0);
|
2015-05-16 01:26:10 +02:00
|
|
|
|
2016-04-12 00:51:57 +02:00
|
|
|
ctx = fscrypt_get_ctx(inode, gfp_flags);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (IS_ERR(ctx))
|
|
|
|
return (struct page *)ctx;
|
|
|
|
|
2016-11-13 22:20:44 +01:00
|
|
|
if (!(inode->i_sb->s_cop->flags & FS_CFLG_INPLACE_ENCRYPTION)) {
|
|
|
|
/* The encryption operation will require a bounce page. */
|
|
|
|
ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
|
|
|
|
if (IS_ERR(ciphertext_page))
|
|
|
|
goto errout;
|
|
|
|
}
|
2015-05-16 01:26:10 +02:00
|
|
|
|
|
|
|
ctx->w.control_page = plaintext_page;
|
|
|
|
err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
|
2016-04-12 00:51:57 +02:00
|
|
|
plaintext_page, ciphertext_page,
|
2016-11-13 22:20:46 +01:00
|
|
|
plaintext_len, plaintext_offset,
|
2016-04-12 00:51:57 +02:00
|
|
|
gfp_flags);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (err) {
|
|
|
|
ciphertext_page = ERR_PTR(err);
|
|
|
|
goto errout;
|
|
|
|
}
|
2016-11-13 22:20:44 +01:00
|
|
|
if (!(inode->i_sb->s_cop->flags & FS_CFLG_INPLACE_ENCRYPTION)) {
|
|
|
|
SetPagePrivate(ciphertext_page);
|
|
|
|
set_page_private(ciphertext_page, (unsigned long)ctx);
|
|
|
|
lock_page(ciphertext_page);
|
|
|
|
}
|
2015-05-16 01:26:10 +02:00
|
|
|
return ciphertext_page;
|
|
|
|
|
|
|
|
errout:
|
|
|
|
fscrypt_release_ctx(ctx);
|
|
|
|
return ciphertext_page;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscrypt_encrypt_page);
|
|
|
|
|
|
|
|
/**
|
2016-11-13 22:20:46 +01:00
|
|
|
* fscrypt_decrypt_page() - Decrypts a page in-place
|
|
|
|
* @inode: Encrypted inode to decrypt.
|
2016-11-13 22:20:45 +01:00
|
|
|
* @page: The page to decrypt. Must be locked.
|
2016-11-13 22:20:46 +01:00
|
|
|
* @len: Number of bytes in @page to be decrypted.
|
|
|
|
* @offs: Start of data in @page.
|
2015-05-16 01:26:10 +02:00
|
|
|
*
|
|
|
|
* Decrypts page in-place using the ctx encryption context.
|
|
|
|
*
|
|
|
|
* Called from the read completion callback.
|
|
|
|
*
|
|
|
|
* Return: Zero on success, non-zero otherwise.
|
|
|
|
*/
|
2016-11-13 22:20:46 +01:00
|
|
|
int fscrypt_decrypt_page(struct inode *inode, struct page *page,
|
|
|
|
unsigned int len, unsigned int offs)
|
2015-05-16 01:26:10 +02:00
|
|
|
{
|
2016-11-13 22:20:46 +01:00
|
|
|
return do_page_crypto(inode, FS_DECRYPT, page->index, page, page, len, offs,
|
2016-11-13 22:20:45 +01:00
|
|
|
GFP_NOFS);
|
2015-05-16 01:26:10 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscrypt_decrypt_page);
|
|
|
|
|
|
|
|
int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
|
|
|
|
sector_t pblk, unsigned int len)
|
|
|
|
{
|
|
|
|
struct fscrypt_ctx *ctx;
|
|
|
|
struct page *ciphertext_page = NULL;
|
|
|
|
struct bio *bio;
|
|
|
|
int ret, err = 0;
|
|
|
|
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 14:29:47 +02:00
|
|
|
BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
|
2015-05-16 01:26:10 +02:00
|
|
|
|
2016-04-12 00:51:57 +02:00
|
|
|
ctx = fscrypt_get_ctx(inode, GFP_NOFS);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (IS_ERR(ctx))
|
|
|
|
return PTR_ERR(ctx);
|
|
|
|
|
2016-04-12 00:51:57 +02:00
|
|
|
ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (IS_ERR(ciphertext_page)) {
|
|
|
|
err = PTR_ERR(ciphertext_page);
|
|
|
|
goto errout;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (len--) {
|
|
|
|
err = do_page_crypto(inode, FS_ENCRYPT, lblk,
|
2016-04-12 00:51:57 +02:00
|
|
|
ZERO_PAGE(0), ciphertext_page,
|
2016-11-13 22:20:46 +01:00
|
|
|
PAGE_SIZE, 0, GFP_NOFS);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (err)
|
|
|
|
goto errout;
|
|
|
|
|
2016-04-12 00:51:57 +02:00
|
|
|
bio = bio_alloc(GFP_NOWAIT, 1);
|
2015-05-16 01:26:10 +02:00
|
|
|
if (!bio) {
|
|
|
|
err = -ENOMEM;
|
|
|
|
goto errout;
|
|
|
|
}
|
|
|
|
bio->bi_bdev = inode->i_sb->s_bdev;
|
|
|
|
bio->bi_iter.bi_sector =
|
|
|
|
pblk << (inode->i_sb->s_blocksize_bits - 9);
|
2016-06-05 21:31:48 +02:00
|
|
|
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
|
2015-05-16 01:26:10 +02:00
|
|
|
ret = bio_add_page(bio, ciphertext_page,
|
|
|
|
inode->i_sb->s_blocksize, 0);
|
|
|
|
if (ret != inode->i_sb->s_blocksize) {
|
|
|
|
/* should never happen! */
|
|
|
|
WARN_ON(1);
|
|
|
|
bio_put(bio);
|
|
|
|
err = -EIO;
|
|
|
|
goto errout;
|
|
|
|
}
|
2016-06-05 21:31:41 +02:00
|
|
|
err = submit_bio_wait(bio);
|
2015-05-16 01:26:10 +02:00
|
|
|
if ((err == 0) && bio->bi_error)
|
|
|
|
err = -EIO;
|
|
|
|
bio_put(bio);
|
|
|
|
if (err)
|
|
|
|
goto errout;
|
|
|
|
lblk++;
|
|
|
|
pblk++;
|
|
|
|
}
|
|
|
|
err = 0;
|
|
|
|
errout:
|
|
|
|
fscrypt_release_ctx(ctx);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscrypt_zeroout_range);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Validate dentries for encrypted directories to make sure we aren't
|
|
|
|
* potentially caching stale data after a key has been added or
|
|
|
|
* removed.
|
|
|
|
*/
|
|
|
|
static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
|
|
|
|
{
|
2016-04-12 00:10:11 +02:00
|
|
|
struct dentry *dir;
|
|
|
|
struct fscrypt_info *ci;
|
2015-05-16 01:26:10 +02:00
|
|
|
int dir_has_key, cached_with_key;
|
|
|
|
|
2016-04-13 01:05:36 +02:00
|
|
|
if (flags & LOOKUP_RCU)
|
|
|
|
return -ECHILD;
|
|
|
|
|
2016-04-12 00:10:11 +02:00
|
|
|
dir = dget_parent(dentry);
|
|
|
|
if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
|
|
|
|
dput(dir);
|
2015-05-16 01:26:10 +02:00
|
|
|
return 0;
|
2016-04-12 00:10:11 +02:00
|
|
|
}
|
2015-05-16 01:26:10 +02:00
|
|
|
|
2016-04-12 00:10:11 +02:00
|
|
|
ci = d_inode(dir)->i_crypt_info;
|
2015-05-16 01:26:10 +02:00
|
|
|
if (ci && ci->ci_keyring_key &&
|
|
|
|
(ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
|
|
|
|
(1 << KEY_FLAG_REVOKED) |
|
|
|
|
(1 << KEY_FLAG_DEAD))))
|
|
|
|
ci = NULL;
|
|
|
|
|
|
|
|
/* this should eventually be an flag in d_flags */
|
|
|
|
spin_lock(&dentry->d_lock);
|
|
|
|
cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
|
|
|
|
spin_unlock(&dentry->d_lock);
|
|
|
|
dir_has_key = (ci != NULL);
|
2016-04-12 00:10:11 +02:00
|
|
|
dput(dir);
|
2015-05-16 01:26:10 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the dentry was cached without the key, and it is a
|
|
|
|
* negative dentry, it might be a valid name. We can't check
|
|
|
|
* if the key has since been made available due to locking
|
|
|
|
* reasons, so we fail the validation so ext4_lookup() can do
|
|
|
|
* this check.
|
|
|
|
*
|
|
|
|
* We also fail the validation if the dentry was created with
|
|
|
|
* the key present, but we no longer have the key, or vice versa.
|
|
|
|
*/
|
|
|
|
if ((!cached_with_key && d_is_negative(dentry)) ||
|
|
|
|
(!cached_with_key && dir_has_key) ||
|
|
|
|
(cached_with_key && !dir_has_key))
|
|
|
|
return 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct dentry_operations fscrypt_d_ops = {
|
|
|
|
.d_revalidate = fscrypt_d_revalidate,
|
|
|
|
};
|
|
|
|
EXPORT_SYMBOL(fscrypt_d_ops);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Call fscrypt_decrypt_page on every single page, reusing the encryption
|
|
|
|
* context.
|
|
|
|
*/
|
|
|
|
static void completion_pages(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct fscrypt_ctx *ctx =
|
|
|
|
container_of(work, struct fscrypt_ctx, r.work);
|
|
|
|
struct bio *bio = ctx->r.bio;
|
|
|
|
struct bio_vec *bv;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
bio_for_each_segment_all(bv, bio, i) {
|
|
|
|
struct page *page = bv->bv_page;
|
2016-11-13 22:20:46 +01:00
|
|
|
int ret = fscrypt_decrypt_page(page->mapping->host, page,
|
|
|
|
PAGE_SIZE, 0);
|
2015-05-16 01:26:10 +02:00
|
|
|
|
|
|
|
if (ret) {
|
|
|
|
WARN_ON_ONCE(1);
|
|
|
|
SetPageError(page);
|
|
|
|
} else {
|
|
|
|
SetPageUptodate(page);
|
|
|
|
}
|
|
|
|
unlock_page(page);
|
|
|
|
}
|
|
|
|
fscrypt_release_ctx(ctx);
|
|
|
|
bio_put(bio);
|
|
|
|
}
|
|
|
|
|
|
|
|
void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
|
|
|
|
{
|
|
|
|
INIT_WORK(&ctx->r.work, completion_pages);
|
|
|
|
ctx->r.bio = bio;
|
|
|
|
queue_work(fscrypt_read_workqueue, &ctx->r.work);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
|
|
|
|
|
|
|
|
void fscrypt_pullback_bio_page(struct page **page, bool restore)
|
|
|
|
{
|
|
|
|
struct fscrypt_ctx *ctx;
|
|
|
|
struct page *bounce_page;
|
|
|
|
|
|
|
|
/* The bounce data pages are unmapped. */
|
|
|
|
if ((*page)->mapping)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* The bounce data page is unmapped. */
|
|
|
|
bounce_page = *page;
|
|
|
|
ctx = (struct fscrypt_ctx *)page_private(bounce_page);
|
|
|
|
|
|
|
|
/* restore control page */
|
|
|
|
*page = ctx->w.control_page;
|
|
|
|
|
|
|
|
if (restore)
|
|
|
|
fscrypt_restore_control_page(bounce_page);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscrypt_pullback_bio_page);
|
|
|
|
|
|
|
|
void fscrypt_restore_control_page(struct page *page)
|
|
|
|
{
|
|
|
|
struct fscrypt_ctx *ctx;
|
|
|
|
|
|
|
|
ctx = (struct fscrypt_ctx *)page_private(page);
|
|
|
|
set_page_private(page, (unsigned long)NULL);
|
|
|
|
ClearPagePrivate(page);
|
|
|
|
unlock_page(page);
|
|
|
|
fscrypt_release_ctx(ctx);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscrypt_restore_control_page);
|
|
|
|
|
|
|
|
static void fscrypt_destroy(void)
|
|
|
|
{
|
|
|
|
struct fscrypt_ctx *pos, *n;
|
|
|
|
|
|
|
|
list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
|
|
|
|
kmem_cache_free(fscrypt_ctx_cachep, pos);
|
|
|
|
INIT_LIST_HEAD(&fscrypt_free_ctxs);
|
|
|
|
mempool_destroy(fscrypt_bounce_page_pool);
|
|
|
|
fscrypt_bounce_page_pool = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscrypt_initialize() - allocate major buffers for fs encryption.
|
|
|
|
*
|
|
|
|
* We only call this when we start accessing encrypted files, since it
|
|
|
|
* results in memory getting allocated that wouldn't otherwise be used.
|
|
|
|
*
|
|
|
|
* Return: Zero on success, non-zero otherwise.
|
|
|
|
*/
|
|
|
|
int fscrypt_initialize(void)
|
|
|
|
{
|
|
|
|
int i, res = -ENOMEM;
|
|
|
|
|
|
|
|
if (fscrypt_bounce_page_pool)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
mutex_lock(&fscrypt_init_mutex);
|
|
|
|
if (fscrypt_bounce_page_pool)
|
|
|
|
goto already_initialized;
|
|
|
|
|
|
|
|
for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
|
|
|
|
struct fscrypt_ctx *ctx;
|
|
|
|
|
|
|
|
ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
|
|
|
|
if (!ctx)
|
|
|
|
goto fail;
|
|
|
|
list_add(&ctx->free_list, &fscrypt_free_ctxs);
|
|
|
|
}
|
|
|
|
|
|
|
|
fscrypt_bounce_page_pool =
|
|
|
|
mempool_create_page_pool(num_prealloc_crypto_pages, 0);
|
|
|
|
if (!fscrypt_bounce_page_pool)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
already_initialized:
|
|
|
|
mutex_unlock(&fscrypt_init_mutex);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
fscrypt_destroy();
|
|
|
|
mutex_unlock(&fscrypt_init_mutex);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fscrypt_initialize);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscrypt_init() - Set up for fs encryption.
|
|
|
|
*/
|
|
|
|
static int __init fscrypt_init(void)
|
|
|
|
{
|
|
|
|
fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
|
|
|
|
WQ_HIGHPRI, 0);
|
|
|
|
if (!fscrypt_read_workqueue)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
|
|
|
|
if (!fscrypt_ctx_cachep)
|
|
|
|
goto fail_free_queue;
|
|
|
|
|
|
|
|
fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
|
|
|
|
if (!fscrypt_info_cachep)
|
|
|
|
goto fail_free_ctx;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fail_free_ctx:
|
|
|
|
kmem_cache_destroy(fscrypt_ctx_cachep);
|
|
|
|
fail_free_queue:
|
|
|
|
destroy_workqueue(fscrypt_read_workqueue);
|
|
|
|
fail:
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
module_init(fscrypt_init)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscrypt_exit() - Shutdown the fs encryption system
|
|
|
|
*/
|
|
|
|
static void __exit fscrypt_exit(void)
|
|
|
|
{
|
|
|
|
fscrypt_destroy();
|
|
|
|
|
|
|
|
if (fscrypt_read_workqueue)
|
|
|
|
destroy_workqueue(fscrypt_read_workqueue);
|
|
|
|
kmem_cache_destroy(fscrypt_ctx_cachep);
|
|
|
|
kmem_cache_destroy(fscrypt_info_cachep);
|
|
|
|
}
|
|
|
|
module_exit(fscrypt_exit);
|
|
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|