2008-03-25 18:47:20 +01:00
|
|
|
/*
|
|
|
|
* s390host.c -- hosting zSeries kernel virtual machines
|
|
|
|
*
|
|
|
|
* Copyright IBM Corp. 2008
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License (version 2 only)
|
|
|
|
* as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* Author(s): Carsten Otte <cotte@de.ibm.com>
|
|
|
|
* Christian Borntraeger <borntraeger@de.ibm.com>
|
|
|
|
* Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
#include <linux/err.h>
|
|
|
|
#include <linux/fs.h>
|
2009-05-12 17:21:49 +02:00
|
|
|
#include <linux/hrtimer.h>
|
2008-03-25 18:47:20 +01:00
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/slab.h>
|
KVM: s390: interrupt subsystem, cpu timer, waitpsw
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-25 18:47:26 +01:00
|
|
|
#include <linux/timer.h>
|
2008-03-25 18:47:20 +01:00
|
|
|
#include <asm/lowcore.h>
|
|
|
|
#include <asm/pgtable.h>
|
2009-03-26 15:24:01 +01:00
|
|
|
#include <asm/nmi.h>
|
2009-06-23 17:24:07 +02:00
|
|
|
#include <asm/system.h>
|
2008-03-25 18:47:23 +01:00
|
|
|
#include "kvm-s390.h"
|
2008-03-25 18:47:20 +01:00
|
|
|
#include "gaccess.h"
|
|
|
|
|
|
|
|
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
|
|
|
|
|
|
|
|
struct kvm_stats_debugfs_item debugfs_entries[] = {
|
|
|
|
{ "userspace_handled", VCPU_STAT(exit_userspace) },
|
2008-05-07 09:22:53 +02:00
|
|
|
{ "exit_null", VCPU_STAT(exit_null) },
|
2008-03-25 18:47:23 +01:00
|
|
|
{ "exit_validity", VCPU_STAT(exit_validity) },
|
|
|
|
{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
|
|
|
|
{ "exit_external_request", VCPU_STAT(exit_external_request) },
|
|
|
|
{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
|
KVM: s390: interrupt subsystem, cpu timer, waitpsw
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-25 18:47:26 +01:00
|
|
|
{ "exit_instruction", VCPU_STAT(exit_instruction) },
|
|
|
|
{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
|
|
|
|
{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
|
2008-07-25 15:52:44 +02:00
|
|
|
{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
|
KVM: s390: interrupt subsystem, cpu timer, waitpsw
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-25 18:47:26 +01:00
|
|
|
{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
|
|
|
|
{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
|
|
|
|
{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
|
|
|
|
{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
|
|
|
|
{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
|
|
|
|
{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
|
|
|
|
{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
|
|
|
|
{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
|
|
|
|
{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
|
2008-03-25 18:47:29 +01:00
|
|
|
{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
|
|
|
|
{ "instruction_spx", VCPU_STAT(instruction_spx) },
|
|
|
|
{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
|
|
|
|
{ "instruction_stap", VCPU_STAT(instruction_stap) },
|
|
|
|
{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
|
|
|
|
{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
|
|
|
|
{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
|
|
|
|
{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
|
|
|
|
{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
|
2008-03-25 18:47:31 +01:00
|
|
|
{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
|
|
|
|
{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
|
|
|
|
{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
|
|
|
|
{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
|
|
|
|
{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
|
|
|
|
{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
|
2008-03-25 18:47:34 +01:00
|
|
|
{ "diagnose_44", VCPU_STAT(diagnose_44) },
|
2008-03-25 18:47:20 +01:00
|
|
|
{ NULL }
|
|
|
|
};
|
|
|
|
|
2009-06-23 17:24:07 +02:00
|
|
|
static unsigned long long *facilities;
|
2008-03-25 18:47:20 +01:00
|
|
|
|
|
|
|
/* Section: not file related */
|
|
|
|
void kvm_arch_hardware_enable(void *garbage)
|
|
|
|
{
|
|
|
|
/* every s390 is virtualization enabled ;-) */
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_hardware_disable(void *garbage)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_hardware_setup(void)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_hardware_unsetup(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_check_processor_compat(void *rtn)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_init(void *opaque)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_exit(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Section: device related */
|
|
|
|
long kvm_arch_dev_ioctl(struct file *filp,
|
|
|
|
unsigned int ioctl, unsigned long arg)
|
|
|
|
{
|
|
|
|
if (ioctl == KVM_S390_ENABLE_SIE)
|
|
|
|
return s390_enable_sie();
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_dev_ioctl_check_extension(long ext)
|
|
|
|
{
|
2008-07-25 15:49:13 +02:00
|
|
|
switch (ext) {
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
2008-03-25 18:47:20 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Section: vm related */
|
|
|
|
/*
|
|
|
|
* Get (and clear) the dirty memory log for a memory slot.
|
|
|
|
*/
|
|
|
|
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
|
|
|
|
struct kvm_dirty_log *log)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
long kvm_arch_vm_ioctl(struct file *filp,
|
|
|
|
unsigned int ioctl, unsigned long arg)
|
|
|
|
{
|
|
|
|
struct kvm *kvm = filp->private_data;
|
|
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
int r;
|
|
|
|
|
|
|
|
switch (ioctl) {
|
KVM: s390: interrupt subsystem, cpu timer, waitpsw
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-25 18:47:26 +01:00
|
|
|
case KVM_S390_INTERRUPT: {
|
|
|
|
struct kvm_s390_interrupt s390int;
|
|
|
|
|
|
|
|
r = -EFAULT;
|
|
|
|
if (copy_from_user(&s390int, argp, sizeof(s390int)))
|
|
|
|
break;
|
|
|
|
r = kvm_s390_inject_vm(kvm, &s390int);
|
|
|
|
break;
|
|
|
|
}
|
2008-03-25 18:47:20 +01:00
|
|
|
default:
|
|
|
|
r = -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct kvm *kvm_arch_create_vm(void)
|
|
|
|
{
|
|
|
|
struct kvm *kvm;
|
|
|
|
int rc;
|
|
|
|
char debug_name[16];
|
|
|
|
|
|
|
|
rc = s390_enable_sie();
|
|
|
|
if (rc)
|
|
|
|
goto out_nokvm;
|
|
|
|
|
|
|
|
rc = -ENOMEM;
|
|
|
|
kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
|
|
|
|
if (!kvm)
|
|
|
|
goto out_nokvm;
|
|
|
|
|
|
|
|
kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
|
|
|
|
if (!kvm->arch.sca)
|
|
|
|
goto out_nosca;
|
|
|
|
|
|
|
|
sprintf(debug_name, "kvm-%u", current->pid);
|
|
|
|
|
|
|
|
kvm->arch.dbf = debug_register(debug_name, 8, 2, 8 * sizeof(long));
|
|
|
|
if (!kvm->arch.dbf)
|
|
|
|
goto out_nodbf;
|
|
|
|
|
KVM: s390: interrupt subsystem, cpu timer, waitpsw
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-25 18:47:26 +01:00
|
|
|
spin_lock_init(&kvm->arch.float_int.lock);
|
|
|
|
INIT_LIST_HEAD(&kvm->arch.float_int.list);
|
|
|
|
|
2008-03-25 18:47:20 +01:00
|
|
|
debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
|
|
|
|
VM_EVENT(kvm, 3, "%s", "vm created");
|
|
|
|
|
|
|
|
return kvm;
|
|
|
|
out_nodbf:
|
|
|
|
free_page((unsigned long)(kvm->arch.sca));
|
|
|
|
out_nosca:
|
|
|
|
kfree(kvm);
|
|
|
|
out_nokvm:
|
|
|
|
return ERR_PTR(rc);
|
|
|
|
}
|
|
|
|
|
2008-11-26 14:50:27 +01:00
|
|
|
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
VCPU_EVENT(vcpu, 3, "%s", "free cpu");
|
2009-05-12 17:21:51 +02:00
|
|
|
if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
|
|
|
|
(__u64) vcpu->arch.sie_block)
|
|
|
|
vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
|
|
|
|
smp_mb();
|
2008-11-26 14:50:27 +01:00
|
|
|
free_page((unsigned long)(vcpu->arch.sie_block));
|
2008-11-26 14:51:08 +01:00
|
|
|
kvm_vcpu_uninit(vcpu);
|
2008-11-26 14:50:27 +01:00
|
|
|
kfree(vcpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kvm_free_vcpus(struct kvm *kvm)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
|
|
if (kvm->vcpus[i]) {
|
|
|
|
kvm_arch_vcpu_destroy(kvm->vcpus[i]);
|
|
|
|
kvm->vcpus[i] = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-01-06 03:03:02 +01:00
|
|
|
void kvm_arch_sync_events(struct kvm *kvm)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2008-03-25 18:47:20 +01:00
|
|
|
void kvm_arch_destroy_vm(struct kvm *kvm)
|
|
|
|
{
|
2008-11-26 14:50:27 +01:00
|
|
|
kvm_free_vcpus(kvm);
|
2008-06-27 15:05:34 +02:00
|
|
|
kvm_free_physmem(kvm);
|
2008-03-25 18:47:20 +01:00
|
|
|
free_page((unsigned long)(kvm->arch.sca));
|
2008-11-26 14:50:27 +01:00
|
|
|
debug_unregister(kvm->arch.dbf);
|
2008-03-25 18:47:20 +01:00
|
|
|
kfree(kvm);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Section: vcpu related */
|
|
|
|
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
2008-11-26 14:51:08 +01:00
|
|
|
/* Nothing todo */
|
2008-03-25 18:47:20 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
|
|
{
|
|
|
|
save_fp_regs(&vcpu->arch.host_fpregs);
|
|
|
|
save_access_regs(vcpu->arch.host_acrs);
|
|
|
|
vcpu->arch.guest_fpregs.fpc &= FPC_VALID_MASK;
|
|
|
|
restore_fp_regs(&vcpu->arch.guest_fpregs);
|
|
|
|
restore_access_regs(vcpu->arch.guest_acrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
save_fp_regs(&vcpu->arch.guest_fpregs);
|
|
|
|
save_access_regs(vcpu->arch.guest_acrs);
|
|
|
|
restore_fp_regs(&vcpu->arch.host_fpregs);
|
|
|
|
restore_access_regs(vcpu->arch.host_acrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
/* this equals initial cpu reset in pop, but we don't switch to ESA */
|
|
|
|
vcpu->arch.sie_block->gpsw.mask = 0UL;
|
|
|
|
vcpu->arch.sie_block->gpsw.addr = 0UL;
|
|
|
|
vcpu->arch.sie_block->prefix = 0UL;
|
|
|
|
vcpu->arch.sie_block->ihcpu = 0xffff;
|
|
|
|
vcpu->arch.sie_block->cputm = 0UL;
|
|
|
|
vcpu->arch.sie_block->ckc = 0UL;
|
|
|
|
vcpu->arch.sie_block->todpr = 0;
|
|
|
|
memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
|
|
|
|
vcpu->arch.sie_block->gcr[0] = 0xE0UL;
|
|
|
|
vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
|
|
|
|
vcpu->arch.guest_fpregs.fpc = 0;
|
|
|
|
asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
|
|
|
|
vcpu->arch.sie_block->gbea = 1;
|
|
|
|
}
|
|
|
|
|
2008-06-27 15:05:38 +02:00
|
|
|
/* The current code can have up to 256 pages for virtio */
|
|
|
|
#define VIRTIODESCSPACE (256ul * 4096ul)
|
|
|
|
|
2008-03-25 18:47:20 +01:00
|
|
|
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH);
|
2008-06-27 15:05:38 +02:00
|
|
|
vcpu->arch.sie_block->gmslm = vcpu->kvm->arch.guest_memsize +
|
|
|
|
vcpu->kvm->arch.guest_origin +
|
|
|
|
VIRTIODESCSPACE - 1ul;
|
|
|
|
vcpu->arch.sie_block->gmsor = vcpu->kvm->arch.guest_origin;
|
2008-03-25 18:47:20 +01:00
|
|
|
vcpu->arch.sie_block->ecb = 2;
|
|
|
|
vcpu->arch.sie_block->eca = 0xC1002001U;
|
2009-06-23 17:24:07 +02:00
|
|
|
vcpu->arch.sie_block->fac = (int) (long) facilities;
|
2009-05-12 17:21:49 +02:00
|
|
|
hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
|
|
|
|
tasklet_init(&vcpu->arch.tasklet, kvm_s390_tasklet,
|
|
|
|
(unsigned long) vcpu);
|
|
|
|
vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
|
2008-03-25 18:47:29 +01:00
|
|
|
get_cpu_id(&vcpu->arch.cpu_id);
|
[S390] Fix hypervisor detection for KVM
Currently we use the cpuid (via STIDP instruction) to recognize LPAR,
z/VM and KVM.
The architecture states, that bit 0-7 of STIDP returns all zero, and
if STIDP is executed in a virtual machine, the VM operating system
will replace bits 0-7 with FF.
KVM should not use FE to distinguish z/VM from KVM for interested
guests. The proper way to detect the hypervisor is the STSI (Store
System Information) instruction, which return information about the
hypervisors via function code 3, selector1=2, selector2=2.
This patch changes the detection routine of Linux to use STSI instead
of STIDP. This detection is earlier than bootmem, we have to use a
static buffer. Since STSI expects a 4kb block (4kb aligned) this
patch also changes the init.data alignment for s390. As this section
will be freed during boot, this should be no problem.
Patch is tested with LPAR, z/VM, KVM on LPAR, and KVM under z/VM.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2009-03-26 15:23:58 +01:00
|
|
|
vcpu->arch.cpu_id.version = 0xff;
|
2008-03-25 18:47:20 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
|
|
|
|
unsigned int id)
|
|
|
|
{
|
|
|
|
struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
|
|
|
|
int rc = -ENOMEM;
|
|
|
|
|
|
|
|
if (!vcpu)
|
|
|
|
goto out_nomem;
|
|
|
|
|
2008-06-27 15:05:40 +02:00
|
|
|
vcpu->arch.sie_block = (struct kvm_s390_sie_block *)
|
|
|
|
get_zeroed_page(GFP_KERNEL);
|
2008-03-25 18:47:20 +01:00
|
|
|
|
|
|
|
if (!vcpu->arch.sie_block)
|
|
|
|
goto out_free_cpu;
|
|
|
|
|
|
|
|
vcpu->arch.sie_block->icpua = id;
|
|
|
|
BUG_ON(!kvm->arch.sca);
|
2009-05-12 17:21:51 +02:00
|
|
|
if (!kvm->arch.sca->cpu[id].sda)
|
|
|
|
kvm->arch.sca->cpu[id].sda = (__u64) vcpu->arch.sie_block;
|
|
|
|
else
|
|
|
|
BUG_ON(!kvm->vcpus[id]); /* vcpu does already exist */
|
2008-03-25 18:47:20 +01:00
|
|
|
vcpu->arch.sie_block->scaoh = (__u32)(((__u64)kvm->arch.sca) >> 32);
|
|
|
|
vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
|
|
|
|
|
KVM: s390: interrupt subsystem, cpu timer, waitpsw
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-25 18:47:26 +01:00
|
|
|
spin_lock_init(&vcpu->arch.local_int.lock);
|
|
|
|
INIT_LIST_HEAD(&vcpu->arch.local_int.list);
|
|
|
|
vcpu->arch.local_int.float_int = &kvm->arch.float_int;
|
2009-05-12 17:21:50 +02:00
|
|
|
spin_lock(&kvm->arch.float_int.lock);
|
KVM: s390: interrupt subsystem, cpu timer, waitpsw
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-25 18:47:26 +01:00
|
|
|
kvm->arch.float_int.local_int[id] = &vcpu->arch.local_int;
|
|
|
|
init_waitqueue_head(&vcpu->arch.local_int.wq);
|
2008-03-25 18:47:31 +01:00
|
|
|
vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
|
2009-05-12 17:21:50 +02:00
|
|
|
spin_unlock(&kvm->arch.float_int.lock);
|
KVM: s390: interrupt subsystem, cpu timer, waitpsw
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-25 18:47:26 +01:00
|
|
|
|
2008-03-25 18:47:20 +01:00
|
|
|
rc = kvm_vcpu_init(vcpu, kvm, id);
|
|
|
|
if (rc)
|
|
|
|
goto out_free_cpu;
|
|
|
|
VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
|
|
|
|
vcpu->arch.sie_block);
|
|
|
|
|
|
|
|
return vcpu;
|
|
|
|
out_free_cpu:
|
|
|
|
kfree(vcpu);
|
|
|
|
out_nomem:
|
|
|
|
return ERR_PTR(rc);
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
/* kvm common code refers to this, but never calls it */
|
|
|
|
BUG();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
kvm_s390_vcpu_initial_reset(vcpu);
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
|
|
{
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
memcpy(&vcpu->arch.guest_gprs, ®s->gprs, sizeof(regs->gprs));
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
|
|
{
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
memcpy(®s->gprs, &vcpu->arch.guest_gprs, sizeof(regs->gprs));
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_sregs *sregs)
|
|
|
|
{
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
memcpy(&vcpu->arch.guest_acrs, &sregs->acrs, sizeof(sregs->acrs));
|
|
|
|
memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_sregs *sregs)
|
|
|
|
{
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
memcpy(&sregs->acrs, &vcpu->arch.guest_acrs, sizeof(sregs->acrs));
|
|
|
|
memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
|
|
{
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
memcpy(&vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
|
|
|
|
vcpu->arch.guest_fpregs.fpc = fpu->fpc;
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
|
|
{
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
memcpy(&fpu->fprs, &vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
|
|
|
|
fpu->fpc = vcpu->arch.guest_fpregs.fpc;
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
|
|
|
|
{
|
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
if (atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_RUNNING)
|
|
|
|
rc = -EBUSY;
|
|
|
|
else
|
|
|
|
vcpu->arch.sie_block->gpsw = psw;
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_translation *tr)
|
|
|
|
{
|
|
|
|
return -EINVAL; /* not implemented yet */
|
|
|
|
}
|
|
|
|
|
2008-12-15 13:52:10 +01:00
|
|
|
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_guest_debug *dbg)
|
2008-03-25 18:47:20 +01:00
|
|
|
{
|
|
|
|
return -EINVAL; /* not implemented yet */
|
|
|
|
}
|
|
|
|
|
2008-04-11 18:24:45 +02:00
|
|
|
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_mp_state *mp_state)
|
|
|
|
{
|
|
|
|
return -EINVAL; /* not implemented yet */
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_mp_state *mp_state)
|
|
|
|
{
|
|
|
|
return -EINVAL; /* not implemented yet */
|
|
|
|
}
|
|
|
|
|
2008-03-25 18:47:20 +01:00
|
|
|
static void __vcpu_run(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
memcpy(&vcpu->arch.sie_block->gg14, &vcpu->arch.guest_gprs[14], 16);
|
|
|
|
|
|
|
|
if (need_resched())
|
|
|
|
schedule();
|
|
|
|
|
2008-05-21 13:37:34 +02:00
|
|
|
if (test_thread_flag(TIF_MCCK_PENDING))
|
|
|
|
s390_handle_mcck();
|
|
|
|
|
2008-05-21 13:37:37 +02:00
|
|
|
kvm_s390_deliver_pending_interrupts(vcpu);
|
|
|
|
|
2008-03-25 18:47:20 +01:00
|
|
|
vcpu->arch.sie_block->icptcode = 0;
|
|
|
|
local_irq_disable();
|
|
|
|
kvm_guest_enter();
|
|
|
|
local_irq_enable();
|
|
|
|
VCPU_EVENT(vcpu, 6, "entering sie flags %x",
|
|
|
|
atomic_read(&vcpu->arch.sie_block->cpuflags));
|
2008-05-21 13:37:40 +02:00
|
|
|
if (sie64a(vcpu->arch.sie_block, vcpu->arch.guest_gprs)) {
|
|
|
|
VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
|
|
|
|
kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
|
|
|
|
}
|
2008-03-25 18:47:20 +01:00
|
|
|
VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
|
|
|
|
vcpu->arch.sie_block->icptcode);
|
|
|
|
local_irq_disable();
|
|
|
|
kvm_guest_exit();
|
|
|
|
local_irq_enable();
|
|
|
|
|
|
|
|
memcpy(&vcpu->arch.guest_gprs[14], &vcpu->arch.sie_block->gg14, 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
|
|
{
|
2008-03-25 18:47:23 +01:00
|
|
|
int rc;
|
2008-03-25 18:47:20 +01:00
|
|
|
sigset_t sigsaved;
|
|
|
|
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
|
2009-05-12 17:21:53 +02:00
|
|
|
/* verify, that memory has been registered */
|
|
|
|
if (!vcpu->kvm->arch.guest_memsize) {
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2008-03-25 18:47:20 +01:00
|
|
|
if (vcpu->sigset_active)
|
|
|
|
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
|
|
|
|
|
|
|
|
atomic_set_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
|
|
|
|
|
KVM: s390: interrupt subsystem, cpu timer, waitpsw
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-25 18:47:26 +01:00
|
|
|
BUG_ON(vcpu->kvm->arch.float_int.local_int[vcpu->vcpu_id] == NULL);
|
|
|
|
|
2008-03-25 18:47:23 +01:00
|
|
|
switch (kvm_run->exit_reason) {
|
|
|
|
case KVM_EXIT_S390_SIEIC:
|
|
|
|
vcpu->arch.sie_block->gpsw.mask = kvm_run->s390_sieic.mask;
|
|
|
|
vcpu->arch.sie_block->gpsw.addr = kvm_run->s390_sieic.addr;
|
|
|
|
break;
|
|
|
|
case KVM_EXIT_UNKNOWN:
|
|
|
|
case KVM_EXIT_S390_RESET:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
2009-06-12 10:26:32 +02:00
|
|
|
might_fault();
|
2008-03-25 18:47:23 +01:00
|
|
|
|
|
|
|
do {
|
|
|
|
__vcpu_run(vcpu);
|
|
|
|
rc = kvm_handle_sie_intercept(vcpu);
|
|
|
|
} while (!signal_pending(current) && !rc);
|
|
|
|
|
|
|
|
if (signal_pending(current) && !rc)
|
|
|
|
rc = -EINTR;
|
|
|
|
|
|
|
|
if (rc == -ENOTSUPP) {
|
|
|
|
/* intercept cannot be handled in-kernel, prepare kvm-run */
|
|
|
|
kvm_run->exit_reason = KVM_EXIT_S390_SIEIC;
|
|
|
|
kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
|
|
|
|
kvm_run->s390_sieic.mask = vcpu->arch.sie_block->gpsw.mask;
|
|
|
|
kvm_run->s390_sieic.addr = vcpu->arch.sie_block->gpsw.addr;
|
|
|
|
kvm_run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
|
|
|
|
kvm_run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
|
|
|
|
rc = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rc == -EREMOTE) {
|
|
|
|
/* intercept was handled, but userspace support is needed
|
|
|
|
* kvm_run has been prepared by the handler */
|
|
|
|
rc = 0;
|
|
|
|
}
|
2008-03-25 18:47:20 +01:00
|
|
|
|
|
|
|
if (vcpu->sigset_active)
|
|
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
|
|
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
|
|
|
|
vcpu->stat.exit_userspace++;
|
2008-04-04 15:12:35 +02:00
|
|
|
return rc;
|
2008-03-25 18:47:20 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static int __guestcopy(struct kvm_vcpu *vcpu, u64 guestdest, const void *from,
|
|
|
|
unsigned long n, int prefix)
|
|
|
|
{
|
|
|
|
if (prefix)
|
|
|
|
return copy_to_guest(vcpu, guestdest, from, n);
|
|
|
|
else
|
|
|
|
return copy_to_guest_absolute(vcpu, guestdest, from, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* store status at address
|
|
|
|
* we use have two special cases:
|
|
|
|
* KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
|
|
|
|
* KVM_S390_STORE_STATUS_PREFIXED: -> prefix
|
|
|
|
*/
|
|
|
|
int __kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
|
|
|
|
{
|
|
|
|
const unsigned char archmode = 1;
|
|
|
|
int prefix;
|
|
|
|
|
|
|
|
if (addr == KVM_S390_STORE_STATUS_NOADDR) {
|
|
|
|
if (copy_to_guest_absolute(vcpu, 163ul, &archmode, 1))
|
|
|
|
return -EFAULT;
|
|
|
|
addr = SAVE_AREA_BASE;
|
|
|
|
prefix = 0;
|
|
|
|
} else if (addr == KVM_S390_STORE_STATUS_PREFIXED) {
|
|
|
|
if (copy_to_guest(vcpu, 163ul, &archmode, 1))
|
|
|
|
return -EFAULT;
|
|
|
|
addr = SAVE_AREA_BASE;
|
|
|
|
prefix = 1;
|
|
|
|
} else
|
|
|
|
prefix = 0;
|
|
|
|
|
|
|
|
if (__guestcopy(vcpu, addr + offsetof(struct save_area_s390x, fp_regs),
|
|
|
|
vcpu->arch.guest_fpregs.fprs, 128, prefix))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (__guestcopy(vcpu, addr + offsetof(struct save_area_s390x, gp_regs),
|
|
|
|
vcpu->arch.guest_gprs, 128, prefix))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (__guestcopy(vcpu, addr + offsetof(struct save_area_s390x, psw),
|
|
|
|
&vcpu->arch.sie_block->gpsw, 16, prefix))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (__guestcopy(vcpu, addr + offsetof(struct save_area_s390x, pref_reg),
|
|
|
|
&vcpu->arch.sie_block->prefix, 4, prefix))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (__guestcopy(vcpu,
|
|
|
|
addr + offsetof(struct save_area_s390x, fp_ctrl_reg),
|
|
|
|
&vcpu->arch.guest_fpregs.fpc, 4, prefix))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (__guestcopy(vcpu, addr + offsetof(struct save_area_s390x, tod_reg),
|
|
|
|
&vcpu->arch.sie_block->todpr, 4, prefix))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (__guestcopy(vcpu, addr + offsetof(struct save_area_s390x, timer),
|
|
|
|
&vcpu->arch.sie_block->cputm, 8, prefix))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (__guestcopy(vcpu, addr + offsetof(struct save_area_s390x, clk_cmp),
|
|
|
|
&vcpu->arch.sie_block->ckc, 8, prefix))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (__guestcopy(vcpu, addr + offsetof(struct save_area_s390x, acc_regs),
|
|
|
|
&vcpu->arch.guest_acrs, 64, prefix))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (__guestcopy(vcpu,
|
|
|
|
addr + offsetof(struct save_area_s390x, ctrl_regs),
|
|
|
|
&vcpu->arch.sie_block->gcr, 128, prefix))
|
|
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
rc = __kvm_s390_vcpu_store_status(vcpu, addr);
|
|
|
|
vcpu_put(vcpu);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
long kvm_arch_vcpu_ioctl(struct file *filp,
|
|
|
|
unsigned int ioctl, unsigned long arg)
|
|
|
|
{
|
|
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
|
|
|
|
switch (ioctl) {
|
KVM: s390: interrupt subsystem, cpu timer, waitpsw
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-25 18:47:26 +01:00
|
|
|
case KVM_S390_INTERRUPT: {
|
|
|
|
struct kvm_s390_interrupt s390int;
|
|
|
|
|
|
|
|
if (copy_from_user(&s390int, argp, sizeof(s390int)))
|
|
|
|
return -EFAULT;
|
|
|
|
return kvm_s390_inject_vcpu(vcpu, &s390int);
|
|
|
|
}
|
2008-03-25 18:47:20 +01:00
|
|
|
case KVM_S390_STORE_STATUS:
|
|
|
|
return kvm_s390_vcpu_store_status(vcpu, arg);
|
|
|
|
case KVM_S390_SET_INITIAL_PSW: {
|
|
|
|
psw_t psw;
|
|
|
|
|
|
|
|
if (copy_from_user(&psw, argp, sizeof(psw)))
|
|
|
|
return -EFAULT;
|
|
|
|
return kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
|
|
|
|
}
|
|
|
|
case KVM_S390_INITIAL_RESET:
|
|
|
|
return kvm_arch_vcpu_ioctl_initial_reset(vcpu);
|
|
|
|
default:
|
|
|
|
;
|
|
|
|
}
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Section: memory related */
|
|
|
|
int kvm_arch_set_memory_region(struct kvm *kvm,
|
|
|
|
struct kvm_userspace_memory_region *mem,
|
|
|
|
struct kvm_memory_slot old,
|
|
|
|
int user_alloc)
|
|
|
|
{
|
2009-05-12 17:21:48 +02:00
|
|
|
int i;
|
|
|
|
|
2008-03-25 18:47:20 +01:00
|
|
|
/* A few sanity checks. We can have exactly one memory slot which has
|
|
|
|
to start at guest virtual zero and which has to be located at a
|
|
|
|
page boundary in userland and which has to end at a page boundary.
|
|
|
|
The memory in userland is ok to be fragmented into various different
|
|
|
|
vmas. It is okay to mmap() and munmap() stuff in this slot after
|
|
|
|
doing this call at any time */
|
|
|
|
|
2009-05-12 17:21:48 +02:00
|
|
|
if (mem->slot || kvm->arch.guest_memsize)
|
2008-03-25 18:47:20 +01:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (mem->guest_phys_addr)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (mem->userspace_addr & (PAGE_SIZE - 1))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (mem->memory_size & (PAGE_SIZE - 1))
|
|
|
|
return -EINVAL;
|
|
|
|
|
2009-05-12 17:21:48 +02:00
|
|
|
if (!user_alloc)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* lock all vcpus */
|
|
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
|
|
if (!kvm->vcpus[i])
|
|
|
|
continue;
|
|
|
|
if (!mutex_trylock(&kvm->vcpus[i]->mutex))
|
|
|
|
goto fail_out;
|
|
|
|
}
|
|
|
|
|
2008-03-25 18:47:20 +01:00
|
|
|
kvm->arch.guest_origin = mem->userspace_addr;
|
|
|
|
kvm->arch.guest_memsize = mem->memory_size;
|
|
|
|
|
2009-05-12 17:21:48 +02:00
|
|
|
/* update sie control blocks, and unlock all vcpus */
|
|
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
|
|
if (kvm->vcpus[i]) {
|
|
|
|
kvm->vcpus[i]->arch.sie_block->gmsor =
|
|
|
|
kvm->arch.guest_origin;
|
|
|
|
kvm->vcpus[i]->arch.sie_block->gmslm =
|
|
|
|
kvm->arch.guest_memsize +
|
|
|
|
kvm->arch.guest_origin +
|
|
|
|
VIRTIODESCSPACE - 1ul;
|
|
|
|
mutex_unlock(&kvm->vcpus[i]->mutex);
|
|
|
|
}
|
|
|
|
}
|
2008-03-25 18:47:20 +01:00
|
|
|
|
|
|
|
return 0;
|
2009-05-12 17:21:48 +02:00
|
|
|
|
|
|
|
fail_out:
|
|
|
|
for (; i >= 0; i--)
|
|
|
|
mutex_unlock(&kvm->vcpus[i]->mutex);
|
|
|
|
return -EINVAL;
|
2008-03-25 18:47:20 +01:00
|
|
|
}
|
|
|
|
|
2008-07-11 01:49:31 +02:00
|
|
|
void kvm_arch_flush_shadow(struct kvm *kvm)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2008-03-25 18:47:20 +01:00
|
|
|
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
|
|
|
|
{
|
|
|
|
return gfn;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init kvm_s390_init(void)
|
|
|
|
{
|
2009-06-23 17:24:07 +02:00
|
|
|
int ret;
|
|
|
|
ret = kvm_init(NULL, sizeof(struct kvm_vcpu), THIS_MODULE);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* guests can ask for up to 255+1 double words, we need a full page
|
|
|
|
* to hold the maximum amount of facilites. On the other hand, we
|
|
|
|
* only set facilities that are known to work in KVM.
|
|
|
|
*/
|
|
|
|
facilities = (unsigned long long *) get_zeroed_page(GFP_DMA);
|
|
|
|
if (!facilities) {
|
|
|
|
kvm_exit();
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
stfle(facilities, 1);
|
|
|
|
facilities[0] &= 0xff00fff3f0700000ULL;
|
|
|
|
return 0;
|
2008-03-25 18:47:20 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit kvm_s390_exit(void)
|
|
|
|
{
|
2009-06-23 17:24:07 +02:00
|
|
|
free_page((unsigned long) facilities);
|
2008-03-25 18:47:20 +01:00
|
|
|
kvm_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
module_init(kvm_s390_init);
|
|
|
|
module_exit(kvm_s390_exit);
|