linux-hardened/include/linux/raid/raid5.h

372 lines
15 KiB
C
Raw Normal View History

#ifndef _RAID5_H
#define _RAID5_H
#include <linux/raid/md.h>
#include <linux/raid/xor.h>
/*
*
* Each stripe contains one buffer per disc. Each buffer can be in
* one of a number of states stored in "flags". Changes between
* these states happen *almost* exclusively under a per-stripe
* spinlock. Some very specific changes can happen in bi_end_io, and
* these are not protected by the spin lock.
*
* The flag bits that are used to represent these states are:
* R5_UPTODATE and R5_LOCKED
*
* State Empty == !UPTODATE, !LOCK
* We have no data, and there is no active request
* State Want == !UPTODATE, LOCK
* A read request is being submitted for this block
* State Dirty == UPTODATE, LOCK
* Some new data is in this buffer, and it is being written out
* State Clean == UPTODATE, !LOCK
* We have valid data which is the same as on disc
*
* The possible state transitions are:
*
* Empty -> Want - on read or write to get old data for parity calc
* Empty -> Dirty - on compute_parity to satisfy write/sync request.(RECONSTRUCT_WRITE)
* Empty -> Clean - on compute_block when computing a block for failed drive
* Want -> Empty - on failed read
* Want -> Clean - on successful completion of read request
* Dirty -> Clean - on successful completion of write request
* Dirty -> Clean - on failed write
* Clean -> Dirty - on compute_parity to satisfy write/sync (RECONSTRUCT or RMW)
*
* The Want->Empty, Want->Clean, Dirty->Clean, transitions
* all happen in b_end_io at interrupt time.
* Each sets the Uptodate bit before releasing the Lock bit.
* This leaves one multi-stage transition:
* Want->Dirty->Clean
* This is safe because thinking that a Clean buffer is actually dirty
* will at worst delay some action, and the stripe will be scheduled
* for attention after the transition is complete.
*
* There is one possibility that is not covered by these states. That
* is if one drive has failed and there is a spare being rebuilt. We
* can't distinguish between a clean block that has been generated
* from parity calculations, and a clean block that has been
* successfully written to the spare ( or to parity when resyncing).
* To distingush these states we have a stripe bit STRIPE_INSYNC that
* is set whenever a write is scheduled to the spare, or to the parity
* disc if there is no spare. A sync request clears this bit, and
* when we find it set with no buffers locked, we know the sync is
* complete.
*
* Buffers for the md device that arrive via make_request are attached
* to the appropriate stripe in one of two lists linked on b_reqnext.
* One list (bh_read) for read requests, one (bh_write) for write.
* There should never be more than one buffer on the two lists
* together, but we are not guaranteed of that so we allow for more.
*
* If a buffer is on the read list when the associated cache buffer is
* Uptodate, the data is copied into the read buffer and it's b_end_io
* routine is called. This may happen in the end_request routine only
* if the buffer has just successfully been read. end_request should
* remove the buffers from the list and then set the Uptodate bit on
* the buffer. Other threads may do this only if they first check
* that the Uptodate bit is set. Once they have checked that they may
* take buffers off the read queue.
*
* When a buffer on the write list is committed for write it is copied
* into the cache buffer, which is then marked dirty, and moved onto a
* third list, the written list (bh_written). Once both the parity
* block and the cached buffer are successfully written, any buffer on
* a written list can be returned with b_end_io.
*
* The write list and read list both act as fifos. The read list is
* protected by the device_lock. The write and written lists are
* protected by the stripe lock. The device_lock, which can be
* claimed while the stipe lock is held, is only for list
* manipulations and will only be held for a very short time. It can
* be claimed from interrupts.
*
*
* Stripes in the stripe cache can be on one of two lists (or on
* neither). The "inactive_list" contains stripes which are not
* currently being used for any request. They can freely be reused
* for another stripe. The "handle_list" contains stripes that need
* to be handled in some way. Both of these are fifo queues. Each
* stripe is also (potentially) linked to a hash bucket in the hash
* table so that it can be found by sector number. Stripes that are
* not hashed must be on the inactive_list, and will normally be at
* the front. All stripes start life this way.
*
* The inactive_list, handle_list and hash bucket lists are all protected by the
* device_lock.
* - stripes on the inactive_list never have their stripe_lock held.
* - stripes have a reference counter. If count==0, they are on a list.
* - If a stripe might need handling, STRIPE_HANDLE is set.
* - When refcount reaches zero, then if STRIPE_HANDLE it is put on
* handle_list else inactive_list
*
* This, combined with the fact that STRIPE_HANDLE is only ever
* cleared while a stripe has a non-zero count means that if the
* refcount is 0 and STRIPE_HANDLE is set, then it is on the
* handle_list and if recount is 0 and STRIPE_HANDLE is not set, then
* the stripe is on inactive_list.
*
* The possible transitions are:
* activate an unhashed/inactive stripe (get_active_stripe())
* lockdev check-hash unlink-stripe cnt++ clean-stripe hash-stripe unlockdev
* activate a hashed, possibly active stripe (get_active_stripe())
* lockdev check-hash if(!cnt++)unlink-stripe unlockdev
* attach a request to an active stripe (add_stripe_bh())
* lockdev attach-buffer unlockdev
* handle a stripe (handle_stripe())
md: raid5_run_ops - run stripe operations outside sh->lock When the raid acceleration work was proposed, Neil laid out the following attack plan: 1/ move the xor and copy operations outside spin_lock(&sh->lock) 2/ find/implement an asynchronous offload api The raid5_run_ops routine uses the asynchronous offload api (async_tx) and the stripe_operations member of a stripe_head to carry out xor+copy operations asynchronously, outside the lock. To perform operations outside the lock a new set of state flags is needed to track new requests, in-flight requests, and completed requests. In this new model handle_stripe is tasked with scanning the stripe_head for work, updating the stripe_operations structure, and finally dropping the lock and calling raid5_run_ops for processing. The following flags outline the requests that handle_stripe can make of raid5_run_ops: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate a missing block in the cache from the other blocks STRIPE_OP_PREXOR - subtract existing data as part of the read-modify-write process STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_POSTXOR - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct STRIPE_OP_IO - submit i/o to the member disks (note this was already performed outside the stripe lock, but it made sense to add it as an operation type The flow is: 1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending 2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the operation to the async_tx api 3/ async_tx triggers the completion callback routine to set sh->ops.complete and release the stripe 4/ handle_stripe runs again to finish the operation and optionally submit new operations that were previously blocked Note this patch just defines raid5_run_ops, subsequent commits (one per major operation type) modify handle_stripe to take advantage of this routine. Changelog: * removed ops_complete_biodrain in favor of ops_complete_postxor and ops_complete_write. * removed the raid5_run_ops workqueue * call bi_end_io for reads in ops_complete_biofill, saves a call to handle_stripe * explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown * fix race between async engines and bi_end_io call for reads, Neil Brown * remove unnecessary spin_lock from ops_complete_biofill * remove test_and_set/test_and_clear BUG_ONs, Neil Brown * remove explicit interrupt handling for channel switching, this feature was absorbed (i.e. it is now implicit) by the async_tx api * use return_io in ops_complete_biofill Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-01-02 21:52:30 +01:00
* lockstripe clrSTRIPE_HANDLE ...
* (lockdev check-buffers unlockdev) ..
* change-state ..
* record io/ops needed unlockstripe schedule io/ops
* release an active stripe (release_stripe())
* lockdev if (!--cnt) { if STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev
*
* The refcount counts each thread that have activated the stripe,
* plus raid5d if it is handling it, plus one for each active request
md: raid5_run_ops - run stripe operations outside sh->lock When the raid acceleration work was proposed, Neil laid out the following attack plan: 1/ move the xor and copy operations outside spin_lock(&sh->lock) 2/ find/implement an asynchronous offload api The raid5_run_ops routine uses the asynchronous offload api (async_tx) and the stripe_operations member of a stripe_head to carry out xor+copy operations asynchronously, outside the lock. To perform operations outside the lock a new set of state flags is needed to track new requests, in-flight requests, and completed requests. In this new model handle_stripe is tasked with scanning the stripe_head for work, updating the stripe_operations structure, and finally dropping the lock and calling raid5_run_ops for processing. The following flags outline the requests that handle_stripe can make of raid5_run_ops: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate a missing block in the cache from the other blocks STRIPE_OP_PREXOR - subtract existing data as part of the read-modify-write process STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_POSTXOR - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct STRIPE_OP_IO - submit i/o to the member disks (note this was already performed outside the stripe lock, but it made sense to add it as an operation type The flow is: 1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending 2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the operation to the async_tx api 3/ async_tx triggers the completion callback routine to set sh->ops.complete and release the stripe 4/ handle_stripe runs again to finish the operation and optionally submit new operations that were previously blocked Note this patch just defines raid5_run_ops, subsequent commits (one per major operation type) modify handle_stripe to take advantage of this routine. Changelog: * removed ops_complete_biodrain in favor of ops_complete_postxor and ops_complete_write. * removed the raid5_run_ops workqueue * call bi_end_io for reads in ops_complete_biofill, saves a call to handle_stripe * explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown * fix race between async engines and bi_end_io call for reads, Neil Brown * remove unnecessary spin_lock from ops_complete_biofill * remove test_and_set/test_and_clear BUG_ONs, Neil Brown * remove explicit interrupt handling for channel switching, this feature was absorbed (i.e. it is now implicit) by the async_tx api * use return_io in ops_complete_biofill Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-01-02 21:52:30 +01:00
* on a cached buffer, and plus one if the stripe is undergoing stripe
* operations.
*
* Stripe operations are performed outside the stripe lock,
* the stripe operations are:
* -copying data between the stripe cache and user application buffers
* -computing blocks to save a disk access, or to recover a missing block
* -updating the parity on a write operation (reconstruct write and
* read-modify-write)
* -checking parity correctness
* -running i/o to disk
* These operations are carried out by raid5_run_ops which uses the async_tx
* api to (optionally) offload operations to dedicated hardware engines.
* When requesting an operation handle_stripe sets the pending bit for the
* operation and increments the count. raid5_run_ops is then run whenever
* the count is non-zero.
* There are some critical dependencies between the operations that prevent some
* from being requested while another is in flight.
* 1/ Parity check operations destroy the in cache version of the parity block,
* so we prevent parity dependent operations like writes and compute_blocks
* from starting while a check is in progress. Some dma engines can perform
* the check without damaging the parity block, in these cases the parity
* block is re-marked up to date (assuming the check was successful) and is
* not re-read from disk.
* 2/ When a write operation is requested we immediately lock the affected
* blocks, and mark them as not up to date. This causes new read requests
* to be held off, as well as parity checks and compute block operations.
* 3/ Once a compute block operation has been requested handle_stripe treats
* that block as if it is up to date. raid5_run_ops guaruntees that any
* operation that is dependent on the compute block result is initiated after
* the compute block completes.
*/
struct stripe_head {
struct hlist_node hash;
struct list_head lru; /* inactive_list or handle_list */
struct raid5_private_data *raid_conf;
sector_t sector; /* sector of this row */
int pd_idx; /* parity disk index */
unsigned long state; /* state flags */
atomic_t count; /* nr of active thread/requests */
spinlock_t lock;
int bm_seq; /* sequence number for bitmap flushes */
int disks; /* disks in stripe */
md: raid5_run_ops - run stripe operations outside sh->lock When the raid acceleration work was proposed, Neil laid out the following attack plan: 1/ move the xor and copy operations outside spin_lock(&sh->lock) 2/ find/implement an asynchronous offload api The raid5_run_ops routine uses the asynchronous offload api (async_tx) and the stripe_operations member of a stripe_head to carry out xor+copy operations asynchronously, outside the lock. To perform operations outside the lock a new set of state flags is needed to track new requests, in-flight requests, and completed requests. In this new model handle_stripe is tasked with scanning the stripe_head for work, updating the stripe_operations structure, and finally dropping the lock and calling raid5_run_ops for processing. The following flags outline the requests that handle_stripe can make of raid5_run_ops: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate a missing block in the cache from the other blocks STRIPE_OP_PREXOR - subtract existing data as part of the read-modify-write process STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_POSTXOR - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct STRIPE_OP_IO - submit i/o to the member disks (note this was already performed outside the stripe lock, but it made sense to add it as an operation type The flow is: 1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending 2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the operation to the async_tx api 3/ async_tx triggers the completion callback routine to set sh->ops.complete and release the stripe 4/ handle_stripe runs again to finish the operation and optionally submit new operations that were previously blocked Note this patch just defines raid5_run_ops, subsequent commits (one per major operation type) modify handle_stripe to take advantage of this routine. Changelog: * removed ops_complete_biodrain in favor of ops_complete_postxor and ops_complete_write. * removed the raid5_run_ops workqueue * call bi_end_io for reads in ops_complete_biofill, saves a call to handle_stripe * explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown * fix race between async engines and bi_end_io call for reads, Neil Brown * remove unnecessary spin_lock from ops_complete_biofill * remove test_and_set/test_and_clear BUG_ONs, Neil Brown * remove explicit interrupt handling for channel switching, this feature was absorbed (i.e. it is now implicit) by the async_tx api * use return_io in ops_complete_biofill Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-01-02 21:52:30 +01:00
/* stripe_operations
* @pending - pending ops flags (set for request->issue->complete)
* @ack - submitted ops flags (set for issue->complete)
* @complete - completed ops flags (set for complete)
* @target - STRIPE_OP_COMPUTE_BLK target
* @count - raid5_runs_ops is set to run when this is non-zero
*/
struct stripe_operations {
unsigned long pending;
unsigned long ack;
unsigned long complete;
int target;
int count;
u32 zero_sum_result;
} ops;
struct r5dev {
struct bio req;
struct bio_vec vec;
struct page *page;
md: raid5_run_ops - run stripe operations outside sh->lock When the raid acceleration work was proposed, Neil laid out the following attack plan: 1/ move the xor and copy operations outside spin_lock(&sh->lock) 2/ find/implement an asynchronous offload api The raid5_run_ops routine uses the asynchronous offload api (async_tx) and the stripe_operations member of a stripe_head to carry out xor+copy operations asynchronously, outside the lock. To perform operations outside the lock a new set of state flags is needed to track new requests, in-flight requests, and completed requests. In this new model handle_stripe is tasked with scanning the stripe_head for work, updating the stripe_operations structure, and finally dropping the lock and calling raid5_run_ops for processing. The following flags outline the requests that handle_stripe can make of raid5_run_ops: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate a missing block in the cache from the other blocks STRIPE_OP_PREXOR - subtract existing data as part of the read-modify-write process STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_POSTXOR - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct STRIPE_OP_IO - submit i/o to the member disks (note this was already performed outside the stripe lock, but it made sense to add it as an operation type The flow is: 1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending 2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the operation to the async_tx api 3/ async_tx triggers the completion callback routine to set sh->ops.complete and release the stripe 4/ handle_stripe runs again to finish the operation and optionally submit new operations that were previously blocked Note this patch just defines raid5_run_ops, subsequent commits (one per major operation type) modify handle_stripe to take advantage of this routine. Changelog: * removed ops_complete_biodrain in favor of ops_complete_postxor and ops_complete_write. * removed the raid5_run_ops workqueue * call bi_end_io for reads in ops_complete_biofill, saves a call to handle_stripe * explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown * fix race between async engines and bi_end_io call for reads, Neil Brown * remove unnecessary spin_lock from ops_complete_biofill * remove test_and_set/test_and_clear BUG_ONs, Neil Brown * remove explicit interrupt handling for channel switching, this feature was absorbed (i.e. it is now implicit) by the async_tx api * use return_io in ops_complete_biofill Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-01-02 21:52:30 +01:00
struct bio *toread, *read, *towrite, *written;
sector_t sector; /* sector of this page */
unsigned long flags;
} dev[1]; /* allocated with extra space depending of RAID geometry */
};
/* stripe_head_state - collects and tracks the dynamic state of a stripe_head
* for handle_stripe. It is only valid under spin_lock(sh->lock);
*/
struct stripe_head_state {
int syncing, expanding, expanded;
int locked, uptodate, to_read, to_write, failed, written;
int to_fill, compute, req_compute, non_overwrite;
int failed_num;
};
/* r6_state - extra state data only relevant to r6 */
struct r6_state {
int p_failed, q_failed, qd_idx, failed_num[2];
};
/* Flags */
#define R5_UPTODATE 0 /* page contains current data */
#define R5_LOCKED 1 /* IO has been submitted on "req" */
#define R5_OVERWRITE 2 /* towrite covers whole page */
/* and some that are internal to handle_stripe */
#define R5_Insync 3 /* rdev && rdev->in_sync at start */
#define R5_Wantread 4 /* want to schedule a read */
#define R5_Wantwrite 5
#define R5_Overlap 7 /* There is a pending overlapping request on this block */
#define R5_ReadError 8 /* seen a read error here recently */
#define R5_ReWrite 9 /* have tried to over-write the readerror */
#define R5_Expanded 10 /* This block now has post-expand data */
md: raid5_run_ops - run stripe operations outside sh->lock When the raid acceleration work was proposed, Neil laid out the following attack plan: 1/ move the xor and copy operations outside spin_lock(&sh->lock) 2/ find/implement an asynchronous offload api The raid5_run_ops routine uses the asynchronous offload api (async_tx) and the stripe_operations member of a stripe_head to carry out xor+copy operations asynchronously, outside the lock. To perform operations outside the lock a new set of state flags is needed to track new requests, in-flight requests, and completed requests. In this new model handle_stripe is tasked with scanning the stripe_head for work, updating the stripe_operations structure, and finally dropping the lock and calling raid5_run_ops for processing. The following flags outline the requests that handle_stripe can make of raid5_run_ops: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate a missing block in the cache from the other blocks STRIPE_OP_PREXOR - subtract existing data as part of the read-modify-write process STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_POSTXOR - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct STRIPE_OP_IO - submit i/o to the member disks (note this was already performed outside the stripe lock, but it made sense to add it as an operation type The flow is: 1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending 2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the operation to the async_tx api 3/ async_tx triggers the completion callback routine to set sh->ops.complete and release the stripe 4/ handle_stripe runs again to finish the operation and optionally submit new operations that were previously blocked Note this patch just defines raid5_run_ops, subsequent commits (one per major operation type) modify handle_stripe to take advantage of this routine. Changelog: * removed ops_complete_biodrain in favor of ops_complete_postxor and ops_complete_write. * removed the raid5_run_ops workqueue * call bi_end_io for reads in ops_complete_biofill, saves a call to handle_stripe * explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown * fix race between async engines and bi_end_io call for reads, Neil Brown * remove unnecessary spin_lock from ops_complete_biofill * remove test_and_set/test_and_clear BUG_ONs, Neil Brown * remove explicit interrupt handling for channel switching, this feature was absorbed (i.e. it is now implicit) by the async_tx api * use return_io in ops_complete_biofill Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-01-02 21:52:30 +01:00
#define R5_Wantcompute 11 /* compute_block in progress treat as
* uptodate
*/
#define R5_Wantfill 12 /* dev->toread contains a bio that needs
* filling
*/
#define R5_Wantprexor 13 /* distinguish blocks ready for rmw from
* other "towrites"
*/
/*
* Write method
*/
#define RECONSTRUCT_WRITE 1
#define READ_MODIFY_WRITE 2
/* not a write method, but a compute_parity mode */
#define CHECK_PARITY 3
/*
* Stripe state
*/
#define STRIPE_HANDLE 2
#define STRIPE_SYNCING 3
#define STRIPE_INSYNC 4
#define STRIPE_PREREAD_ACTIVE 5
#define STRIPE_DELAYED 6
#define STRIPE_DEGRADED 7
#define STRIPE_BIT_DELAY 8
#define STRIPE_EXPANDING 9
#define STRIPE_EXPAND_SOURCE 10
#define STRIPE_EXPAND_READY 11
md: raid5_run_ops - run stripe operations outside sh->lock When the raid acceleration work was proposed, Neil laid out the following attack plan: 1/ move the xor and copy operations outside spin_lock(&sh->lock) 2/ find/implement an asynchronous offload api The raid5_run_ops routine uses the asynchronous offload api (async_tx) and the stripe_operations member of a stripe_head to carry out xor+copy operations asynchronously, outside the lock. To perform operations outside the lock a new set of state flags is needed to track new requests, in-flight requests, and completed requests. In this new model handle_stripe is tasked with scanning the stripe_head for work, updating the stripe_operations structure, and finally dropping the lock and calling raid5_run_ops for processing. The following flags outline the requests that handle_stripe can make of raid5_run_ops: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate a missing block in the cache from the other blocks STRIPE_OP_PREXOR - subtract existing data as part of the read-modify-write process STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_POSTXOR - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct STRIPE_OP_IO - submit i/o to the member disks (note this was already performed outside the stripe lock, but it made sense to add it as an operation type The flow is: 1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending 2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the operation to the async_tx api 3/ async_tx triggers the completion callback routine to set sh->ops.complete and release the stripe 4/ handle_stripe runs again to finish the operation and optionally submit new operations that were previously blocked Note this patch just defines raid5_run_ops, subsequent commits (one per major operation type) modify handle_stripe to take advantage of this routine. Changelog: * removed ops_complete_biodrain in favor of ops_complete_postxor and ops_complete_write. * removed the raid5_run_ops workqueue * call bi_end_io for reads in ops_complete_biofill, saves a call to handle_stripe * explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown * fix race between async engines and bi_end_io call for reads, Neil Brown * remove unnecessary spin_lock from ops_complete_biofill * remove test_and_set/test_and_clear BUG_ONs, Neil Brown * remove explicit interrupt handling for channel switching, this feature was absorbed (i.e. it is now implicit) by the async_tx api * use return_io in ops_complete_biofill Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-01-02 21:52:30 +01:00
/*
* Operations flags (in issue order)
*/
#define STRIPE_OP_BIOFILL 0
#define STRIPE_OP_COMPUTE_BLK 1
#define STRIPE_OP_PREXOR 2
#define STRIPE_OP_BIODRAIN 3
#define STRIPE_OP_POSTXOR 4
#define STRIPE_OP_CHECK 5
#define STRIPE_OP_IO 6
/* modifiers to the base operations
* STRIPE_OP_MOD_REPAIR_PD - compute the parity block and write it back
* STRIPE_OP_MOD_DMA_CHECK - parity is not corrupted by the check
*/
#define STRIPE_OP_MOD_REPAIR_PD 7
#define STRIPE_OP_MOD_DMA_CHECK 8
/*
* Plugging:
*
* To improve write throughput, we need to delay the handling of some
* stripes until there has been a chance that several write requests
* for the one stripe have all been collected.
* In particular, any write request that would require pre-reading
* is put on a "delayed" queue until there are no stripes currently
* in a pre-read phase. Further, if the "delayed" queue is empty when
* a stripe is put on it then we "plug" the queue and do not process it
* until an unplug call is made. (the unplug_io_fn() is called).
*
* When preread is initiated on a stripe, we set PREREAD_ACTIVE and add
* it to the count of prereading stripes.
* When write is initiated, or the stripe refcnt == 0 (just in case) we
* clear the PREREAD_ACTIVE flag and decrement the count
* Whenever the 'handle' queue is empty and the device is not plugged, we
* move any strips from delayed to handle and clear the DELAYED flag and set
* PREREAD_ACTIVE.
* In stripe_handle, if we find pre-reading is necessary, we do it if
* PREREAD_ACTIVE is set, else we set DELAYED which will send it to the delayed queue.
* HANDLE gets cleared if stripe_handle leave nothing locked.
*/
struct disk_info {
mdk_rdev_t *rdev;
};
struct raid5_private_data {
struct hlist_head *stripe_hashtbl;
mddev_t *mddev;
struct disk_info *spare;
int chunk_size, level, algorithm;
int max_degraded;
int raid_disks;
int max_nr_stripes;
/* used during an expand */
sector_t expand_progress; /* MaxSector when no expand happening */
sector_t expand_lo; /* from here up to expand_progress it out-of-bounds
* as we haven't flushed the metadata yet
*/
int previous_raid_disks;
struct list_head handle_list; /* stripes needing handling */
struct list_head delayed_list; /* stripes that have plugged requests */
struct list_head bitmap_list; /* stripes delaying awaiting bitmap update */
[PATCH] md: allow reads that have bypassed the cache to be retried on failure If a bypass-the-cache read fails, we simply try again through the cache. If it fails again it will trigger normal recovery precedures. update 1: From: NeilBrown <neilb@suse.de> 1/ chunk_aligned_read and retry_aligned_read assume that data_disks == raid_disks - 1 which is not true for raid6. So when an aligned read request bypasses the cache, we can get the wrong data. 2/ The cloned bio is being used-after-free in raid5_align_endio (to test BIO_UPTODATE). 3/ We forgot to add rdev->data_offset when submitting a bio for aligned-read 4/ clone_bio calls blk_recount_segments and then we change bi_bdev, so we need to invalidate the segment counts. 5/ We don't de-reference the rdev when the read completes. This means we need to record the rdev to so it is still available in the end_io routine. Fortunately bi_next in the original bio is unused at this point so we can stuff it in there. 6/ We leak a cloned bio if the target rdev is not usable. From: NeilBrown <neilb@suse.de> update 2: 1/ When aligned requests fail (read error) they need to be retried via the normal method (stripe cache). As we cannot be sure that we can process a single read in one go (we may not be able to allocate all the stripes needed) we store a bio-being-retried and a list of bioes-that-still-need-to-be-retried. When find a bio that needs to be retried, we should add it to the list, not to single-bio... 2/ We were never incrementing 'scnt' when resubmitting failed aligned requests. [akpm@osdl.org: build fix] Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 11:20:47 +01:00
struct bio *retry_read_aligned; /* currently retrying aligned bios */
struct bio *retry_read_aligned_list; /* aligned bios retry list */
atomic_t preread_active_stripes; /* stripes with scheduled io */
[PATCH] md: allow reads that have bypassed the cache to be retried on failure If a bypass-the-cache read fails, we simply try again through the cache. If it fails again it will trigger normal recovery precedures. update 1: From: NeilBrown <neilb@suse.de> 1/ chunk_aligned_read and retry_aligned_read assume that data_disks == raid_disks - 1 which is not true for raid6. So when an aligned read request bypasses the cache, we can get the wrong data. 2/ The cloned bio is being used-after-free in raid5_align_endio (to test BIO_UPTODATE). 3/ We forgot to add rdev->data_offset when submitting a bio for aligned-read 4/ clone_bio calls blk_recount_segments and then we change bi_bdev, so we need to invalidate the segment counts. 5/ We don't de-reference the rdev when the read completes. This means we need to record the rdev to so it is still available in the end_io routine. Fortunately bi_next in the original bio is unused at this point so we can stuff it in there. 6/ We leak a cloned bio if the target rdev is not usable. From: NeilBrown <neilb@suse.de> update 2: 1/ When aligned requests fail (read error) they need to be retried via the normal method (stripe cache). As we cannot be sure that we can process a single read in one go (we may not be able to allocate all the stripes needed) we store a bio-being-retried and a list of bioes-that-still-need-to-be-retried. When find a bio that needs to be retried, we should add it to the list, not to single-bio... 2/ We were never incrementing 'scnt' when resubmitting failed aligned requests. [akpm@osdl.org: build fix] Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 11:20:47 +01:00
atomic_t active_aligned_reads;
atomic_t reshape_stripes; /* stripes with pending writes for reshape */
/* unfortunately we need two cache names as we temporarily have
* two caches.
*/
int active_name;
char cache_name[2][20];
struct kmem_cache *slab_cache; /* for allocating stripes */
int seq_flush, seq_write;
int quiesce;
int fullsync; /* set to 1 if a full sync is needed,
* (fresh device added).
* Cleared when a sync completes.
*/
struct page *spare_page; /* Used when checking P/Q in raid6 */
/*
* Free stripes pool
*/
atomic_t active_stripes;
struct list_head inactive_list;
wait_queue_head_t wait_for_stripe;
wait_queue_head_t wait_for_overlap;
int inactive_blocked; /* release of inactive stripes blocked,
* waiting for 25% to be free
*/
int pool_size; /* number of disks in stripeheads in pool */
spinlock_t device_lock;
struct disk_info *disks;
};
typedef struct raid5_private_data raid5_conf_t;
#define mddev_to_conf(mddev) ((raid5_conf_t *) mddev->private)
/*
* Our supported algorithms
*/
#define ALGORITHM_LEFT_ASYMMETRIC 0
#define ALGORITHM_RIGHT_ASYMMETRIC 1
#define ALGORITHM_LEFT_SYMMETRIC 2
#define ALGORITHM_RIGHT_SYMMETRIC 3
#endif