linux-hardened/fs/ceph/messenger.c

2285 lines
57 KiB
C
Raw Normal View History

#include "ceph_debug.h"
#include <linux/crc32c.h>
#include <linux/ctype.h>
#include <linux/highmem.h>
#include <linux/inet.h>
#include <linux/kthread.h>
#include <linux/net.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 09:04:11 +01:00
#include <linux/slab.h>
#include <linux/socket.h>
#include <linux/string.h>
#include <net/tcp.h>
#include "super.h"
#include "messenger.h"
#include "decode.h"
#include "pagelist.h"
/*
* Ceph uses the messenger to exchange ceph_msg messages with other
* hosts in the system. The messenger provides ordered and reliable
* delivery. We tolerate TCP disconnects by reconnecting (with
* exponential backoff) in the case of a fault (disconnection, bad
* crc, protocol error). Acks allow sent messages to be discarded by
* the sender.
*/
/* static tag bytes (protocol control messages) */
static char tag_msg = CEPH_MSGR_TAG_MSG;
static char tag_ack = CEPH_MSGR_TAG_ACK;
static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
#ifdef CONFIG_LOCKDEP
static struct lock_class_key socket_class;
#endif
static void queue_con(struct ceph_connection *con);
static void con_work(struct work_struct *);
static void ceph_fault(struct ceph_connection *con);
const char *ceph_name_type_str(int t)
{
switch (t) {
case CEPH_ENTITY_TYPE_MON: return "mon";
case CEPH_ENTITY_TYPE_MDS: return "mds";
case CEPH_ENTITY_TYPE_OSD: return "osd";
case CEPH_ENTITY_TYPE_CLIENT: return "client";
case CEPH_ENTITY_TYPE_ADMIN: return "admin";
default: return "???";
}
}
/*
* nicely render a sockaddr as a string.
*/
#define MAX_ADDR_STR 20
static char addr_str[MAX_ADDR_STR][40];
static DEFINE_SPINLOCK(addr_str_lock);
static int last_addr_str;
const char *pr_addr(const struct sockaddr_storage *ss)
{
int i;
char *s;
struct sockaddr_in *in4 = (void *)ss;
unsigned char *quad = (void *)&in4->sin_addr.s_addr;
struct sockaddr_in6 *in6 = (void *)ss;
spin_lock(&addr_str_lock);
i = last_addr_str++;
if (last_addr_str == MAX_ADDR_STR)
last_addr_str = 0;
spin_unlock(&addr_str_lock);
s = addr_str[i];
switch (ss->ss_family) {
case AF_INET:
sprintf(s, "%u.%u.%u.%u:%u",
(unsigned int)quad[0],
(unsigned int)quad[1],
(unsigned int)quad[2],
(unsigned int)quad[3],
(unsigned int)ntohs(in4->sin_port));
break;
case AF_INET6:
sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u",
in6->sin6_addr.s6_addr16[0],
in6->sin6_addr.s6_addr16[1],
in6->sin6_addr.s6_addr16[2],
in6->sin6_addr.s6_addr16[3],
in6->sin6_addr.s6_addr16[4],
in6->sin6_addr.s6_addr16[5],
in6->sin6_addr.s6_addr16[6],
in6->sin6_addr.s6_addr16[7],
(unsigned int)ntohs(in6->sin6_port));
break;
default:
sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
}
return s;
}
static void encode_my_addr(struct ceph_messenger *msgr)
{
memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
ceph_encode_addr(&msgr->my_enc_addr);
}
/*
* work queue for all reading and writing to/from the socket.
*/
struct workqueue_struct *ceph_msgr_wq;
int __init ceph_msgr_init(void)
{
ceph_msgr_wq = create_workqueue("ceph-msgr");
if (IS_ERR(ceph_msgr_wq)) {
int ret = PTR_ERR(ceph_msgr_wq);
pr_err("msgr_init failed to create workqueue: %d\n", ret);
ceph_msgr_wq = NULL;
return ret;
}
return 0;
}
void ceph_msgr_exit(void)
{
destroy_workqueue(ceph_msgr_wq);
}
/*
* socket callback functions
*/
/* data available on socket, or listen socket received a connect */
static void ceph_data_ready(struct sock *sk, int count_unused)
{
struct ceph_connection *con =
(struct ceph_connection *)sk->sk_user_data;
if (sk->sk_state != TCP_CLOSE_WAIT) {
dout("ceph_data_ready on %p state = %lu, queueing work\n",
con, con->state);
queue_con(con);
}
}
/* socket has buffer space for writing */
static void ceph_write_space(struct sock *sk)
{
struct ceph_connection *con =
(struct ceph_connection *)sk->sk_user_data;
/* only queue to workqueue if there is data we want to write. */
if (test_bit(WRITE_PENDING, &con->state)) {
dout("ceph_write_space %p queueing write work\n", con);
queue_con(con);
} else {
dout("ceph_write_space %p nothing to write\n", con);
}
/* since we have our own write_space, clear the SOCK_NOSPACE flag */
clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
}
/* socket's state has changed */
static void ceph_state_change(struct sock *sk)
{
struct ceph_connection *con =
(struct ceph_connection *)sk->sk_user_data;
dout("ceph_state_change %p state = %lu sk_state = %u\n",
con, con->state, sk->sk_state);
if (test_bit(CLOSED, &con->state))
return;
switch (sk->sk_state) {
case TCP_CLOSE:
dout("ceph_state_change TCP_CLOSE\n");
case TCP_CLOSE_WAIT:
dout("ceph_state_change TCP_CLOSE_WAIT\n");
if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
if (test_bit(CONNECTING, &con->state))
con->error_msg = "connection failed";
else
con->error_msg = "socket closed";
queue_con(con);
}
break;
case TCP_ESTABLISHED:
dout("ceph_state_change TCP_ESTABLISHED\n");
queue_con(con);
break;
}
}
/*
* set up socket callbacks
*/
static void set_sock_callbacks(struct socket *sock,
struct ceph_connection *con)
{
struct sock *sk = sock->sk;
sk->sk_user_data = (void *)con;
sk->sk_data_ready = ceph_data_ready;
sk->sk_write_space = ceph_write_space;
sk->sk_state_change = ceph_state_change;
}
/*
* socket helpers
*/
/*
* initiate connection to a remote socket.
*/
static struct socket *ceph_tcp_connect(struct ceph_connection *con)
{
struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr;
struct socket *sock;
int ret;
BUG_ON(con->sock);
ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
if (ret)
return ERR_PTR(ret);
con->sock = sock;
sock->sk->sk_allocation = GFP_NOFS;
#ifdef CONFIG_LOCKDEP
lockdep_set_class(&sock->sk->sk_lock, &socket_class);
#endif
set_sock_callbacks(sock, con);
dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK);
if (ret == -EINPROGRESS) {
dout("connect %s EINPROGRESS sk_state = %u\n",
pr_addr(&con->peer_addr.in_addr),
sock->sk->sk_state);
ret = 0;
}
if (ret < 0) {
pr_err("connect %s error %d\n",
pr_addr(&con->peer_addr.in_addr), ret);
sock_release(sock);
con->sock = NULL;
con->error_msg = "connect error";
}
if (ret < 0)
return ERR_PTR(ret);
return sock;
}
static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
{
struct kvec iov = {buf, len};
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
}
/*
* write something. @more is true if caller will be sending more data
* shortly.
*/
static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
size_t kvlen, size_t len, int more)
{
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
if (more)
msg.msg_flags |= MSG_MORE;
else
msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
return kernel_sendmsg(sock, &msg, iov, kvlen, len);
}
/*
* Shutdown/close the socket for the given connection.
*/
static int con_close_socket(struct ceph_connection *con)
{
int rc;
dout("con_close_socket on %p sock %p\n", con, con->sock);
if (!con->sock)
return 0;
set_bit(SOCK_CLOSED, &con->state);
rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
sock_release(con->sock);
con->sock = NULL;
clear_bit(SOCK_CLOSED, &con->state);
return rc;
}
/*
* Reset a connection. Discard all incoming and outgoing messages
* and clear *_seq state.
*/
static void ceph_msg_remove(struct ceph_msg *msg)
{
list_del_init(&msg->list_head);
ceph_msg_put(msg);
}
static void ceph_msg_remove_list(struct list_head *head)
{
while (!list_empty(head)) {
struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
list_head);
ceph_msg_remove(msg);
}
}
static void reset_connection(struct ceph_connection *con)
{
/* reset connection, out_queue, msg_ and connect_seq */
/* discard existing out_queue and msg_seq */
ceph_msg_remove_list(&con->out_queue);
ceph_msg_remove_list(&con->out_sent);
if (con->in_msg) {
ceph_msg_put(con->in_msg);
con->in_msg = NULL;
}
con->connect_seq = 0;
con->out_seq = 0;
if (con->out_msg) {
ceph_msg_put(con->out_msg);
con->out_msg = NULL;
}
con->in_seq = 0;
con->in_seq_acked = 0;
}
/*
* mark a peer down. drop any open connections.
*/
void ceph_con_close(struct ceph_connection *con)
{
dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
set_bit(CLOSED, &con->state); /* in case there's queued work */
clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
clear_bit(KEEPALIVE_PENDING, &con->state);
clear_bit(WRITE_PENDING, &con->state);
mutex_lock(&con->mutex);
reset_connection(con);
cancel_delayed_work(&con->work);
mutex_unlock(&con->mutex);
queue_con(con);
}
/*
* Reopen a closed connection, with a new peer address.
*/
void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
{
dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
set_bit(OPENING, &con->state);
clear_bit(CLOSED, &con->state);
memcpy(&con->peer_addr, addr, sizeof(*addr));
con->delay = 0; /* reset backoff memory */
queue_con(con);
}
/*
* return true if this connection ever successfully opened
*/
bool ceph_con_opened(struct ceph_connection *con)
{
return con->connect_seq > 0;
}
/*
* generic get/put
*/
struct ceph_connection *ceph_con_get(struct ceph_connection *con)
{
dout("con_get %p nref = %d -> %d\n", con,
atomic_read(&con->nref), atomic_read(&con->nref) + 1);
if (atomic_inc_not_zero(&con->nref))
return con;
return NULL;
}
void ceph_con_put(struct ceph_connection *con)
{
dout("con_put %p nref = %d -> %d\n", con,
atomic_read(&con->nref), atomic_read(&con->nref) - 1);
BUG_ON(atomic_read(&con->nref) == 0);
if (atomic_dec_and_test(&con->nref)) {
BUG_ON(con->sock);
kfree(con);
}
}
/*
* initialize a new connection.
*/
void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
{
dout("con_init %p\n", con);
memset(con, 0, sizeof(*con));
atomic_set(&con->nref, 1);
con->msgr = msgr;
mutex_init(&con->mutex);
INIT_LIST_HEAD(&con->out_queue);
INIT_LIST_HEAD(&con->out_sent);
INIT_DELAYED_WORK(&con->work, con_work);
}
/*
* We maintain a global counter to order connection attempts. Get
* a unique seq greater than @gt.
*/
static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
{
u32 ret;
spin_lock(&msgr->global_seq_lock);
if (msgr->global_seq < gt)
msgr->global_seq = gt;
ret = ++msgr->global_seq;
spin_unlock(&msgr->global_seq_lock);
return ret;
}
/*
* Prepare footer for currently outgoing message, and finish things
* off. Assumes out_kvec* are already valid.. we just add on to the end.
*/
static void prepare_write_message_footer(struct ceph_connection *con, int v)
{
struct ceph_msg *m = con->out_msg;
dout("prepare_write_message_footer %p\n", con);
con->out_kvec_is_msg = true;
con->out_kvec[v].iov_base = &m->footer;
con->out_kvec[v].iov_len = sizeof(m->footer);
con->out_kvec_bytes += sizeof(m->footer);
con->out_kvec_left++;
con->out_more = m->more_to_follow;
con->out_msg_done = true;
}
/*
* Prepare headers for the next outgoing message.
*/
static void prepare_write_message(struct ceph_connection *con)
{
struct ceph_msg *m;
int v = 0;
con->out_kvec_bytes = 0;
con->out_kvec_is_msg = true;
con->out_msg_done = false;
/* Sneak an ack in there first? If we can get it into the same
* TCP packet that's a good thing. */
if (con->in_seq > con->in_seq_acked) {
con->in_seq_acked = con->in_seq;
con->out_kvec[v].iov_base = &tag_ack;
con->out_kvec[v++].iov_len = 1;
con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
con->out_kvec[v].iov_base = &con->out_temp_ack;
con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
}
m = list_first_entry(&con->out_queue,
struct ceph_msg, list_head);
con->out_msg = m;
if (test_bit(LOSSYTX, &con->state)) {
list_del_init(&m->list_head);
} else {
/* put message on sent list */
ceph_msg_get(m);
list_move_tail(&m->list_head, &con->out_sent);
}
/*
* only assign outgoing seq # if we haven't sent this message
* yet. if it is requeued, resend with it's original seq.
*/
if (m->needs_out_seq) {
m->hdr.seq = cpu_to_le64(++con->out_seq);
m->needs_out_seq = false;
}
dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
m, con->out_seq, le16_to_cpu(m->hdr.type),
le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
le32_to_cpu(m->hdr.data_len),
m->nr_pages);
BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
/* tag + hdr + front + middle */
con->out_kvec[v].iov_base = &tag_msg;
con->out_kvec[v++].iov_len = 1;
con->out_kvec[v].iov_base = &m->hdr;
con->out_kvec[v++].iov_len = sizeof(m->hdr);
con->out_kvec[v++] = m->front;
if (m->middle)
con->out_kvec[v++] = m->middle->vec;
con->out_kvec_left = v;
con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
(m->middle ? m->middle->vec.iov_len : 0);
con->out_kvec_cur = con->out_kvec;
/* fill in crc (except data pages), footer */
con->out_msg->hdr.crc =
cpu_to_le32(crc32c(0, (void *)&m->hdr,
sizeof(m->hdr) - sizeof(m->hdr.crc)));
con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
con->out_msg->footer.front_crc =
cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
if (m->middle)
con->out_msg->footer.middle_crc =
cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
m->middle->vec.iov_len));
else
con->out_msg->footer.middle_crc = 0;
con->out_msg->footer.data_crc = 0;
dout("prepare_write_message front_crc %u data_crc %u\n",
le32_to_cpu(con->out_msg->footer.front_crc),
le32_to_cpu(con->out_msg->footer.middle_crc));
/* is there a data payload? */
if (le32_to_cpu(m->hdr.data_len) > 0) {
/* initialize page iterator */
con->out_msg_pos.page = 0;
con->out_msg_pos.page_pos =
le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
con->out_msg_pos.data_pos = 0;
con->out_msg_pos.did_page_crc = 0;
con->out_more = 1; /* data + footer will follow */
} else {
/* no, queue up footer too and be done */
prepare_write_message_footer(con, v);
}
set_bit(WRITE_PENDING, &con->state);
}
/*
* Prepare an ack.
*/
static void prepare_write_ack(struct ceph_connection *con)
{
dout("prepare_write_ack %p %llu -> %llu\n", con,
con->in_seq_acked, con->in_seq);
con->in_seq_acked = con->in_seq;
con->out_kvec[0].iov_base = &tag_ack;
con->out_kvec[0].iov_len = 1;
con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
con->out_kvec[1].iov_base = &con->out_temp_ack;
con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
con->out_kvec_left = 2;
con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
con->out_kvec_cur = con->out_kvec;
con->out_more = 1; /* more will follow.. eventually.. */
set_bit(WRITE_PENDING, &con->state);
}
/*
* Prepare to write keepalive byte.
*/
static void prepare_write_keepalive(struct ceph_connection *con)
{
dout("prepare_write_keepalive %p\n", con);
con->out_kvec[0].iov_base = &tag_keepalive;
con->out_kvec[0].iov_len = 1;
con->out_kvec_left = 1;
con->out_kvec_bytes = 1;
con->out_kvec_cur = con->out_kvec;
set_bit(WRITE_PENDING, &con->state);
}
/*
* Connection negotiation.
*/
static void prepare_connect_authorizer(struct ceph_connection *con)
{
void *auth_buf;
int auth_len = 0;
int auth_protocol = 0;
mutex_unlock(&con->mutex);
if (con->ops->get_authorizer)
con->ops->get_authorizer(con, &auth_buf, &auth_len,
&auth_protocol, &con->auth_reply_buf,
&con->auth_reply_buf_len,
con->auth_retry);
mutex_lock(&con->mutex);
con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
con->out_connect.authorizer_len = cpu_to_le32(auth_len);
con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
con->out_kvec[con->out_kvec_left].iov_len = auth_len;
con->out_kvec_left++;
con->out_kvec_bytes += auth_len;
}
/*
* We connected to a peer and are saying hello.
*/
static void prepare_write_banner(struct ceph_messenger *msgr,
struct ceph_connection *con)
{
int len = strlen(CEPH_BANNER);
con->out_kvec[0].iov_base = CEPH_BANNER;
con->out_kvec[0].iov_len = len;
con->out_kvec[1].iov_base = &msgr->my_enc_addr;
con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
con->out_kvec_left = 2;
con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
con->out_kvec_cur = con->out_kvec;
con->out_more = 0;
set_bit(WRITE_PENDING, &con->state);
}
static void prepare_write_connect(struct ceph_messenger *msgr,
struct ceph_connection *con,
int after_banner)
{
unsigned global_seq = get_global_seq(con->msgr, 0);
int proto;
switch (con->peer_name.type) {
case CEPH_ENTITY_TYPE_MON:
proto = CEPH_MONC_PROTOCOL;
break;
case CEPH_ENTITY_TYPE_OSD:
proto = CEPH_OSDC_PROTOCOL;
break;
case CEPH_ENTITY_TYPE_MDS:
proto = CEPH_MDSC_PROTOCOL;
break;
default:
BUG();
}
dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
con->connect_seq, global_seq, proto);
con->out_connect.features = CEPH_FEATURE_SUPPORTED;
con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
con->out_connect.global_seq = cpu_to_le32(global_seq);
con->out_connect.protocol_version = cpu_to_le32(proto);
con->out_connect.flags = 0;
if (!after_banner) {
con->out_kvec_left = 0;
con->out_kvec_bytes = 0;
}
con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
con->out_kvec_left++;
con->out_kvec_bytes += sizeof(con->out_connect);
con->out_kvec_cur = con->out_kvec;
con->out_more = 0;
set_bit(WRITE_PENDING, &con->state);
prepare_connect_authorizer(con);
}
/*
* write as much of pending kvecs to the socket as we can.
* 1 -> done
* 0 -> socket full, but more to do
* <0 -> error
*/
static int write_partial_kvec(struct ceph_connection *con)
{
int ret;
dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
while (con->out_kvec_bytes > 0) {
ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
con->out_kvec_left, con->out_kvec_bytes,
con->out_more);
if (ret <= 0)
goto out;
con->out_kvec_bytes -= ret;
if (con->out_kvec_bytes == 0)
break; /* done */
while (ret > 0) {
if (ret >= con->out_kvec_cur->iov_len) {
ret -= con->out_kvec_cur->iov_len;
con->out_kvec_cur++;
con->out_kvec_left--;
} else {
con->out_kvec_cur->iov_len -= ret;
con->out_kvec_cur->iov_base += ret;
ret = 0;
break;
}
}
}
con->out_kvec_left = 0;
con->out_kvec_is_msg = false;
ret = 1;
out:
dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
con->out_kvec_bytes, con->out_kvec_left, ret);
return ret; /* done! */
}
/*
* Write as much message data payload as we can. If we finish, queue
* up the footer.
* 1 -> done, footer is now queued in out_kvec[].
* 0 -> socket full, but more to do
* <0 -> error
*/
static int write_partial_msg_pages(struct ceph_connection *con)
{
struct ceph_msg *msg = con->out_msg;
unsigned data_len = le32_to_cpu(msg->hdr.data_len);
size_t len;
int crc = con->msgr->nocrc;
int ret;
dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
con->out_msg_pos.page_pos);
while (con->out_msg_pos.page < con->out_msg->nr_pages) {
struct page *page = NULL;
void *kaddr = NULL;
/*
* if we are calculating the data crc (the default), we need
* to map the page. if our pages[] has been revoked, use the
* zero page.
*/
if (msg->pages) {
page = msg->pages[con->out_msg_pos.page];
if (crc)
kaddr = kmap(page);
} else if (msg->pagelist) {
page = list_first_entry(&msg->pagelist->head,
struct page, lru);
if (crc)
kaddr = kmap(page);
} else {
page = con->msgr->zero_page;
if (crc)
kaddr = page_address(con->msgr->zero_page);
}
len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
(int)(data_len - con->out_msg_pos.data_pos));
if (crc && !con->out_msg_pos.did_page_crc) {
void *base = kaddr + con->out_msg_pos.page_pos;
u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
BUG_ON(kaddr == NULL);
con->out_msg->footer.data_crc =
cpu_to_le32(crc32c(tmpcrc, base, len));
con->out_msg_pos.did_page_crc = 1;
}
ret = kernel_sendpage(con->sock, page,
con->out_msg_pos.page_pos, len,
MSG_DONTWAIT | MSG_NOSIGNAL |
MSG_MORE);
if (crc && (msg->pages || msg->pagelist))
kunmap(page);
if (ret <= 0)
goto out;
con->out_msg_pos.data_pos += ret;
con->out_msg_pos.page_pos += ret;
if (ret == len) {
con->out_msg_pos.page_pos = 0;
con->out_msg_pos.page++;
con->out_msg_pos.did_page_crc = 0;
if (msg->pagelist)
list_move_tail(&page->lru,
&msg->pagelist->head);
}
}
dout("write_partial_msg_pages %p msg %p done\n", con, msg);
/* prepare and queue up footer, too */
if (!crc)
con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
con->out_kvec_bytes = 0;
con->out_kvec_left = 0;
con->out_kvec_cur = con->out_kvec;
prepare_write_message_footer(con, 0);
ret = 1;
out:
return ret;
}
/*
* write some zeros
*/
static int write_partial_skip(struct ceph_connection *con)
{
int ret;
while (con->out_skip > 0) {
struct kvec iov = {
.iov_base = page_address(con->msgr->zero_page),
.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
};
ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
if (ret <= 0)
goto out;
con->out_skip -= ret;
}
ret = 1;
out:
return ret;
}
/*
* Prepare to read connection handshake, or an ack.
*/
static void prepare_read_banner(struct ceph_connection *con)
{
dout("prepare_read_banner %p\n", con);
con->in_base_pos = 0;
}
static void prepare_read_connect(struct ceph_connection *con)
{
dout("prepare_read_connect %p\n", con);
con->in_base_pos = 0;
}
static void prepare_read_ack(struct ceph_connection *con)
{
dout("prepare_read_ack %p\n", con);
con->in_base_pos = 0;
}
static void prepare_read_tag(struct ceph_connection *con)
{
dout("prepare_read_tag %p\n", con);
con->in_base_pos = 0;
con->in_tag = CEPH_MSGR_TAG_READY;
}
/*
* Prepare to read a message.
*/
static int prepare_read_message(struct ceph_connection *con)
{
dout("prepare_read_message %p\n", con);
BUG_ON(con->in_msg != NULL);
con->in_base_pos = 0;
con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
return 0;
}
static int read_partial(struct ceph_connection *con,
int *to, int size, void *object)
{
*to += size;
while (con->in_base_pos < *to) {
int left = *to - con->in_base_pos;
int have = size - left;
int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
if (ret <= 0)
return ret;
con->in_base_pos += ret;
}
return 1;
}
/*
* Read all or part of the connect-side handshake on a new connection
*/
static int read_partial_banner(struct ceph_connection *con)
{
int ret, to = 0;
dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
/* peer's banner */
ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
if (ret <= 0)
goto out;
ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
&con->actual_peer_addr);
if (ret <= 0)
goto out;
ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
&con->peer_addr_for_me);
if (ret <= 0)
goto out;
out:
return ret;
}
static int read_partial_connect(struct ceph_connection *con)
{
int ret, to = 0;
dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
if (ret <= 0)
goto out;
ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
con->auth_reply_buf);
if (ret <= 0)
goto out;
dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
con, (int)con->in_reply.tag,
le32_to_cpu(con->in_reply.connect_seq),
le32_to_cpu(con->in_reply.global_seq));
out:
return ret;
}
/*
* Verify the hello banner looks okay.
*/
static int verify_hello(struct ceph_connection *con)
{
if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
pr_err("connect to %s got bad banner\n",
pr_addr(&con->peer_addr.in_addr));
con->error_msg = "protocol error, bad banner";
return -1;
}
return 0;
}
static bool addr_is_blank(struct sockaddr_storage *ss)
{
switch (ss->ss_family) {
case AF_INET:
return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
case AF_INET6:
return
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
}
return false;
}
static int addr_port(struct sockaddr_storage *ss)
{
switch (ss->ss_family) {
case AF_INET:
return ntohs(((struct sockaddr_in *)ss)->sin_port);
case AF_INET6:
return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
}
return 0;
}
static void addr_set_port(struct sockaddr_storage *ss, int p)
{
switch (ss->ss_family) {
case AF_INET:
((struct sockaddr_in *)ss)->sin_port = htons(p);
case AF_INET6:
((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
}
}
/*
* Parse an ip[:port] list into an addr array. Use the default
* monitor port if a port isn't specified.
*/
int ceph_parse_ips(const char *c, const char *end,
struct ceph_entity_addr *addr,
int max_count, int *count)
{
int i;
const char *p = c;
dout("parse_ips on '%.*s'\n", (int)(end-c), c);
for (i = 0; i < max_count; i++) {
const char *ipend;
struct sockaddr_storage *ss = &addr[i].in_addr;
struct sockaddr_in *in4 = (void *)ss;
struct sockaddr_in6 *in6 = (void *)ss;
int port;
memset(ss, 0, sizeof(*ss));
if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
',', &ipend)) {
ss->ss_family = AF_INET;
} else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
',', &ipend)) {
ss->ss_family = AF_INET6;
} else {
goto bad;
}
p = ipend;
/* port? */
if (p < end && *p == ':') {
port = 0;
p++;
while (p < end && *p >= '0' && *p <= '9') {
port = (port * 10) + (*p - '0');
p++;
}
if (port > 65535 || port == 0)
goto bad;
} else {
port = CEPH_MON_PORT;
}
addr_set_port(ss, port);
dout("parse_ips got %s\n", pr_addr(ss));
if (p == end)
break;
if (*p != ',')
goto bad;
p++;
}
if (p != end)
goto bad;
if (count)
*count = i + 1;
return 0;
bad:
pr_err("parse_ips bad ip '%s'\n", c);
return -EINVAL;
}
static int process_banner(struct ceph_connection *con)
{
dout("process_banner on %p\n", con);
if (verify_hello(con) < 0)
return -1;
ceph_decode_addr(&con->actual_peer_addr);
ceph_decode_addr(&con->peer_addr_for_me);
/*
* Make sure the other end is who we wanted. note that the other
* end may not yet know their ip address, so if it's 0.0.0.0, give
* them the benefit of the doubt.
*/
if (memcmp(&con->peer_addr, &con->actual_peer_addr,
sizeof(con->peer_addr)) != 0 &&
!(addr_is_blank(&con->actual_peer_addr.in_addr) &&
con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
pr_warning("wrong peer, want %s/%lld, got %s/%lld\n",
pr_addr(&con->peer_addr.in_addr),
le64_to_cpu(con->peer_addr.nonce),
pr_addr(&con->actual_peer_addr.in_addr),
le64_to_cpu(con->actual_peer_addr.nonce));
con->error_msg = "wrong peer at address";
return -1;
}
/*
* did we learn our address?
*/
if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
int port = addr_port(&con->msgr->inst.addr.in_addr);
memcpy(&con->msgr->inst.addr.in_addr,
&con->peer_addr_for_me.in_addr,
sizeof(con->peer_addr_for_me.in_addr));
addr_set_port(&con->msgr->inst.addr.in_addr, port);
encode_my_addr(con->msgr);
dout("process_banner learned my addr is %s\n",
pr_addr(&con->msgr->inst.addr.in_addr));
}
set_bit(NEGOTIATING, &con->state);
prepare_read_connect(con);
return 0;
}
static void fail_protocol(struct ceph_connection *con)
{
reset_connection(con);
set_bit(CLOSED, &con->state); /* in case there's queued work */
mutex_unlock(&con->mutex);
if (con->ops->bad_proto)
con->ops->bad_proto(con);
mutex_lock(&con->mutex);
}
static int process_connect(struct ceph_connection *con)
{
u64 sup_feat = CEPH_FEATURE_SUPPORTED;
u64 req_feat = CEPH_FEATURE_REQUIRED;
u64 server_feat = le64_to_cpu(con->in_reply.features);
dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
switch (con->in_reply.tag) {
case CEPH_MSGR_TAG_FEATURES:
pr_err("%s%lld %s feature set mismatch,"
" my %llx < server's %llx, missing %llx\n",
ENTITY_NAME(con->peer_name),
pr_addr(&con->peer_addr.in_addr),
sup_feat, server_feat, server_feat & ~sup_feat);
con->error_msg = "missing required protocol features";
fail_protocol(con);
return -1;
case CEPH_MSGR_TAG_BADPROTOVER:
pr_err("%s%lld %s protocol version mismatch,"
" my %d != server's %d\n",
ENTITY_NAME(con->peer_name),
pr_addr(&con->peer_addr.in_addr),
le32_to_cpu(con->out_connect.protocol_version),
le32_to_cpu(con->in_reply.protocol_version));
con->error_msg = "protocol version mismatch";
fail_protocol(con);
return -1;
case CEPH_MSGR_TAG_BADAUTHORIZER:
con->auth_retry++;
dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
con->auth_retry);
if (con->auth_retry == 2) {
con->error_msg = "connect authorization failure";
reset_connection(con);
set_bit(CLOSED, &con->state);
return -1;
}
con->auth_retry = 1;
prepare_write_connect(con->msgr, con, 0);
prepare_read_connect(con);
break;
case CEPH_MSGR_TAG_RESETSESSION:
/*
* If we connected with a large connect_seq but the peer
* has no record of a session with us (no connection, or
* connect_seq == 0), they will send RESETSESION to indicate
* that they must have reset their session, and may have
* dropped messages.
*/
dout("process_connect got RESET peer seq %u\n",
le32_to_cpu(con->in_connect.connect_seq));
pr_err("%s%lld %s connection reset\n",
ENTITY_NAME(con->peer_name),
pr_addr(&con->peer_addr.in_addr));
reset_connection(con);
prepare_write_connect(con->msgr, con, 0);
prepare_read_connect(con);
/* Tell ceph about it. */
mutex_unlock(&con->mutex);
pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
if (con->ops->peer_reset)
con->ops->peer_reset(con);
mutex_lock(&con->mutex);
break;
case CEPH_MSGR_TAG_RETRY_SESSION:
/*
* If we sent a smaller connect_seq than the peer has, try
* again with a larger value.
*/
dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
le32_to_cpu(con->out_connect.connect_seq),
le32_to_cpu(con->in_connect.connect_seq));
con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
prepare_write_connect(con->msgr, con, 0);
prepare_read_connect(con);
break;
case CEPH_MSGR_TAG_RETRY_GLOBAL:
/*
* If we sent a smaller global_seq than the peer has, try
* again with a larger value.
*/
dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
con->peer_global_seq,
le32_to_cpu(con->in_connect.global_seq));
get_global_seq(con->msgr,
le32_to_cpu(con->in_connect.global_seq));
prepare_write_connect(con->msgr, con, 0);
prepare_read_connect(con);
break;
case CEPH_MSGR_TAG_READY:
if (req_feat & ~server_feat) {
pr_err("%s%lld %s protocol feature mismatch,"
" my required %llx > server's %llx, need %llx\n",
ENTITY_NAME(con->peer_name),
pr_addr(&con->peer_addr.in_addr),
req_feat, server_feat, req_feat & ~server_feat);
con->error_msg = "missing required protocol features";
fail_protocol(con);
return -1;
}
clear_bit(CONNECTING, &con->state);
con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
con->connect_seq++;
dout("process_connect got READY gseq %d cseq %d (%d)\n",
con->peer_global_seq,
le32_to_cpu(con->in_reply.connect_seq),
con->connect_seq);
WARN_ON(con->connect_seq !=
le32_to_cpu(con->in_reply.connect_seq));
if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
set_bit(LOSSYTX, &con->state);
prepare_read_tag(con);
break;
case CEPH_MSGR_TAG_WAIT:
/*
* If there is a connection race (we are opening
* connections to each other), one of us may just have
* to WAIT. This shouldn't happen if we are the
* client.
*/
pr_err("process_connect peer connecting WAIT\n");
default:
pr_err("connect protocol error, will retry\n");
con->error_msg = "protocol error, garbage tag during connect";
return -1;
}
return 0;
}
/*
* read (part of) an ack
*/
static int read_partial_ack(struct ceph_connection *con)
{
int to = 0;
return read_partial(con, &to, sizeof(con->in_temp_ack),
&con->in_temp_ack);
}
/*
* We can finally discard anything that's been acked.
*/
static void process_ack(struct ceph_connection *con)
{
struct ceph_msg *m;
u64 ack = le64_to_cpu(con->in_temp_ack);
u64 seq;
while (!list_empty(&con->out_sent)) {
m = list_first_entry(&con->out_sent, struct ceph_msg,
list_head);
seq = le64_to_cpu(m->hdr.seq);
if (seq > ack)
break;
dout("got ack for seq %llu type %d at %p\n", seq,
le16_to_cpu(m->hdr.type), m);
ceph_msg_remove(m);
}
prepare_read_tag(con);
}
static int read_partial_message_section(struct ceph_connection *con,
struct kvec *section, unsigned int sec_len,
u32 *crc)
{
int left;
int ret;
BUG_ON(!section);
while (section->iov_len < sec_len) {
BUG_ON(section->iov_base == NULL);
left = sec_len - section->iov_len;
ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
section->iov_len, left);
if (ret <= 0)
return ret;
section->iov_len += ret;
if (section->iov_len == sec_len)
*crc = crc32c(0, section->iov_base,
section->iov_len);
}
return 1;
}
static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
struct ceph_msg_header *hdr,
int *skip);
/*
* read (part of) a message.
*/
static int read_partial_message(struct ceph_connection *con)
{
struct ceph_msg *m = con->in_msg;
void *p;
int ret;
int to, left;
unsigned front_len, middle_len, data_len, data_off;
int datacrc = con->msgr->nocrc;
int skip;
u64 seq;
dout("read_partial_message con %p msg %p\n", con, m);
/* header */
while (con->in_base_pos < sizeof(con->in_hdr)) {
left = sizeof(con->in_hdr) - con->in_base_pos;
ret = ceph_tcp_recvmsg(con->sock,
(char *)&con->in_hdr + con->in_base_pos,
left);
if (ret <= 0)
return ret;
con->in_base_pos += ret;
if (con->in_base_pos == sizeof(con->in_hdr)) {
u32 crc = crc32c(0, (void *)&con->in_hdr,
sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
if (crc != le32_to_cpu(con->in_hdr.crc)) {
pr_err("read_partial_message bad hdr "
" crc %u != expected %u\n",
crc, con->in_hdr.crc);
return -EBADMSG;
}
}
}
front_len = le32_to_cpu(con->in_hdr.front_len);
if (front_len > CEPH_MSG_MAX_FRONT_LEN)
return -EIO;
middle_len = le32_to_cpu(con->in_hdr.middle_len);
if (middle_len > CEPH_MSG_MAX_DATA_LEN)
return -EIO;
data_len = le32_to_cpu(con->in_hdr.data_len);
if (data_len > CEPH_MSG_MAX_DATA_LEN)
return -EIO;
data_off = le16_to_cpu(con->in_hdr.data_off);
/* verify seq# */
seq = le64_to_cpu(con->in_hdr.seq);
if ((s64)seq - (s64)con->in_seq < 1) {
pr_info("skipping %s%lld %s seq %lld, expected %lld\n",
ENTITY_NAME(con->peer_name),
pr_addr(&con->peer_addr.in_addr),
seq, con->in_seq + 1);
con->in_base_pos = -front_len - middle_len - data_len -
sizeof(m->footer);
con->in_tag = CEPH_MSGR_TAG_READY;
con->in_seq++;
return 0;
} else if ((s64)seq - (s64)con->in_seq > 1) {
pr_err("read_partial_message bad seq %lld expected %lld\n",
seq, con->in_seq + 1);
con->error_msg = "bad message sequence # for incoming message";
return -EBADMSG;
}
/* allocate message? */
if (!con->in_msg) {
dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
con->in_hdr.front_len, con->in_hdr.data_len);
con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
if (skip) {
/* skip this message */
dout("alloc_msg returned NULL, skipping message\n");
con->in_base_pos = -front_len - middle_len - data_len -
sizeof(m->footer);
con->in_tag = CEPH_MSGR_TAG_READY;
con->in_seq++;
return 0;
}
if (IS_ERR(con->in_msg)) {
ret = PTR_ERR(con->in_msg);
con->in_msg = NULL;
con->error_msg =
"error allocating memory for incoming message";
return ret;
}
m = con->in_msg;
m->front.iov_len = 0; /* haven't read it yet */
if (m->middle)
m->middle->vec.iov_len = 0;
con->in_msg_pos.page = 0;
con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
con->in_msg_pos.data_pos = 0;
}
/* front */
ret = read_partial_message_section(con, &m->front, front_len,
&con->in_front_crc);
if (ret <= 0)
return ret;
/* middle */
if (m->middle) {
ret = read_partial_message_section(con, &m->middle->vec, middle_len,
&con->in_middle_crc);
if (ret <= 0)
return ret;
}
/* (page) data */
while (con->in_msg_pos.data_pos < data_len) {
left = min((int)(data_len - con->in_msg_pos.data_pos),
(int)(PAGE_SIZE - con->in_msg_pos.page_pos));
BUG_ON(m->pages == NULL);
p = kmap(m->pages[con->in_msg_pos.page]);
ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
left);
if (ret > 0 && datacrc)
con->in_data_crc =
crc32c(con->in_data_crc,
p + con->in_msg_pos.page_pos, ret);
kunmap(m->pages[con->in_msg_pos.page]);
if (ret <= 0)
return ret;
con->in_msg_pos.data_pos += ret;
con->in_msg_pos.page_pos += ret;
if (con->in_msg_pos.page_pos == PAGE_SIZE) {
con->in_msg_pos.page_pos = 0;
con->in_msg_pos.page++;
}
}
/* footer */
to = sizeof(m->hdr) + sizeof(m->footer);
while (con->in_base_pos < to) {
left = to - con->in_base_pos;
ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
(con->in_base_pos - sizeof(m->hdr)),
left);
if (ret <= 0)
return ret;
con->in_base_pos += ret;
}
dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
m, front_len, m->footer.front_crc, middle_len,
m->footer.middle_crc, data_len, m->footer.data_crc);
/* crc ok? */
if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
pr_err("read_partial_message %p front crc %u != exp. %u\n",
m, con->in_front_crc, m->footer.front_crc);
return -EBADMSG;
}
if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
pr_err("read_partial_message %p middle crc %u != exp %u\n",
m, con->in_middle_crc, m->footer.middle_crc);
return -EBADMSG;
}
if (datacrc &&
(m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
con->in_data_crc, le32_to_cpu(m->footer.data_crc));
return -EBADMSG;
}
return 1; /* done! */
}
/*
* Process message. This happens in the worker thread. The callback should
* be careful not to do anything that waits on other incoming messages or it
* may deadlock.
*/
static void process_message(struct ceph_connection *con)
{
struct ceph_msg *msg;
msg = con->in_msg;
con->in_msg = NULL;
/* if first message, set peer_name */
if (con->peer_name.type == 0)
con->peer_name = msg->hdr.src.name;
con->in_seq++;
mutex_unlock(&con->mutex);
dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
msg, le64_to_cpu(msg->hdr.seq),
ENTITY_NAME(msg->hdr.src.name),
le16_to_cpu(msg->hdr.type),
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
le32_to_cpu(msg->hdr.front_len),
le32_to_cpu(msg->hdr.data_len),
con->in_front_crc, con->in_middle_crc, con->in_data_crc);
con->ops->dispatch(con, msg);
mutex_lock(&con->mutex);
prepare_read_tag(con);
}
/*
* Write something to the socket. Called in a worker thread when the
* socket appears to be writeable and we have something ready to send.
*/
static int try_write(struct ceph_connection *con)
{
struct ceph_messenger *msgr = con->msgr;
int ret = 1;
dout("try_write start %p state %lu nref %d\n", con, con->state,
atomic_read(&con->nref));
mutex_lock(&con->mutex);
more:
dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
/* open the socket first? */
if (con->sock == NULL) {
/*
* if we were STANDBY and are reconnecting _this_
* connection, bump connect_seq now. Always bump
* global_seq.
*/
if (test_and_clear_bit(STANDBY, &con->state))
con->connect_seq++;
prepare_write_banner(msgr, con);
prepare_write_connect(msgr, con, 1);
prepare_read_banner(con);
set_bit(CONNECTING, &con->state);
clear_bit(NEGOTIATING, &con->state);
BUG_ON(con->in_msg);
con->in_tag = CEPH_MSGR_TAG_READY;
dout("try_write initiating connect on %p new state %lu\n",
con, con->state);
con->sock = ceph_tcp_connect(con);
if (IS_ERR(con->sock)) {
con->sock = NULL;
con->error_msg = "connect error";
ret = -1;
goto out;
}
}
more_kvec:
/* kvec data queued? */
if (con->out_skip) {
ret = write_partial_skip(con);
if (ret <= 0)
goto done;
if (ret < 0) {
dout("try_write write_partial_skip err %d\n", ret);
goto done;
}
}
if (con->out_kvec_left) {
ret = write_partial_kvec(con);
if (ret <= 0)
goto done;
}
/* msg pages? */
if (con->out_msg) {
if (con->out_msg_done) {
ceph_msg_put(con->out_msg);
con->out_msg = NULL; /* we're done with this one */
goto do_next;
}
ret = write_partial_msg_pages(con);
if (ret == 1)
goto more_kvec; /* we need to send the footer, too! */
if (ret == 0)
goto done;
if (ret < 0) {
dout("try_write write_partial_msg_pages err %d\n",
ret);
goto done;
}
}
do_next:
if (!test_bit(CONNECTING, &con->state)) {
/* is anything else pending? */
if (!list_empty(&con->out_queue)) {
prepare_write_message(con);
goto more;
}
if (con->in_seq > con->in_seq_acked) {
prepare_write_ack(con);
goto more;
}
if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
prepare_write_keepalive(con);
goto more;
}
}
/* Nothing to do! */
clear_bit(WRITE_PENDING, &con->state);
dout("try_write nothing else to write.\n");
done:
ret = 0;
out:
mutex_unlock(&con->mutex);
dout("try_write done on %p\n", con);
return ret;
}
/*
* Read what we can from the socket.
*/
static int try_read(struct ceph_connection *con)
{
struct ceph_messenger *msgr;
int ret = -1;
if (!con->sock)
return 0;
if (test_bit(STANDBY, &con->state))
return 0;
dout("try_read start on %p\n", con);
msgr = con->msgr;
mutex_lock(&con->mutex);
more:
dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
con->in_base_pos);
if (test_bit(CONNECTING, &con->state)) {
if (!test_bit(NEGOTIATING, &con->state)) {
dout("try_read connecting\n");
ret = read_partial_banner(con);
if (ret <= 0)
goto done;
if (process_banner(con) < 0) {
ret = -1;
goto out;
}
}
ret = read_partial_connect(con);
if (ret <= 0)
goto done;
if (process_connect(con) < 0) {
ret = -1;
goto out;
}
goto more;
}
if (con->in_base_pos < 0) {
/*
* skipping + discarding content.
*
* FIXME: there must be a better way to do this!
*/
static char buf[1024];
int skip = min(1024, -con->in_base_pos);
dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
ret = ceph_tcp_recvmsg(con->sock, buf, skip);
if (ret <= 0)
goto done;
con->in_base_pos += ret;
if (con->in_base_pos)
goto more;
}
if (con->in_tag == CEPH_MSGR_TAG_READY) {
/*
* what's next?
*/
ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
if (ret <= 0)
goto done;
dout("try_read got tag %d\n", (int)con->in_tag);
switch (con->in_tag) {
case CEPH_MSGR_TAG_MSG:
prepare_read_message(con);
break;
case CEPH_MSGR_TAG_ACK:
prepare_read_ack(con);
break;
case CEPH_MSGR_TAG_CLOSE:
set_bit(CLOSED, &con->state); /* fixme */
goto done;
default:
goto bad_tag;
}
}
if (con->in_tag == CEPH_MSGR_TAG_MSG) {
ret = read_partial_message(con);
if (ret <= 0) {
switch (ret) {
case -EBADMSG:
con->error_msg = "bad crc";
ret = -EIO;
goto out;
case -EIO:
con->error_msg = "io error";
goto out;
default:
goto done;
}
}
if (con->in_tag == CEPH_MSGR_TAG_READY)
goto more;
process_message(con);
goto more;
}
if (con->in_tag == CEPH_MSGR_TAG_ACK) {
ret = read_partial_ack(con);
if (ret <= 0)
goto done;
process_ack(con);
goto more;
}
done:
ret = 0;
out:
mutex_unlock(&con->mutex);
dout("try_read done on %p\n", con);
return ret;
bad_tag:
pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
con->error_msg = "protocol error, garbage tag";
ret = -1;
goto out;
}
/*
* Atomically queue work on a connection. Bump @con reference to
* avoid races with connection teardown.
*
* There is some trickery going on with QUEUED and BUSY because we
* only want a _single_ thread operating on each connection at any
* point in time, but we want to use all available CPUs.
*
* The worker thread only proceeds if it can atomically set BUSY. It
* clears QUEUED and does it's thing. When it thinks it's done, it
* clears BUSY, then rechecks QUEUED.. if it's set again, it loops
* (tries again to set BUSY).
*
* To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
* try to queue work. If that fails (work is already queued, or BUSY)
* we give up (work also already being done or is queued) but leave QUEUED
* set so that the worker thread will loop if necessary.
*/
static void queue_con(struct ceph_connection *con)
{
if (test_bit(DEAD, &con->state)) {
dout("queue_con %p ignoring: DEAD\n",
con);
return;
}
if (!con->ops->get(con)) {
dout("queue_con %p ref count 0\n", con);
return;
}
set_bit(QUEUED, &con->state);
if (test_bit(BUSY, &con->state)) {
dout("queue_con %p - already BUSY\n", con);
con->ops->put(con);
} else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
dout("queue_con %p - already queued\n", con);
con->ops->put(con);
} else {
dout("queue_con %p\n", con);
}
}
/*
* Do some work on a connection. Drop a connection ref when we're done.
*/
static void con_work(struct work_struct *work)
{
struct ceph_connection *con = container_of(work, struct ceph_connection,
work.work);
int backoff = 0;
more:
if (test_and_set_bit(BUSY, &con->state) != 0) {
dout("con_work %p BUSY already set\n", con);
goto out;
}
dout("con_work %p start, clearing QUEUED\n", con);
clear_bit(QUEUED, &con->state);
if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
dout("con_work CLOSED\n");
con_close_socket(con);
goto done;
}
if (test_and_clear_bit(OPENING, &con->state)) {
/* reopen w/ new peer */
dout("con_work OPENING\n");
con_close_socket(con);
}
if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
try_read(con) < 0 ||
try_write(con) < 0) {
backoff = 1;
ceph_fault(con); /* error/fault path */
}
done:
clear_bit(BUSY, &con->state);
dout("con->state=%lu\n", con->state);
if (test_bit(QUEUED, &con->state)) {
if (!backoff || test_bit(OPENING, &con->state)) {
dout("con_work %p QUEUED reset, looping\n", con);
goto more;
}
dout("con_work %p QUEUED reset, but just faulted\n", con);
clear_bit(QUEUED, &con->state);
}
dout("con_work %p done\n", con);
out:
con->ops->put(con);
}
/*
* Generic error/fault handler. A retry mechanism is used with
* exponential backoff
*/
static void ceph_fault(struct ceph_connection *con)
{
pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
pr_addr(&con->peer_addr.in_addr), con->error_msg);
dout("fault %p state %lu to peer %s\n",
con, con->state, pr_addr(&con->peer_addr.in_addr));
if (test_bit(LOSSYTX, &con->state)) {
dout("fault on LOSSYTX channel\n");
goto out;
}
mutex_lock(&con->mutex);
if (test_bit(CLOSED, &con->state))
goto out_unlock;
con_close_socket(con);
if (con->in_msg) {
ceph_msg_put(con->in_msg);
con->in_msg = NULL;
}
/* Requeue anything that hasn't been acked */
list_splice_init(&con->out_sent, &con->out_queue);
/* If there are no messages in the queue, place the connection
* in a STANDBY state (i.e., don't try to reconnect just yet). */
if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
dout("fault setting STANDBY\n");
set_bit(STANDBY, &con->state);
} else {
/* retry after a delay. */
if (con->delay == 0)
con->delay = BASE_DELAY_INTERVAL;
else if (con->delay < MAX_DELAY_INTERVAL)
con->delay *= 2;
dout("fault queueing %p delay %lu\n", con, con->delay);
con->ops->get(con);
if (queue_delayed_work(ceph_msgr_wq, &con->work,
round_jiffies_relative(con->delay)) == 0)
con->ops->put(con);
}
out_unlock:
mutex_unlock(&con->mutex);
out:
/*
* in case we faulted due to authentication, invalidate our
* current tickets so that we can get new ones.
*/
if (con->auth_retry && con->ops->invalidate_authorizer) {
dout("calling invalidate_authorizer()\n");
con->ops->invalidate_authorizer(con);
}
if (con->ops->fault)
con->ops->fault(con);
}
/*
* create a new messenger instance
*/
struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
{
struct ceph_messenger *msgr;
msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
if (msgr == NULL)
return ERR_PTR(-ENOMEM);
spin_lock_init(&msgr->global_seq_lock);
/* the zero page is needed if a request is "canceled" while the message
* is being written over the socket */
msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!msgr->zero_page) {
kfree(msgr);
return ERR_PTR(-ENOMEM);
}
kmap(msgr->zero_page);
if (myaddr)
msgr->inst.addr = *myaddr;
/* select a random nonce */
msgr->inst.addr.type = 0;
get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
encode_my_addr(msgr);
dout("messenger_create %p\n", msgr);
return msgr;
}
void ceph_messenger_destroy(struct ceph_messenger *msgr)
{
dout("destroy %p\n", msgr);
kunmap(msgr->zero_page);
__free_page(msgr->zero_page);
kfree(msgr);
dout("destroyed messenger %p\n", msgr);
}
/*
* Queue up an outgoing message on the given connection.
*/
void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
{
if (test_bit(CLOSED, &con->state)) {
dout("con_send %p closed, dropping %p\n", con, msg);
ceph_msg_put(msg);
return;
}
/* set src+dst */
msg->hdr.src.name = con->msgr->inst.name;
msg->hdr.src.addr = con->msgr->my_enc_addr;
msg->hdr.orig_src = msg->hdr.src;
BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
msg->needs_out_seq = true;
/* queue */
mutex_lock(&con->mutex);
BUG_ON(!list_empty(&msg->list_head));
list_add_tail(&msg->list_head, &con->out_queue);
dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
le32_to_cpu(msg->hdr.front_len),
le32_to_cpu(msg->hdr.middle_len),
le32_to_cpu(msg->hdr.data_len));
mutex_unlock(&con->mutex);
/* if there wasn't anything waiting to send before, queue
* new work */
if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
queue_con(con);
}
/*
* Revoke a message that was previously queued for send
*/
void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
{
mutex_lock(&con->mutex);
if (!list_empty(&msg->list_head)) {
dout("con_revoke %p msg %p\n", con, msg);
list_del_init(&msg->list_head);
ceph_msg_put(msg);
msg->hdr.seq = 0;
if (con->out_msg == msg) {
ceph_msg_put(con->out_msg);
con->out_msg = NULL;
}
if (con->out_kvec_is_msg) {
con->out_skip = con->out_kvec_bytes;
con->out_kvec_is_msg = false;
}
} else {
dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg);
}
mutex_unlock(&con->mutex);
}
/*
* Revoke a message that we may be reading data into
*/
void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
{
mutex_lock(&con->mutex);
if (con->in_msg && con->in_msg == msg) {
unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
/* skip rest of message */
dout("con_revoke_pages %p msg %p revoked\n", con, msg);
con->in_base_pos = con->in_base_pos -
sizeof(struct ceph_msg_header) -
front_len -
middle_len -
data_len -
sizeof(struct ceph_msg_footer);
ceph_msg_put(con->in_msg);
con->in_msg = NULL;
con->in_tag = CEPH_MSGR_TAG_READY;
con->in_seq++;
} else {
dout("con_revoke_pages %p msg %p pages %p no-op\n",
con, con->in_msg, msg);
}
mutex_unlock(&con->mutex);
}
/*
* Queue a keepalive byte to ensure the tcp connection is alive.
*/
void ceph_con_keepalive(struct ceph_connection *con)
{
if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
test_and_set_bit(WRITE_PENDING, &con->state) == 0)
queue_con(con);
}
/*
* construct a new message with given type, size
* the new msg has a ref count of 1.
*/
struct ceph_msg *ceph_msg_new(int type, int front_len,
int page_len, int page_off, struct page **pages)
{
struct ceph_msg *m;
m = kmalloc(sizeof(*m), GFP_NOFS);
if (m == NULL)
goto out;
kref_init(&m->kref);
INIT_LIST_HEAD(&m->list_head);
m->hdr.tid = 0;
m->hdr.type = cpu_to_le16(type);
m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
m->hdr.version = 0;
m->hdr.front_len = cpu_to_le32(front_len);
m->hdr.middle_len = 0;
m->hdr.data_len = cpu_to_le32(page_len);
m->hdr.data_off = cpu_to_le16(page_off);
m->hdr.reserved = 0;
m->footer.front_crc = 0;
m->footer.middle_crc = 0;
m->footer.data_crc = 0;
m->footer.flags = 0;
m->front_max = front_len;
m->front_is_vmalloc = false;
m->more_to_follow = false;
m->pool = NULL;
/* front */
if (front_len) {
if (front_len > PAGE_CACHE_SIZE) {
m->front.iov_base = __vmalloc(front_len, GFP_NOFS,
PAGE_KERNEL);
m->front_is_vmalloc = true;
} else {
m->front.iov_base = kmalloc(front_len, GFP_NOFS);
}
if (m->front.iov_base == NULL) {
pr_err("msg_new can't allocate %d bytes\n",
front_len);
goto out2;
}
} else {
m->front.iov_base = NULL;
}
m->front.iov_len = front_len;
/* middle */
m->middle = NULL;
/* data */
m->nr_pages = calc_pages_for(page_off, page_len);
m->pages = pages;
m->pagelist = NULL;
dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len,
m->nr_pages);
return m;
out2:
ceph_msg_put(m);
out:
pr_err("msg_new can't create type %d len %d\n", type, front_len);
return ERR_PTR(-ENOMEM);
}
/*
* Allocate "middle" portion of a message, if it is needed and wasn't
* allocated by alloc_msg. This allows us to read a small fixed-size
* per-type header in the front and then gracefully fail (i.e.,
* propagate the error to the caller based on info in the front) when
* the middle is too large.
*/
static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
{
int type = le16_to_cpu(msg->hdr.type);
int middle_len = le32_to_cpu(msg->hdr.middle_len);
dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
ceph_msg_type_name(type), middle_len);
BUG_ON(!middle_len);
BUG_ON(msg->middle);
msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
if (!msg->middle)
return -ENOMEM;
return 0;
}
/*
* Generic message allocator, for incoming messages.
*/
static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
struct ceph_msg_header *hdr,
int *skip)
{
int type = le16_to_cpu(hdr->type);
int front_len = le32_to_cpu(hdr->front_len);
int middle_len = le32_to_cpu(hdr->middle_len);
struct ceph_msg *msg = NULL;
int ret;
if (con->ops->alloc_msg) {
mutex_unlock(&con->mutex);
msg = con->ops->alloc_msg(con, hdr, skip);
mutex_lock(&con->mutex);
if (IS_ERR(msg))
return msg;
if (*skip)
return NULL;
}
if (!msg) {
*skip = 0;
msg = ceph_msg_new(type, front_len, 0, 0, NULL);
if (!msg) {
pr_err("unable to allocate msg type %d len %d\n",
type, front_len);
return ERR_PTR(-ENOMEM);
}
}
memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
if (middle_len) {
ret = ceph_alloc_middle(con, msg);
if (ret < 0) {
ceph_msg_put(msg);
return msg;
}
}
return msg;
}
/*
* Free a generically kmalloc'd message.
*/
void ceph_msg_kfree(struct ceph_msg *m)
{
dout("msg_kfree %p\n", m);
if (m->front_is_vmalloc)
vfree(m->front.iov_base);
else
kfree(m->front.iov_base);
kfree(m);
}
/*
* Drop a msg ref. Destroy as needed.
*/
void ceph_msg_last_put(struct kref *kref)
{
struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
dout("ceph_msg_put last one on %p\n", m);
WARN_ON(!list_empty(&m->list_head));
/* drop middle, data, if any */
if (m->middle) {
ceph_buffer_put(m->middle);
m->middle = NULL;
}
m->nr_pages = 0;
m->pages = NULL;
if (m->pagelist) {
ceph_pagelist_release(m->pagelist);
kfree(m->pagelist);
m->pagelist = NULL;
}
if (m->pool)
ceph_msgpool_put(m->pool, m);
else
ceph_msg_kfree(m);
}
void ceph_msg_dump(struct ceph_msg *msg)
{
pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
msg->front_max, msg->nr_pages);
print_hex_dump(KERN_DEBUG, "header: ",
DUMP_PREFIX_OFFSET, 16, 1,
&msg->hdr, sizeof(msg->hdr), true);
print_hex_dump(KERN_DEBUG, " front: ",
DUMP_PREFIX_OFFSET, 16, 1,
msg->front.iov_base, msg->front.iov_len, true);
if (msg->middle)
print_hex_dump(KERN_DEBUG, "middle: ",
DUMP_PREFIX_OFFSET, 16, 1,
msg->middle->vec.iov_base,
msg->middle->vec.iov_len, true);
print_hex_dump(KERN_DEBUG, "footer: ",
DUMP_PREFIX_OFFSET, 16, 1,
&msg->footer, sizeof(msg->footer), true);
}