Merge branch 'akpm' (patches from Andrew)

Merge second patch-bomb from Andrew Morton:

 - more MM stuff:

    - Kirill's page-flags rework

    - Kirill's now-allegedly-fixed THP rework

    - MADV_FREE implementation

    - DAX feature work (msync/fsync).  This isn't quite complete but DAX
      is new and it's good enough and the guys have a handle on what
      needs to be done - I expect this to be wrapped in the next week or
      two.

  - some vsprintf maintenance work

  - various other misc bits

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (145 commits)
  printk: change recursion_bug type to bool
  lib/vsprintf: factor out %pN[F] handler as netdev_bits()
  lib/vsprintf: refactor duplicate code to special_hex_number()
  printk-formats.txt: remove unimplemented %pT
  printk: help pr_debug and pr_devel to optimize out arguments
  lib/test_printf.c: test dentry printing
  lib/test_printf.c: add test for large bitmaps
  lib/test_printf.c: account for kvasprintf tests
  lib/test_printf.c: add a few number() tests
  lib/test_printf.c: test precision quirks
  lib/test_printf.c: check for out-of-bound writes
  lib/test_printf.c: don't BUG
  lib/kasprintf.c: add sanity check to kvasprintf
  lib/vsprintf.c: warn about too large precisions and field widths
  lib/vsprintf.c: help gcc make number() smaller
  lib/vsprintf.c: expand field_width to 24 bits
  lib/vsprintf.c: eliminate potential race in string()
  lib/vsprintf.c: move string() below widen_string()
  lib/vsprintf.c: pull out padding code from dentry_name()
  printk: do cond_resched() between lines while outputting to consoles
  ...
This commit is contained in:
Linus Torvalds 2016-01-17 12:58:52 -08:00
commit 0cbeafb245
189 changed files with 4373 additions and 2902 deletions

View file

@ -1,40 +0,0 @@
#
# Feature name: pmdp_splitting_flush
# Kconfig: __HAVE_ARCH_PMDP_SPLITTING_FLUSH
# description: arch supports the pmdp_splitting_flush() VM API
#
-----------------------
| arch |status|
-----------------------
| alpha: | TODO |
| arc: | TODO |
| arm: | ok |
| arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
| cris: | TODO |
| frv: | TODO |
| h8300: | TODO |
| hexagon: | TODO |
| ia64: | TODO |
| m32r: | TODO |
| m68k: | TODO |
| metag: | TODO |
| microblaze: | TODO |
| mips: | ok |
| mn10300: | TODO |
| nios2: | TODO |
| openrisc: | TODO |
| parisc: | TODO |
| powerpc: | ok |
| s390: | ok |
| score: | TODO |
| sh: | TODO |
| sparc: | TODO |
| tile: | TODO |
| um: | TODO |
| unicore32: | TODO |
| x86: | ok |
| xtensa: | TODO |
-----------------------

View file

@ -306,15 +306,6 @@ Network device features:
Passed by reference.
Command from struct task_struct
%pT ls
For printing executable name excluding path from struct
task_struct.
Passed by reference.
If you add other %p extensions, please extend lib/test_printf.c with
one or more test cases, if at all feasible.

View file

@ -35,10 +35,10 @@ miss is going to run faster.
== Design ==
- "graceful fallback": mm components which don't have transparent
hugepage knowledge fall back to breaking a transparent hugepage and
working on the regular pages and their respective regular pmd/pte
mappings
- "graceful fallback": mm components which don't have transparent hugepage
knowledge fall back to breaking huge pmd mapping into table of ptes and,
if necessary, split a transparent hugepage. Therefore these components
can continue working on the regular pages or regular pte mappings.
- if a hugepage allocation fails because of memory fragmentation,
regular pages should be gracefully allocated instead and mixed in
@ -221,9 +221,18 @@ thp_collapse_alloc_failed is incremented if khugepaged found a range
of pages that should be collapsed into one huge page but failed
the allocation.
thp_split is incremented every time a huge page is split into base
thp_split_page is incremented every time a huge page is split into base
pages. This can happen for a variety of reasons but a common
reason is that a huge page is old and is being reclaimed.
This action implies splitting all PMD the page mapped with.
thp_split_page_failed is is incremented if kernel fails to split huge
page. This can happen if the page was pinned by somebody.
thp_split_pmd is incremented every time a PMD split into table of PTEs.
This can happen, for instance, when application calls mprotect() or
munmap() on part of huge page. It doesn't split huge page, only
page table entry.
thp_zero_page_alloc is incremented every time a huge zero page is
successfully allocated. It includes allocations which where
@ -274,10 +283,8 @@ is complete, so they won't ever notice the fact the page is huge. But
if any driver is going to mangle over the page structure of the tail
page (like for checking page->mapping or other bits that are relevant
for the head page and not the tail page), it should be updated to jump
to check head page instead (while serializing properly against
split_huge_page() to avoid the head and tail pages to disappear from
under it, see the futex code to see an example of that, hugetlbfs also
needed special handling in futex code for similar reasons).
to check head page instead. Taking reference on any head/tail page would
prevent page from being split by anyone.
NOTE: these aren't new constraints to the GUP API, and they match the
same constrains that applies to hugetlbfs too, so any driver capable
@ -312,9 +319,9 @@ unaffected. libhugetlbfs will also work fine as usual.
== Graceful fallback ==
Code walking pagetables but unware about huge pmds can simply call
split_huge_page_pmd(vma, addr, pmd) where the pmd is the one returned by
split_huge_pmd(vma, pmd, addr) where the pmd is the one returned by
pmd_offset. It's trivial to make the code transparent hugepage aware
by just grepping for "pmd_offset" and adding split_huge_page_pmd where
by just grepping for "pmd_offset" and adding split_huge_pmd where
missing after pmd_offset returns the pmd. Thanks to the graceful
fallback design, with a one liner change, you can avoid to write
hundred if not thousand of lines of complex code to make your code
@ -323,7 +330,8 @@ hugepage aware.
If you're not walking pagetables but you run into a physical hugepage
but you can't handle it natively in your code, you can split it by
calling split_huge_page(page). This is what the Linux VM does before
it tries to swapout the hugepage for example.
it tries to swapout the hugepage for example. split_huge_page() can fail
if the page is pinned and you must handle this correctly.
Example to make mremap.c transparent hugepage aware with a one liner
change:
@ -335,14 +343,14 @@ diff --git a/mm/mremap.c b/mm/mremap.c
return NULL;
pmd = pmd_offset(pud, addr);
+ split_huge_page_pmd(vma, addr, pmd);
+ split_huge_pmd(vma, pmd, addr);
if (pmd_none_or_clear_bad(pmd))
return NULL;
== Locking in hugepage aware code ==
We want as much code as possible hugepage aware, as calling
split_huge_page() or split_huge_page_pmd() has a cost.
split_huge_page() or split_huge_pmd() has a cost.
To make pagetable walks huge pmd aware, all you need to do is to call
pmd_trans_huge() on the pmd returned by pmd_offset. You must hold the
@ -351,47 +359,80 @@ created from under you by khugepaged (khugepaged collapse_huge_page
takes the mmap_sem in write mode in addition to the anon_vma lock). If
pmd_trans_huge returns false, you just fallback in the old code
paths. If instead pmd_trans_huge returns true, you have to take the
mm->page_table_lock and re-run pmd_trans_huge. Taking the
page_table_lock will prevent the huge pmd to be converted into a
regular pmd from under you (split_huge_page can run in parallel to the
page table lock (pmd_lock()) and re-run pmd_trans_huge. Taking the
page table lock will prevent the huge pmd to be converted into a
regular pmd from under you (split_huge_pmd can run in parallel to the
pagetable walk). If the second pmd_trans_huge returns false, you
should just drop the page_table_lock and fallback to the old code as
before. Otherwise you should run pmd_trans_splitting on the pmd. In
case pmd_trans_splitting returns true, it means split_huge_page is
already in the middle of splitting the page. So if pmd_trans_splitting
returns true it's enough to drop the page_table_lock and call
wait_split_huge_page and then fallback the old code paths. You are
guaranteed by the time wait_split_huge_page returns, the pmd isn't
huge anymore. If pmd_trans_splitting returns false, you can proceed to
process the huge pmd and the hugepage natively. Once finished you can
drop the page_table_lock.
should just drop the page table lock and fallback to the old code as
before. Otherwise you can proceed to process the huge pmd and the
hugepage natively. Once finished you can drop the page table lock.
== compound_lock, get_user_pages and put_page ==
== Refcounts and transparent huge pages ==
Refcounting on THP is mostly consistent with refcounting on other compound
pages:
- get_page()/put_page() and GUP operate in head page's ->_count.
- ->_count in tail pages is always zero: get_page_unless_zero() never
succeed on tail pages.
- map/unmap of the pages with PTE entry increment/decrement ->_mapcount
on relevant sub-page of the compound page.
- map/unmap of the whole compound page accounted in compound_mapcount
(stored in first tail page).
PageDoubleMap() indicates that ->_mapcount in all subpages is offset up by one.
This additional reference is required to get race-free detection of unmap of
subpages when we have them mapped with both PMDs and PTEs.
This is optimization required to lower overhead of per-subpage mapcount
tracking. The alternative is alter ->_mapcount in all subpages on each
map/unmap of the whole compound page.
We set PG_double_map when a PMD of the page got split for the first time,
but still have PMD mapping. The addtional references go away with last
compound_mapcount.
split_huge_page internally has to distribute the refcounts in the head
page to the tail pages before clearing all PG_head/tail bits from the
page structures. It can do that easily for refcounts taken by huge pmd
mappings. But the GUI API as created by hugetlbfs (that returns head
and tail pages if running get_user_pages on an address backed by any
hugepage), requires the refcount to be accounted on the tail pages and
not only in the head pages, if we want to be able to run
split_huge_page while there are gup pins established on any tail
page. Failure to be able to run split_huge_page if there's any gup pin
on any tail page, would mean having to split all hugepages upfront in
get_user_pages which is unacceptable as too many gup users are
performance critical and they must work natively on hugepages like
they work natively on hugetlbfs already (hugetlbfs is simpler because
hugetlbfs pages cannot be split so there wouldn't be requirement of
accounting the pins on the tail pages for hugetlbfs). If we wouldn't
account the gup refcounts on the tail pages during gup, we won't know
anymore which tail page is pinned by gup and which is not while we run
split_huge_page. But we still have to add the gup pin to the head page
too, to know when we can free the compound page in case it's never
split during its lifetime. That requires changing not just
get_page, but put_page as well so that when put_page runs on a tail
page (and only on a tail page) it will find its respective head page,
and then it will decrease the head page refcount in addition to the
tail page refcount. To obtain a head page reliably and to decrease its
refcount without race conditions, put_page has to serialize against
__split_huge_page_refcount using a special per-page lock called
compound_lock.
page to the tail pages before clearing all PG_head/tail bits from the page
structures. It can be done easily for refcounts taken by page table
entries. But we don't have enough information on how to distribute any
additional pins (i.e. from get_user_pages). split_huge_page() fails any
requests to split pinned huge page: it expects page count to be equal to
sum of mapcount of all sub-pages plus one (split_huge_page caller must
have reference for head page).
split_huge_page uses migration entries to stabilize page->_count and
page->_mapcount.
We safe against physical memory scanners too: the only legitimate way
scanner can get reference to a page is get_page_unless_zero().
All tail pages has zero ->_count until atomic_add(). It prevent scanner
from geting reference to tail page up to the point. After the atomic_add()
we don't care about ->_count value. We already known how many references
with should uncharge from head page.
For head page get_page_unless_zero() will succeed and we don't mind. It's
clear where reference should go after split: it will stay on head page.
Note that split_huge_pmd() doesn't have any limitation on refcounting:
pmd can be split at any point and never fails.
== Partial unmap and deferred_split_huge_page() ==
Unmapping part of THP (with munmap() or other way) is not going to free
memory immediately. Instead, we detect that a subpage of THP is not in use
in page_remove_rmap() and queue the THP for splitting if memory pressure
comes. Splitting will free up unused subpages.
Splitting the page right away is not an option due to locking context in
the place where we can detect partial unmap. It's also might be
counterproductive since in many cases partial unmap unmap happens during
exit(2) if an THP crosses VMA boundary.
Function deferred_split_huge_page() is used to queue page for splitting.
The splitting itself will happen when we get memory pressure via shrinker
interface.

View file

@ -47,8 +47,10 @@
#define MADV_WILLNEED 3 /* will need these pages */
#define MADV_SPACEAVAIL 5 /* ensure resources are available */
#define MADV_DONTNEED 6 /* don't need these pages */
#define MADV_FREE 7 /* free pages only if memory pressure */
/* common/generic parameters */
#define MADV_FREE 8 /* free pages only if memory pressure */
#define MADV_REMOVE 9 /* remove these pages & resources */
#define MADV_DONTFORK 10 /* don't inherit across fork */
#define MADV_DOFORK 11 /* do inherit across fork */

View file

@ -73,9 +73,6 @@ config STACKTRACE_SUPPORT
def_bool y
select STACKTRACE
config HAVE_LATENCYTOP_SUPPORT
def_bool y
config HAVE_ARCH_TRANSPARENT_HUGEPAGE
def_bool y
depends on ARC_MMU_V4

View file

@ -617,7 +617,7 @@ void flush_dcache_page(struct page *page)
*/
if (!mapping_mapped(mapping)) {
clear_bit(PG_dc_clean, &page->flags);
} else if (page_mapped(page)) {
} else if (page_mapcount(page)) {
/* kernel reading from page with U-mapping */
phys_addr_t paddr = (unsigned long)page_address(page);
@ -857,7 +857,7 @@ void copy_user_highpage(struct page *to, struct page *from,
* For !VIPT cache, all of this gets compiled out as
* addr_not_cache_congruent() is 0
*/
if (page_mapped(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
__flush_dcache_page((unsigned long)kfrom, u_vaddr);
clean_src_k_mappings = 1;
}

View file

@ -168,11 +168,6 @@ config STACKTRACE_SUPPORT
bool
default y
config HAVE_LATENCYTOP_SUPPORT
bool
depends on !SMP
default y
config LOCKDEP_SUPPORT
bool
default y

View file

@ -182,7 +182,8 @@ static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
return (vcpu->arch.cp15[c1_SCTLR] & 0b101) == 0b101;
}
static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
kvm_pfn_t pfn,
unsigned long size,
bool ipa_uncached)
{
@ -246,7 +247,7 @@ static inline void __kvm_flush_dcache_pte(pte_t pte)
static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
{
unsigned long size = PMD_SIZE;
pfn_t pfn = pmd_pfn(pmd);
kvm_pfn_t pfn = pmd_pfn(pmd);
while (size) {
void *va = kmap_atomic_pfn(pfn);

View file

@ -88,7 +88,6 @@
#define L_PMD_SECT_VALID (_AT(pmdval_t, 1) << 0)
#define L_PMD_SECT_DIRTY (_AT(pmdval_t, 1) << 55)
#define L_PMD_SECT_SPLITTING (_AT(pmdval_t, 1) << 56)
#define L_PMD_SECT_NONE (_AT(pmdval_t, 1) << 57)
#define L_PMD_SECT_RDONLY (_AT(pteval_t, 1) << 58)
@ -232,13 +231,6 @@ static inline pte_t pte_mkspecial(pte_t pte)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define pmd_trans_huge(pmd) (pmd_val(pmd) && !pmd_table(pmd))
#define pmd_trans_splitting(pmd) (pmd_isset((pmd), L_PMD_SECT_SPLITTING))
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
#endif
#endif
#define PMD_BIT_FUNC(fn,op) \
@ -246,9 +238,9 @@ static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
PMD_BIT_FUNC(wrprotect, |= L_PMD_SECT_RDONLY);
PMD_BIT_FUNC(mkold, &= ~PMD_SECT_AF);
PMD_BIT_FUNC(mksplitting, |= L_PMD_SECT_SPLITTING);
PMD_BIT_FUNC(mkwrite, &= ~L_PMD_SECT_RDONLY);
PMD_BIT_FUNC(mkdirty, |= L_PMD_SECT_DIRTY);
PMD_BIT_FUNC(mkclean, &= ~L_PMD_SECT_DIRTY);
PMD_BIT_FUNC(mkyoung, |= PMD_SECT_AF);
#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))

View file

@ -992,9 +992,9 @@ out:
return ret;
}
static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
{
pfn_t pfn = *pfnp;
kvm_pfn_t pfn = *pfnp;
gfn_t gfn = *ipap >> PAGE_SHIFT;
if (PageTransCompound(pfn_to_page(pfn))) {
@ -1201,7 +1201,7 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}
static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
unsigned long size, bool uncached)
{
__coherent_cache_guest_page(vcpu, pfn, size, uncached);
@ -1218,7 +1218,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
struct vm_area_struct *vma;
pfn_t pfn;
kvm_pfn_t pfn;
pgprot_t mem_type = PAGE_S2;
bool fault_ipa_uncached;
bool logging_active = memslot_is_logging(memslot);
@ -1346,7 +1346,7 @@ static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
pmd_t *pmd;
pte_t *pte;
pfn_t pfn;
kvm_pfn_t pfn;
bool pfn_valid = false;
trace_kvm_access_fault(fault_ipa);

View file

@ -52,14 +52,13 @@ pin_page_for_write(const void __user *_addr, pte_t **ptep, spinlock_t **ptlp)
*
* Lock the page table for the destination and check
* to see that it's still huge and whether or not we will
* need to fault on write, or if we have a splitting THP.
* need to fault on write.
*/
if (unlikely(pmd_thp_or_huge(*pmd))) {
ptl = &current->mm->page_table_lock;
spin_lock(ptl);
if (unlikely(!pmd_thp_or_huge(*pmd)
|| pmd_hugewillfault(*pmd)
|| pmd_trans_splitting(*pmd))) {
|| pmd_hugewillfault(*pmd))) {
spin_unlock(ptl);
return 0;
}

View file

@ -330,7 +330,7 @@ void flush_dcache_page(struct page *page)
mapping = page_mapping(page);
if (!cache_ops_need_broadcast() &&
mapping && !page_mapped(page))
mapping && !page_mapcount(page))
clear_bit(PG_dcache_clean, &page->flags);
else {
__flush_dcache_page(mapping, page);
@ -415,18 +415,3 @@ void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned l
*/
__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd = pmd_mksplitting(*pmdp);
VM_BUG_ON(address & ~PMD_MASK);
set_pmd_at(vma->vm_mm, address, pmdp, pmd);
/* dummy IPI to serialise against fast_gup */
kick_all_cpus_sync();
}
#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

View file

@ -230,7 +230,8 @@ static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
}
static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
kvm_pfn_t pfn,
unsigned long size,
bool ipa_uncached)
{

View file

@ -353,21 +353,14 @@ static inline pgprot_t mk_sect_prot(pgprot_t prot)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT))
#define pmd_trans_splitting(pmd) pte_special(pmd_pte(pmd))
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
struct vm_area_struct;
void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mksplitting(pmd) pte_pmd(pte_mkspecial(pmd_pte(pmd)))
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_TYPE_MASK))

View file

@ -102,19 +102,3 @@ EXPORT_SYMBOL(flush_dcache_page);
* Additional functions defined in assembly.
*/
EXPORT_SYMBOL(flush_icache_range);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd = pmd_mksplitting(*pmdp);
VM_BUG_ON(address & ~PMD_MASK);
set_pmd_at(vma->vm_mm, address, pmdp, pmd);
/* dummy IPI to serialise against fast_gup */
kick_all_cpus_sync();
}
#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

View file

@ -83,11 +83,9 @@ static inline int get_order(unsigned long size)
#ifndef CONFIG_NEED_MULTIPLE_NODES
#define PHYS_PFN_OFFSET (CONFIG_PHYS_OFFSET >> PAGE_SHIFT)
#define ARCH_PFN_OFFSET (CONFIG_PHYS_OFFSET >> PAGE_SHIFT)
#define pfn_to_page(pfn) (mem_map + ((pfn) - PHYS_PFN_OFFSET))
#define page_to_pfn(page) ((unsigned long)((page) - mem_map) + PHYS_PFN_OFFSET)
#define pfn_valid(pfn) ((pfn) >= PHYS_PFN_OFFSET && (pfn) < (PHYS_PFN_OFFSET + max_mapnr))
#define pfn_valid(pfn) ((pfn) >= ARCH_PFN_OFFSET && (pfn) < (ARCH_PFN_OFFSET + max_mapnr))
#endif /* CONFIG_NEED_MULTIPLE_NODES */
#define virt_to_page(kaddr) pfn_to_page(__pa(kaddr) >> PAGE_SHIFT)
@ -101,4 +99,6 @@ static inline int get_order(unsigned long size)
*/
#define HIGHMEM_START 0x20000000UL
#include <asm-generic/memory_model.h>
#endif /* __ASM_AVR32_PAGE_H */

View file

@ -34,7 +34,7 @@ typedef struct page *pgtable_t;
#define pgprot_val(x) ((x).pgprot)
#define __pte(x) ((pte_t) { (x) } )
#define __pmd(x) ((pmd_t) { (x) } )
#define __pmd(x) ((pmd_t) { { (x) } } )
#define __pud(x) ((pud_t) { (x) } )
#define __pgd(x) ((pgd_t) { (x) } )
#define __pgprot(x) ((pgprot_t) { (x) } )

View file

@ -105,6 +105,7 @@ extern struct page *vmem_map;
#ifdef CONFIG_DISCONTIGMEM
# define page_to_pfn(page) ((unsigned long) (page - vmem_map))
# define pfn_to_page(pfn) (vmem_map + (pfn))
# define __pfn_to_phys(pfn) PFN_PHYS(pfn)
#else
# include <asm-generic/memory_model.h>
#endif

View file

@ -36,9 +36,6 @@ config STACKTRACE_SUPPORT
config LOCKDEP_SUPPORT
def_bool y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
config RWSEM_GENERIC_SPINLOCK
def_bool y

View file

@ -67,9 +67,6 @@ config STACKTRACE_SUPPORT
config LOCKDEP_SUPPORT
def_bool y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
source "init/Kconfig"
source "kernel/Kconfig.freezer"

View file

@ -101,9 +101,9 @@
#define CAUSEF_DC (_ULCAST_(1) << 27)
extern atomic_t kvm_mips_instance;
extern pfn_t(*kvm_mips_gfn_to_pfn) (struct kvm *kvm, gfn_t gfn);
extern void (*kvm_mips_release_pfn_clean) (pfn_t pfn);
extern bool(*kvm_mips_is_error_pfn) (pfn_t pfn);
extern kvm_pfn_t (*kvm_mips_gfn_to_pfn)(struct kvm *kvm, gfn_t gfn);
extern void (*kvm_mips_release_pfn_clean)(kvm_pfn_t pfn);
extern bool (*kvm_mips_is_error_pfn)(kvm_pfn_t pfn);
struct kvm_vm_stat {
u32 remote_tlb_flush;

View file

@ -131,14 +131,12 @@
/* Huge TLB page */
#define _PAGE_HUGE_SHIFT (_PAGE_MODIFIED_SHIFT + 1)
#define _PAGE_HUGE (1 << _PAGE_HUGE_SHIFT)
#define _PAGE_SPLITTING_SHIFT (_PAGE_HUGE_SHIFT + 1)
#define _PAGE_SPLITTING (1 << _PAGE_SPLITTING_SHIFT)
#endif /* CONFIG_64BIT && CONFIG_MIPS_HUGE_TLB_SUPPORT */
#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
/* XI - page cannot be executed */
#ifdef _PAGE_SPLITTING_SHIFT
#define _PAGE_NO_EXEC_SHIFT (_PAGE_SPLITTING_SHIFT + 1)
#ifdef _PAGE_HUGE_SHIFT
#define _PAGE_NO_EXEC_SHIFT (_PAGE_HUGE_SHIFT + 1)
#else
#define _PAGE_NO_EXEC_SHIFT (_PAGE_MODIFIED_SHIFT + 1)
#endif
@ -153,8 +151,8 @@
#if defined(_PAGE_NO_READ_SHIFT)
#define _PAGE_GLOBAL_SHIFT (_PAGE_NO_READ_SHIFT + 1)
#elif defined(_PAGE_SPLITTING_SHIFT)
#define _PAGE_GLOBAL_SHIFT (_PAGE_SPLITTING_SHIFT + 1)
#elif defined(_PAGE_HUGE_SHIFT)
#define _PAGE_GLOBAL_SHIFT (_PAGE_HUGE_SHIFT + 1)
#else
#define _PAGE_GLOBAL_SHIFT (_PAGE_MODIFIED_SHIFT + 1)
#endif

View file

@ -482,27 +482,9 @@ static inline pmd_t pmd_mkhuge(pmd_t pmd)
return pmd;
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_SPLITTING);
}
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
pmd_val(pmd) |= _PAGE_SPLITTING;
return pmd;
}
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd);
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
/* Extern to avoid header file madness */
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp);
#define __HAVE_ARCH_PMD_WRITE
static inline int pmd_write(pmd_t pmd)
{

View file

@ -73,8 +73,10 @@
#define MADV_SEQUENTIAL 2 /* expect sequential page references */
#define MADV_WILLNEED 3 /* will need these pages */
#define MADV_DONTNEED 4 /* don't need these pages */
#define MADV_FREE 5 /* free pages only if memory pressure */
/* common parameters: try to keep these consistent across architectures */
#define MADV_FREE 8 /* free pages only if memory pressure */
#define MADV_REMOVE 9 /* remove these pages & resources */
#define MADV_DONTFORK 10 /* don't inherit across fork */
#define MADV_DOFORK 11 /* do inherit across fork */

View file

@ -1525,7 +1525,7 @@ int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
struct kvm *kvm = vcpu->kvm;
unsigned long pa;
gfn_t gfn;
pfn_t pfn;
kvm_pfn_t pfn;
gfn = va >> PAGE_SHIFT;

View file

@ -38,13 +38,13 @@ atomic_t kvm_mips_instance;
EXPORT_SYMBOL(kvm_mips_instance);
/* These function pointers are initialized once the KVM module is loaded */
pfn_t (*kvm_mips_gfn_to_pfn)(struct kvm *kvm, gfn_t gfn);
kvm_pfn_t (*kvm_mips_gfn_to_pfn)(struct kvm *kvm, gfn_t gfn);
EXPORT_SYMBOL(kvm_mips_gfn_to_pfn);
void (*kvm_mips_release_pfn_clean)(pfn_t pfn);
void (*kvm_mips_release_pfn_clean)(kvm_pfn_t pfn);
EXPORT_SYMBOL(kvm_mips_release_pfn_clean);
bool (*kvm_mips_is_error_pfn)(pfn_t pfn);
bool (*kvm_mips_is_error_pfn)(kvm_pfn_t pfn);
EXPORT_SYMBOL(kvm_mips_is_error_pfn);
uint32_t kvm_mips_get_kernel_asid(struct kvm_vcpu *vcpu)
@ -144,7 +144,7 @@ EXPORT_SYMBOL(kvm_mips_dump_guest_tlbs);
static int kvm_mips_map_page(struct kvm *kvm, gfn_t gfn)
{
int srcu_idx, err = 0;
pfn_t pfn;
kvm_pfn_t pfn;
if (kvm->arch.guest_pmap[gfn] != KVM_INVALID_PAGE)
return 0;
@ -262,7 +262,7 @@ int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
struct kvm_vcpu *vcpu)
{
gfn_t gfn;
pfn_t pfn0, pfn1;
kvm_pfn_t pfn0, pfn1;
unsigned long vaddr = 0;
unsigned long entryhi = 0, entrylo0 = 0, entrylo1 = 0;
int even;
@ -313,7 +313,7 @@ EXPORT_SYMBOL(kvm_mips_handle_kseg0_tlb_fault);
int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
struct kvm_vcpu *vcpu)
{
pfn_t pfn0, pfn1;
kvm_pfn_t pfn0, pfn1;
unsigned long flags, old_entryhi = 0, vaddr = 0;
unsigned long entrylo0 = 0, entrylo1 = 0;
@ -360,7 +360,7 @@ int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
{
unsigned long entryhi = 0, entrylo0 = 0, entrylo1 = 0;
struct kvm *kvm = vcpu->kvm;
pfn_t pfn0, pfn1;
kvm_pfn_t pfn0, pfn1;
if ((tlb->tlb_hi & VPN2_MASK) == 0) {
pfn0 = 0;

View file

@ -587,7 +587,8 @@ static inline void local_r4k_flush_cache_page(void *args)
* another ASID than the current one.
*/
map_coherent = (cpu_has_dc_aliases &&
page_mapped(page) && !Page_dcache_dirty(page));
page_mapcount(page) &&
!Page_dcache_dirty(page));
if (map_coherent)
vaddr = kmap_coherent(page, addr);
else

View file

@ -106,7 +106,7 @@ void __flush_anon_page(struct page *page, unsigned long vmaddr)
unsigned long addr = (unsigned long) page_address(page);
if (pages_do_alias(addr, vmaddr)) {
if (page_mapped(page) && !Page_dcache_dirty(page)) {
if (page_mapcount(page) && !Page_dcache_dirty(page)) {
void *kaddr;
kaddr = kmap_coherent(page, vmaddr);

View file

@ -87,8 +87,6 @@ static int gup_huge_pmd(pmd_t pmd, unsigned long addr, unsigned long end,
do {
VM_BUG_ON(compound_head(page) != head);
pages[*nr] = page;
if (PageTail(page))
get_huge_page_tail(page);
(*nr)++;
page++;
refs++;
@ -109,18 +107,7 @@ static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
pmd_t pmd = *pmdp;
next = pmd_addr_end(addr, end);
/*
* The pmd_trans_splitting() check below explains why
* pmdp_splitting_flush has to flush the tlb, to stop
* this gup-fast code from running while we set the
* splitting bit in the pmd. Returning zero will take
* the slow path that will call wait_split_huge_page()
* if the pmd is still in splitting state. gup-fast
* can't because it has irq disabled and
* wait_split_huge_page() would never return as the
* tlb flush IPI wouldn't run.
*/
if (pmd_none(pmd) || pmd_trans_splitting(pmd))
if (pmd_none(pmd))
return 0;
if (unlikely(pmd_huge(pmd))) {
if (!gup_huge_pmd(pmd, addr, next, write, pages,nr))
@ -153,8 +140,6 @@ static int gup_huge_pud(pud_t pud, unsigned long addr, unsigned long end,
do {
VM_BUG_ON(compound_head(page) != head);
pages[*nr] = page;
if (PageTail(page))
get_huge_page_tail(page);
(*nr)++;
page++;
refs++;

View file

@ -165,7 +165,7 @@ void copy_user_highpage(struct page *to, struct page *from,
vto = kmap_atomic(to);
if (cpu_has_dc_aliases &&
page_mapped(from) && !Page_dcache_dirty(from)) {
page_mapcount(from) && !Page_dcache_dirty(from)) {
vfrom = kmap_coherent(from, vaddr);
copy_page(vto, vfrom);
kunmap_coherent();
@ -187,7 +187,7 @@ void copy_to_user_page(struct vm_area_struct *vma,
unsigned long len)
{
if (cpu_has_dc_aliases &&
page_mapped(page) && !Page_dcache_dirty(page)) {
page_mapcount(page) && !Page_dcache_dirty(page)) {
void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
memcpy(vto, src, len);
kunmap_coherent();
@ -205,7 +205,7 @@ void copy_from_user_page(struct vm_area_struct *vma,
unsigned long len)
{
if (cpu_has_dc_aliases &&
page_mapped(page) && !Page_dcache_dirty(page)) {
page_mapcount(page) && !Page_dcache_dirty(page)) {
void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
memcpy(dst, vfrom, len);
kunmap_coherent();

View file

@ -62,20 +62,6 @@ void pmd_init(unsigned long addr, unsigned long pagetable)
}
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
if (!pmd_trans_splitting(*pmdp)) {
pmd_t pmd = pmd_mksplitting(*pmdp);
set_pmd_at(vma->vm_mm, address, pmdp, pmd);
}
}
#endif
pmd_t mk_pmd(struct page *page, pgprot_t prot)
{
pmd_t pmd;

View file

@ -240,7 +240,6 @@ static void output_pgtable_bits_defines(void)
pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
#endif
#ifdef CONFIG_CPU_MIPSR2
if (cpu_has_rixi) {

View file

@ -107,6 +107,7 @@ static inline int get_order(unsigned long size)
#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
#define pfn_to_page(pfn) (mem_map + ((pfn) - __pfn_disp))
#define page_to_pfn(page) ((unsigned long)((page) - mem_map) + __pfn_disp)
#define __pfn_to_phys(pfn) PFN_PHYS(pfn)
#define pfn_valid(pfn) \
({ \

View file

@ -79,9 +79,6 @@ config TIME_LOW_RES
depends on SMP
default y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
# unless you want to implement ACPI on PA-RISC ... ;-)
config PM
bool

View file

@ -43,8 +43,10 @@
#define MADV_SPACEAVAIL 5 /* insure that resources are reserved */
#define MADV_VPS_PURGE 6 /* Purge pages from VM page cache */
#define MADV_VPS_INHERIT 7 /* Inherit parents page size */
#define MADV_FREE 8 /* free pages only if memory pressure */
/* common/generic parameters */
#define MADV_FREE 8 /* free pages only if memory pressure */
#define MADV_REMOVE 9 /* remove these pages & resources */
#define MADV_DONTFORK 10 /* don't inherit across fork */
#define MADV_DOFORK 11 /* do inherit across fork */

View file

@ -47,9 +47,6 @@ config STACKTRACE_SUPPORT
bool
default y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
config TRACE_IRQFLAGS_SUPPORT
bool
default y

View file

@ -256,13 +256,6 @@ static inline int pmd_trans_huge(pmd_t pmd)
(_PAGE_PTE | _PAGE_THP_HUGE));
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
if (pmd_trans_huge(pmd))
return pmd_val(pmd) & _PAGE_SPLITTING;
return 0;
}
static inline int pmd_large(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_PTE);
@ -273,11 +266,6 @@ static inline pmd_t pmd_mknotpresent(pmd_t pmd)
return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
}
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | _PAGE_SPLITTING);
}
#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{

View file

@ -40,11 +40,6 @@
#define _PAGE_SOFT_DIRTY 0x00000
#endif
/*
* THP pages can't be special. So use the _PAGE_SPECIAL
*/
#define _PAGE_SPLITTING _PAGE_SPECIAL
/*
* We need to differentiate between explicit huge page and THP huge
* page, since THP huge page also need to track real subpage details
@ -54,9 +49,8 @@
/*
* set of bits not changed in pmd_modify.
*/
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
_PAGE_THP_HUGE | _PAGE_PTE | _PAGE_SOFT_DIRTY)
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
_PAGE_ACCESSED | _PAGE_THP_HUGE)
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/book3s/64/hash-64k.h>

View file

@ -223,9 +223,11 @@ static inline pte_t *pmdp_ptep(pmd_t *pmd)
#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
@ -266,10 +268,6 @@ extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define pmdp_collapse_flush pmdp_collapse_flush

View file

@ -154,8 +154,8 @@ extern void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat,
bool upper, u32 val);
extern void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr);
extern int kvmppc_emulate_paired_single(struct kvm_run *run, struct kvm_vcpu *vcpu);
extern pfn_t kvmppc_gpa_to_pfn(struct kvm_vcpu *vcpu, gpa_t gpa, bool writing,
bool *writable);
extern kvm_pfn_t kvmppc_gpa_to_pfn(struct kvm_vcpu *vcpu, gpa_t gpa,
bool writing, bool *writable);
extern void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
unsigned long *rmap, long pte_index, int realmode);
extern void kvmppc_update_rmap_change(unsigned long *rmap, unsigned long psize);

View file

@ -515,7 +515,7 @@ void kvmppc_claim_lpid(long lpid);
void kvmppc_free_lpid(long lpid);
void kvmppc_init_lpid(unsigned long nr_lpids);
static inline void kvmppc_mmu_flush_icache(pfn_t pfn)
static inline void kvmppc_mmu_flush_icache(kvm_pfn_t pfn)
{
struct page *page;
/*

View file

@ -366,7 +366,7 @@ int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
}
EXPORT_SYMBOL_GPL(kvmppc_core_prepare_to_enter);
pfn_t kvmppc_gpa_to_pfn(struct kvm_vcpu *vcpu, gpa_t gpa, bool writing,
kvm_pfn_t kvmppc_gpa_to_pfn(struct kvm_vcpu *vcpu, gpa_t gpa, bool writing,
bool *writable)
{
ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM;
@ -379,9 +379,9 @@ pfn_t kvmppc_gpa_to_pfn(struct kvm_vcpu *vcpu, gpa_t gpa, bool writing,
gpa &= ~0xFFFULL;
if (unlikely(mp_pa) && unlikely((gpa & KVM_PAM) == mp_pa)) {
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
pfn_t pfn;
kvm_pfn_t pfn;
pfn = (pfn_t)virt_to_phys((void*)shared_page) >> PAGE_SHIFT;
pfn = (kvm_pfn_t)virt_to_phys((void*)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
if (writable)
*writable = true;

View file

@ -142,7 +142,7 @@ extern char etext[];
int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte,
bool iswrite)
{
pfn_t hpaddr;
kvm_pfn_t hpaddr;
u64 vpn;
u64 vsid;
struct kvmppc_sid_map *map;

View file

@ -83,7 +83,7 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte,
bool iswrite)
{
unsigned long vpn;
pfn_t hpaddr;
kvm_pfn_t hpaddr;
ulong hash, hpteg;
u64 vsid;
int ret;

View file

@ -41,7 +41,7 @@ enum vcpu_ftr {
#define E500_TLB_MAS2_ATTR (0x7f)
struct tlbe_ref {
pfn_t pfn; /* valid only for TLB0, except briefly */
kvm_pfn_t pfn; /* valid only for TLB0, except briefly */
unsigned int flags; /* E500_TLB_* */
};

View file

@ -163,9 +163,9 @@ void kvmppc_map_magic(struct kvm_vcpu *vcpu)
struct kvm_book3e_206_tlb_entry magic;
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
unsigned int stid;
pfn_t pfn;
kvm_pfn_t pfn;
pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
preempt_disable();
@ -246,7 +246,7 @@ static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
struct kvm_book3e_206_tlb_entry *gtlbe,
pfn_t pfn, unsigned int wimg)
kvm_pfn_t pfn, unsigned int wimg)
{
ref->pfn = pfn;
ref->flags = E500_TLB_VALID;
@ -309,7 +309,7 @@ static void kvmppc_e500_setup_stlbe(
int tsize, struct tlbe_ref *ref, u64 gvaddr,
struct kvm_book3e_206_tlb_entry *stlbe)
{
pfn_t pfn = ref->pfn;
kvm_pfn_t pfn = ref->pfn;
u32 pr = vcpu->arch.shared->msr & MSR_PR;
BUG_ON(!(ref->flags & E500_TLB_VALID));

View file

@ -30,7 +30,7 @@ TRACE_EVENT(kvm_book3s_reenter,
#ifdef CONFIG_PPC_BOOK3S_64
TRACE_EVENT(kvm_book3s_64_mmu_map,
TP_PROTO(int rflags, ulong hpteg, ulong va, pfn_t hpaddr,
TP_PROTO(int rflags, ulong hpteg, ulong va, kvm_pfn_t hpaddr,
struct kvmppc_pte *orig_pte),
TP_ARGS(rflags, hpteg, va, hpaddr, orig_pte),

View file

@ -39,9 +39,6 @@ int __hash_page_thp(unsigned long ea, unsigned long access, unsigned long vsid,
/* If PMD busy, retry the access */
if (unlikely(old_pmd & _PAGE_BUSY))
return 0;
/* If PMD is trans splitting retry the access */
if (unlikely(old_pmd & _PAGE_SPLITTING))
return 0;
/* If PMD permissions don't match, take page fault */
if (unlikely(access & ~old_pmd))
return 1;

View file

@ -958,10 +958,6 @@ pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
/*
* A hugepage collapse is captured by pmd_none, because
* it mark the pmd none and do a hpte invalidate.
*
* We don't worry about pmd_trans_splitting here, The
* caller if it needs to handle the splitting case
* should check for that.
*/
if (pmd_none(pmd))
return NULL;
@ -999,7 +995,7 @@ int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
{
unsigned long mask;
unsigned long pte_end;
struct page *head, *page, *tail;
struct page *head, *page;
pte_t pte;
int refs;
@ -1022,7 +1018,6 @@ int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
head = pte_page(pte);
page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
tail = page;
do {
VM_BUG_ON(compound_head(page) != head);
pages[*nr] = page;
@ -1044,15 +1039,5 @@ int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
return 0;
}
/*
* Any tail page need their mapcount reference taken before we
* return.
*/
while (refs--) {
if (PageTail(tail))
get_huge_page_tail(tail);
tail++;
}
return 1;
}

View file

@ -603,55 +603,6 @@ int pmdp_clear_flush_young(struct vm_area_struct *vma,
return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
}
/*
* We mark the pmd splitting and invalidate all the hpte
* entries for this hugepage.
*/
void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
unsigned long old, tmp;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
#ifdef CONFIG_DEBUG_VM
WARN_ON(!pmd_trans_huge(*pmdp));
assert_spin_locked(&vma->vm_mm->page_table_lock);
#endif
#ifdef PTE_ATOMIC_UPDATES
__asm__ __volatile__(
"1: ldarx %0,0,%3\n\
andi. %1,%0,%6\n\
bne- 1b \n\
oris %1,%0,%4@h \n\
stdcx. %1,0,%3 \n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
: "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
: "cc" );
#else
old = pmd_val(*pmdp);
*pmdp = __pmd(old | _PAGE_SPLITTING);
#endif
/*
* If we didn't had the splitting flag set, go and flush the
* HPTE entries.
*/
trace_hugepage_splitting(address, old);
if (!(old & _PAGE_SPLITTING)) {
/* We need to flush the hpte */
if (old & _PAGE_HASHPTE)
hpte_do_hugepage_flush(vma->vm_mm, address, pmdp, old);
}
/*
* This ensures that generic code that rely on IRQ disabling
* to prevent a parallel THP split work as expected.
*/
kick_all_cpus_sync();
}
/*
* We want to put the pgtable in pmd and use pgtable for tracking
* the base page size hptes

View file

@ -135,7 +135,7 @@ static int subpage_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
split_huge_page_pmd(vma, addr, pmd);
split_huge_pmd(vma, pmd, addr);
return 0;
}

View file

@ -43,6 +43,7 @@
#include <linux/types.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/pfn_t.h>
#include <asm/page.h>
#include <asm/prom.h>
@ -142,15 +143,13 @@ axon_ram_make_request(struct request_queue *queue, struct bio *bio)
*/
static long
axon_ram_direct_access(struct block_device *device, sector_t sector,
void __pmem **kaddr, unsigned long *pfn)
void __pmem **kaddr, pfn_t *pfn)
{
struct axon_ram_bank *bank = device->bd_disk->private_data;
loff_t offset = (loff_t)sector << AXON_RAM_SECTOR_SHIFT;
void *addr = (void *)(bank->ph_addr + offset);
*kaddr = (void __pmem *)addr;
*pfn = virt_to_phys(addr) >> PAGE_SHIFT;
*kaddr = (void __pmem __force *) bank->io_addr + offset;
*pfn = phys_to_pfn_t(bank->ph_addr + offset, PFN_DEV);
return bank->size - offset;
}

View file

@ -10,9 +10,6 @@ config LOCKDEP_SUPPORT
config STACKTRACE_SUPPORT
def_bool y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
config RWSEM_GENERIC_SPINLOCK
bool

View file

@ -286,7 +286,6 @@ static inline int is_module_addr(void *addr)
#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
#define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
#define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
#define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
@ -318,8 +317,6 @@ static inline int is_module_addr(void *addr)
* SW-bits: y young, d dirty, r read, w write
*/
#define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
/* Page status table bits for virtualization */
#define PGSTE_ACC_BITS 0xf000000000000000UL
#define PGSTE_FP_BIT 0x0800000000000000UL
@ -523,10 +520,6 @@ static inline int pmd_bad(pmd_t pmd)
return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
}
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
@ -1424,8 +1417,7 @@ static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
if (pmd_large(pmd)) {
pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT |
_SEGMENT_ENTRY_SOFT_DIRTY;
_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
pmd_val(pmd) |= massage_pgprot_pmd(newprot);
if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
@ -1533,12 +1525,6 @@ extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
#define __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
static inline int pmd_trans_splitting(pmd_t pmd)
{
return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
(pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
}
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t entry)
{

View file

@ -55,7 +55,7 @@ static inline int gup_huge_pmd(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
unsigned long end, int write, struct page **pages, int *nr)
{
unsigned long mask, result;
struct page *head, *page, *tail;
struct page *head, *page;
int refs;
result = write ? 0 : _SEGMENT_ENTRY_PROTECT;
@ -67,7 +67,6 @@ static inline int gup_huge_pmd(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
refs = 0;
head = pmd_page(pmd);
page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
tail = page;
do {
VM_BUG_ON(compound_head(page) != head);
pages[*nr] = page;
@ -88,16 +87,6 @@ static inline int gup_huge_pmd(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
return 0;
}
/*
* Any tail page need their mapcount reference taken before we
* return.
*/
while (refs--) {
if (PageTail(tail))
get_huge_page_tail(tail);
tail++;
}
return 1;
}
@ -116,16 +105,7 @@ static inline int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
pmd = *pmdp;
barrier();
next = pmd_addr_end(addr, end);
/*
* The pmd_trans_splitting() check below explains why
* pmdp_splitting_flush() has to serialize with
* smp_call_function() against our disabled IRQs, to stop
* this gup-fast code from running while we set the
* splitting bit in the pmd. Returning zero will take
* the slow path that will call wait_split_huge_page()
* if the pmd is still in splitting state.
*/
if (pmd_none(pmd) || pmd_trans_splitting(pmd))
if (pmd_none(pmd))
return 0;
if (unlikely(pmd_large(pmd))) {
/*

View file

@ -578,17 +578,29 @@ int gmap_fault(struct gmap *gmap, unsigned long gaddr,
{
unsigned long vmaddr;
int rc;
bool unlocked;
down_read(&gmap->mm->mmap_sem);
retry:
unlocked = false;
vmaddr = __gmap_translate(gmap, gaddr);
if (IS_ERR_VALUE(vmaddr)) {
rc = vmaddr;
goto out_up;
}
if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) {
if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
&unlocked)) {
rc = -EFAULT;
goto out_up;
}
/*
* In the case that fixup_user_fault unlocked the mmap_sem during
* faultin redo __gmap_translate to not race with a map/unmap_segment.
*/
if (unlocked)
goto retry;
rc = __gmap_link(gmap, gaddr, vmaddr);
out_up:
up_read(&gmap->mm->mmap_sem);
@ -714,12 +726,14 @@ int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
spinlock_t *ptl;
pte_t *ptep, entry;
pgste_t pgste;
bool unlocked;
int rc = 0;
if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
return -EINVAL;
down_read(&gmap->mm->mmap_sem);
while (len) {
unlocked = false;
/* Convert gmap address and connect the page tables */
addr = __gmap_translate(gmap, gaddr);
if (IS_ERR_VALUE(addr)) {
@ -727,10 +741,14 @@ int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
break;
}
/* Get the page mapped */
if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE,
&unlocked)) {
rc = -EFAULT;
break;
}
/* While trying to map mmap_sem got unlocked. Let us retry */
if (unlocked)
continue;
rc = __gmap_link(gmap, gaddr, addr);
if (rc)
break;
@ -791,9 +809,11 @@ int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
spinlock_t *ptl;
pgste_t old, new;
pte_t *ptep;
bool unlocked;
down_read(&mm->mmap_sem);
retry:
unlocked = false;
ptep = get_locked_pte(mm, addr, &ptl);
if (unlikely(!ptep)) {
up_read(&mm->mmap_sem);
@ -802,7 +822,12 @@ retry:
if (!(pte_val(*ptep) & _PAGE_INVALID) &&
(pte_val(*ptep) & _PAGE_PROTECT)) {
pte_unmap_unlock(ptep, ptl);
if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) {
/*
* We do not really care about unlocked. We will retry either
* way. But this allows fixup_user_fault to enable userfaultfd.
*/
if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE,
&unlocked)) {
up_read(&mm->mmap_sem);
return -EFAULT;
}
@ -1305,22 +1330,6 @@ int pmdp_set_access_flags(struct vm_area_struct *vma,
return 1;
}
static void pmdp_splitting_flush_sync(void *arg)
{
/* Simply deliver the interrupt */
}
void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp)
{
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
(unsigned long *) pmdp)) {
/* need to serialize against gup-fast (IRQ disabled) */
smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
}
}
void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable)
{

View file

@ -130,9 +130,6 @@ config STACKTRACE_SUPPORT
config LOCKDEP_SUPPORT
def_bool y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
config ARCH_HAS_ILOG2_U32
def_bool n

View file

@ -241,7 +241,7 @@ static void sh4_flush_cache_page(void *args)
*/
map_coherent = (current_cpu_data.dcache.n_aliases &&
test_bit(PG_dcache_clean, &page->flags) &&
page_mapped(page));
page_mapcount(page));
if (map_coherent)
vaddr = kmap_coherent(page, address);
else

View file

@ -59,7 +59,7 @@ void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long vaddr, void *dst, const void *src,
unsigned long len)
{
if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
test_bit(PG_dcache_clean, &page->flags)) {
void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
memcpy(vto, src, len);
@ -78,7 +78,7 @@ void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long vaddr, void *dst, const void *src,
unsigned long len)
{
if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
test_bit(PG_dcache_clean, &page->flags)) {
void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
memcpy(dst, vfrom, len);
@ -97,7 +97,7 @@ void copy_user_highpage(struct page *to, struct page *from,
vto = kmap_atomic(to);
if (boot_cpu_data.dcache.n_aliases && page_mapped(from) &&
if (boot_cpu_data.dcache.n_aliases && page_mapcount(from) &&
test_bit(PG_dcache_clean, &from->flags)) {
vfrom = kmap_coherent(from, vaddr);
copy_page(vto, vfrom);
@ -153,7 +153,7 @@ void __flush_anon_page(struct page *page, unsigned long vmaddr)
unsigned long addr = (unsigned long) page_address(page);
if (pages_do_alias(addr, vmaddr)) {
if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
test_bit(PG_dcache_clean, &page->flags)) {
void *kaddr;

View file

@ -101,10 +101,6 @@ config LOCKDEP_SUPPORT
bool
default y if SPARC64
config HAVE_LATENCYTOP_SUPPORT
bool
default y if SPARC64
config ARCH_HIBERNATION_POSSIBLE
def_bool y if SPARC64

View file

@ -681,13 +681,6 @@ static inline unsigned long pmd_trans_huge(pmd_t pmd)
return pte_val(pte) & _PAGE_PMD_HUGE;
}
static inline unsigned long pmd_trans_splitting(pmd_t pmd)
{
pte_t pte = __pte(pmd_val(pmd));
return pmd_trans_huge(pmd) && pte_special(pte);
}
#define has_transparent_hugepage() 1
static inline pmd_t pmd_mkold(pmd_t pmd)
@ -717,6 +710,15 @@ static inline pmd_t pmd_mkdirty(pmd_t pmd)
return __pmd(pte_val(pte));
}
static inline pmd_t pmd_mkclean(pmd_t pmd)
{
pte_t pte = __pte(pmd_val(pmd));
pte = pte_mkclean(pte);
return __pmd(pte_val(pte));
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
pte_t pte = __pte(pmd_val(pmd));
@ -735,15 +737,6 @@ static inline pmd_t pmd_mkwrite(pmd_t pmd)
return __pmd(pte_val(pte));
}
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
pte_t pte = __pte(pmd_val(pmd));
pte = pte_mkspecial(pte);
return __pmd(pte_val(pte));
}
static inline pgprot_t pmd_pgprot(pmd_t entry)
{
unsigned long val = pmd_val(entry);

View file

@ -113,9 +113,6 @@ static unsigned int get_user_insn(unsigned long tpc)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (pmd_trans_huge(*pmdp)) {
if (pmd_trans_splitting(*pmdp))
goto out_irq_enable;
pa = pmd_pfn(*pmdp) << PAGE_SHIFT;
pa += tpc & ~HPAGE_MASK;

View file

@ -56,8 +56,6 @@ static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
put_page(head);
return 0;
}
if (head != page)
get_huge_page_tail(page);
pages[*nr] = page;
(*nr)++;
@ -70,7 +68,7 @@ static int gup_huge_pmd(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
unsigned long end, int write, struct page **pages,
int *nr)
{
struct page *head, *page, *tail;
struct page *head, *page;
int refs;
if (!(pmd_val(pmd) & _PAGE_VALID))
@ -82,7 +80,6 @@ static int gup_huge_pmd(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
refs = 0;
head = pmd_page(pmd);
page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
tail = page;
do {
VM_BUG_ON(compound_head(page) != head);
pages[*nr] = page;
@ -103,15 +100,6 @@ static int gup_huge_pmd(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
return 0;
}
/* Any tail page need their mapcount reference taken before we
* return.
*/
while (refs--) {
if (PageTail(tail))
get_huge_page_tail(tail);
tail++;
}
return 1;
}
@ -126,7 +114,7 @@ static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
pmd_t pmd = *pmdp;
next = pmd_addr_end(addr, end);
if (pmd_none(pmd) || pmd_trans_splitting(pmd))
if (pmd_none(pmd))
return 0;
if (unlikely(pmd_large(pmd))) {
if (!gup_huge_pmd(pmdp, pmd, addr, next,

View file

@ -489,16 +489,6 @@ static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define has_transparent_hugepage() 1
#define pmd_trans_huge pmd_huge_page
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
return pte_pmd(hv_pte_set_client2(pmd_pte(pmd)));
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
return hv_pte_get_client2(pmd_pte(pmd));
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*

View file

@ -18,6 +18,7 @@
struct page;
#include <linux/pfn.h>
#include <linux/types.h>
#include <asm/vm-flags.h>
@ -52,7 +53,6 @@ typedef struct { unsigned long pgd; } pgd_t;
#define pmd_val(x) ((x).pmd)
#define __pmd(x) ((pmd_t) { (x) } )
typedef unsigned long long pfn_t;
typedef unsigned long long phys_t;
#else
@ -76,7 +76,6 @@ typedef struct { unsigned long pmd; } pmd_t;
#define pte_is_zero(p) (!((p).pte & ~_PAGE_NEWPAGE))
#define pte_set_val(p, phys, prot) (p).pte = (phys | pgprot_val(prot))
typedef unsigned long pfn_t;
typedef unsigned long phys_t;
#endif
@ -109,8 +108,8 @@ extern unsigned long uml_physmem;
#define __pa(virt) to_phys((void *) (unsigned long) (virt))
#define __va(phys) to_virt((unsigned long) (phys))
#define phys_to_pfn(p) ((pfn_t) ((p) >> PAGE_SHIFT))
#define pfn_to_phys(pfn) ((phys_t) ((pfn) << PAGE_SHIFT))
#define phys_to_pfn(p) ((p) >> PAGE_SHIFT)
#define pfn_to_phys(pfn) PFN_PHYS(pfn)
#define pfn_valid(pfn) ((pfn) < max_mapnr)
#define virt_addr_valid(v) pfn_valid(phys_to_pfn(__pa(v)))

View file

@ -98,7 +98,7 @@ static inline unsigned long pte_pfn(pte_t pte)
return phys_to_pfn(pte_val(pte));
}
static inline pte_t pfn_pte(pfn_t page_nr, pgprot_t pgprot)
static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
{
pte_t pte;
phys_t phys = pfn_to_phys(page_nr);
@ -107,7 +107,7 @@ static inline pte_t pfn_pte(pfn_t page_nr, pgprot_t pgprot)
return pte;
}
static inline pmd_t pfn_pmd(pfn_t page_nr, pgprot_t pgprot)
static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
{
return __pmd((page_nr << PAGE_SHIFT) | pgprot_val(pgprot));
}

View file

@ -271,7 +271,7 @@ static inline int pte_same(pte_t pte_a, pte_t pte_b)
#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
#define __virt_to_page(virt) phys_to_page(__pa(virt))
#define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
#define mk_pte(page, pgprot) \

View file

@ -34,9 +34,6 @@ config NO_IOPORT_MAP
config STACKTRACE_SUPPORT
def_bool y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
config LOCKDEP_SUPPORT
def_bool y

View file

@ -180,9 +180,6 @@ config LOCKDEP_SUPPORT
config STACKTRACE_SUPPORT
def_bool y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
config MMU
def_bool y

View file

@ -162,20 +162,22 @@ static inline int pmd_large(pmd_t pte)
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_splitting(pmd_t pmd)
{
return pmd_val(pmd) & _PAGE_SPLITTING;
}
static inline int pmd_trans_huge(pmd_t pmd)
{
return pmd_val(pmd) & _PAGE_PSE;
return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
}
static inline int has_transparent_hugepage(void)
{
return cpu_has_pse;
}
#ifdef __HAVE_ARCH_PTE_DEVMAP
static inline int pmd_devmap(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_DEVMAP);
}
#endif
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
@ -252,6 +254,11 @@ static inline pte_t pte_mkspecial(pte_t pte)
return pte_set_flags(pte, _PAGE_SPECIAL);
}
static inline pte_t pte_mkdevmap(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
}
static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
{
pmdval_t v = native_pmd_val(pmd);
@ -271,6 +278,11 @@ static inline pmd_t pmd_mkold(pmd_t pmd)
return pmd_clear_flags(pmd, _PAGE_ACCESSED);
}
static inline pmd_t pmd_mkclean(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_DIRTY);
}
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_RW);
@ -281,6 +293,11 @@ static inline pmd_t pmd_mkdirty(pmd_t pmd)
return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
}
static inline pmd_t pmd_mkdevmap(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_DEVMAP);
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_PSE);
@ -462,6 +479,13 @@ static inline int pte_present(pte_t a)
return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
}
#ifdef __HAVE_ARCH_PTE_DEVMAP
static inline int pte_devmap(pte_t a)
{
return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
}
#endif
#define pte_accessible pte_accessible
static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
{
@ -808,10 +832,6 @@ extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp);
#define __HAVE_ARCH_PMD_WRITE
static inline int pmd_write(pmd_t pmd)
{

View file

@ -22,10 +22,11 @@
#define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */
#define _PAGE_BIT_SPECIAL _PAGE_BIT_SOFTW1
#define _PAGE_BIT_CPA_TEST _PAGE_BIT_SOFTW1
#define _PAGE_BIT_SPLITTING _PAGE_BIT_SOFTW2 /* only valid on a PSE pmd */
#define _PAGE_BIT_HIDDEN _PAGE_BIT_SOFTW3 /* hidden by kmemcheck */
#define _PAGE_BIT_SOFT_DIRTY _PAGE_BIT_SOFTW3 /* software dirty tracking */
#define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */
#define _PAGE_BIT_SOFTW4 58 /* available for programmer */
#define _PAGE_BIT_DEVMAP _PAGE_BIT_SOFTW4
#define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */
/* If _PAGE_BIT_PRESENT is clear, we use these: */
/* - if the user mapped it with PROT_NONE; pte_present gives true */
@ -46,7 +47,6 @@
#define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE)
#define _PAGE_SPECIAL (_AT(pteval_t, 1) << _PAGE_BIT_SPECIAL)
#define _PAGE_CPA_TEST (_AT(pteval_t, 1) << _PAGE_BIT_CPA_TEST)
#define _PAGE_SPLITTING (_AT(pteval_t, 1) << _PAGE_BIT_SPLITTING)
#define __HAVE_ARCH_PTE_SPECIAL
#ifdef CONFIG_KMEMCHECK
@ -85,8 +85,11 @@
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
#define _PAGE_NX (_AT(pteval_t, 1) << _PAGE_BIT_NX)
#define _PAGE_DEVMAP (_AT(u64, 1) << _PAGE_BIT_DEVMAP)
#define __HAVE_ARCH_PTE_DEVMAP
#else
#define _PAGE_NX (_AT(pteval_t, 0))
#define _PAGE_DEVMAP (_AT(pteval_t, 0))
#endif
#define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE)

View file

@ -132,12 +132,7 @@ static inline void arch_clear_pmem(void __pmem *addr, size_t size)
{
void *vaddr = (void __force *)addr;
/* TODO: implement the zeroing via non-temporal writes */
if (size == PAGE_SIZE && ((unsigned long)vaddr & ~PAGE_MASK) == 0)
clear_page(vaddr);
else
memset(vaddr, 0, size);
memset(vaddr, 0, size);
__arch_wb_cache_pmem(vaddr, size);
}

View file

@ -175,7 +175,11 @@ static void mark_screen_rdonly(struct mm_struct *mm)
if (pud_none_or_clear_bad(pud))
goto out;
pmd = pmd_offset(pud, 0xA0000);
split_huge_page_pmd_mm(mm, 0xA0000, pmd);
if (pmd_trans_huge(*pmd)) {
struct vm_area_struct *vma = find_vma(mm, 0xA0000);
split_huge_pmd(vma, pmd, 0xA0000);
}
if (pmd_none_or_clear_bad(pmd))
goto out;
pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);

View file

@ -43,11 +43,11 @@ static int kvm_iommu_unmap_memslots(struct kvm *kvm);
static void kvm_iommu_put_pages(struct kvm *kvm,
gfn_t base_gfn, unsigned long npages);
static pfn_t kvm_pin_pages(struct kvm_memory_slot *slot, gfn_t gfn,
static kvm_pfn_t kvm_pin_pages(struct kvm_memory_slot *slot, gfn_t gfn,
unsigned long npages)
{
gfn_t end_gfn;
pfn_t pfn;
kvm_pfn_t pfn;
pfn = gfn_to_pfn_memslot(slot, gfn);
end_gfn = gfn + npages;
@ -62,7 +62,8 @@ static pfn_t kvm_pin_pages(struct kvm_memory_slot *slot, gfn_t gfn,
return pfn;
}
static void kvm_unpin_pages(struct kvm *kvm, pfn_t pfn, unsigned long npages)
static void kvm_unpin_pages(struct kvm *kvm, kvm_pfn_t pfn,
unsigned long npages)
{
unsigned long i;
@ -73,7 +74,7 @@ static void kvm_unpin_pages(struct kvm *kvm, pfn_t pfn, unsigned long npages)
int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot)
{
gfn_t gfn, end_gfn;
pfn_t pfn;
kvm_pfn_t pfn;
int r = 0;
struct iommu_domain *domain = kvm->arch.iommu_domain;
int flags;
@ -275,7 +276,7 @@ static void kvm_iommu_put_pages(struct kvm *kvm,
{
struct iommu_domain *domain;
gfn_t end_gfn, gfn;
pfn_t pfn;
kvm_pfn_t pfn;
u64 phys;
domain = kvm->arch.iommu_domain;

View file

@ -259,7 +259,7 @@ static unsigned get_mmio_spte_access(u64 spte)
}
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
pfn_t pfn, unsigned access)
kvm_pfn_t pfn, unsigned access)
{
if (unlikely(is_noslot_pfn(pfn))) {
mark_mmio_spte(vcpu, sptep, gfn, access);
@ -320,7 +320,7 @@ static int is_last_spte(u64 pte, int level)
return 0;
}
static pfn_t spte_to_pfn(u64 pte)
static kvm_pfn_t spte_to_pfn(u64 pte)
{
return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
}
@ -582,7 +582,7 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte)
*/
static int mmu_spte_clear_track_bits(u64 *sptep)
{
pfn_t pfn;
kvm_pfn_t pfn;
u64 old_spte = *sptep;
if (!spte_has_volatile_bits(old_spte))
@ -1372,7 +1372,7 @@ static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
int need_flush = 0;
u64 new_spte;
pte_t *ptep = (pte_t *)data;
pfn_t new_pfn;
kvm_pfn_t new_pfn;
WARN_ON(pte_huge(*ptep));
new_pfn = pte_pfn(*ptep);
@ -2450,7 +2450,7 @@ static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
return 0;
}
static bool kvm_is_mmio_pfn(pfn_t pfn)
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
{
if (pfn_valid(pfn))
return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
@ -2460,7 +2460,7 @@ static bool kvm_is_mmio_pfn(pfn_t pfn)
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
unsigned pte_access, int level,
gfn_t gfn, pfn_t pfn, bool speculative,
gfn_t gfn, kvm_pfn_t pfn, bool speculative,
bool can_unsync, bool host_writable)
{
u64 spte;
@ -2539,7 +2539,7 @@ done:
}
static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
int write_fault, int level, gfn_t gfn, pfn_t pfn,
int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
bool speculative, bool host_writable)
{
int was_rmapped = 0;
@ -2602,7 +2602,7 @@ static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
return emulate;
}
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
bool no_dirty_log)
{
struct kvm_memory_slot *slot;
@ -2684,7 +2684,7 @@ static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
}
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
int level, gfn_t gfn, pfn_t pfn, bool prefault)
int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
{
struct kvm_shadow_walk_iterator iterator;
struct kvm_mmu_page *sp;
@ -2732,7 +2732,7 @@ static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *
send_sig_info(SIGBUS, &info, tsk);
}
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
{
/*
* Do not cache the mmio info caused by writing the readonly gfn
@ -2752,9 +2752,10 @@ static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
}
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
gfn_t *gfnp, pfn_t *pfnp, int *levelp)
gfn_t *gfnp, kvm_pfn_t *pfnp,
int *levelp)
{
pfn_t pfn = *pfnp;
kvm_pfn_t pfn = *pfnp;
gfn_t gfn = *gfnp;
int level = *levelp;
@ -2793,7 +2794,7 @@ static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
}
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
pfn_t pfn, unsigned access, int *ret_val)
kvm_pfn_t pfn, unsigned access, int *ret_val)
{
bool ret = true;
@ -2947,7 +2948,7 @@ exit:
}
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
gva_t gva, pfn_t *pfn, bool write, bool *writable);
gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
@ -2956,7 +2957,7 @@ static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
int r;
int level;
bool force_pt_level = false;
pfn_t pfn;
kvm_pfn_t pfn;
unsigned long mmu_seq;
bool map_writable, write = error_code & PFERR_WRITE_MASK;
@ -3410,7 +3411,7 @@ static bool can_do_async_pf(struct kvm_vcpu *vcpu)
}
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
gva_t gva, pfn_t *pfn, bool write, bool *writable)
gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
{
struct kvm_memory_slot *slot;
bool async;
@ -3448,7 +3449,7 @@ check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
bool prefault)
{
pfn_t pfn;
kvm_pfn_t pfn;
int r;
int level;
bool force_pt_level;
@ -4601,7 +4602,7 @@ static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
u64 *sptep;
struct rmap_iterator iter;
int need_tlb_flush = 0;
pfn_t pfn;
kvm_pfn_t pfn;
struct kvm_mmu_page *sp;
restart:

View file

@ -97,7 +97,7 @@ static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
{
struct kvm_mmu_page *sp;
gfn_t gfn;
pfn_t pfn;
kvm_pfn_t pfn;
hpa_t hpa;
sp = page_header(__pa(sptep));

View file

@ -456,7 +456,7 @@ FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
{
unsigned pte_access;
gfn_t gfn;
pfn_t pfn;
kvm_pfn_t pfn;
if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
return false;
@ -551,7 +551,7 @@ static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
struct guest_walker *gw,
int write_fault, int hlevel,
pfn_t pfn, bool map_writable, bool prefault)
kvm_pfn_t pfn, bool map_writable, bool prefault)
{
struct kvm_mmu_page *sp = NULL;
struct kvm_shadow_walk_iterator it;
@ -694,7 +694,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
int user_fault = error_code & PFERR_USER_MASK;
struct guest_walker walker;
int r;
pfn_t pfn;
kvm_pfn_t pfn;
int level = PT_PAGE_TABLE_LEVEL;
bool force_pt_level = false;
unsigned long mmu_seq;

View file

@ -4251,7 +4251,7 @@ out:
static int init_rmode_identity_map(struct kvm *kvm)
{
int i, idx, r = 0;
pfn_t identity_map_pfn;
kvm_pfn_t identity_map_pfn;
u32 tmp;
if (!enable_ept)

View file

@ -5148,7 +5148,7 @@ static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
int emulation_type)
{
gpa_t gpa = cr2;
pfn_t pfn;
kvm_pfn_t pfn;
if (emulation_type & EMULTYPE_NO_REEXECUTE)
return false;

View file

@ -9,6 +9,7 @@
#include <linux/vmstat.h>
#include <linux/highmem.h>
#include <linux/swap.h>
#include <linux/memremap.h>
#include <asm/pgtable.h>
@ -63,6 +64,16 @@ retry:
#endif
}
static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
{
while ((*nr) - nr_start) {
struct page *page = pages[--(*nr)];
ClearPageReferenced(page);
put_page(page);
}
}
/*
* The performance critical leaf functions are made noinline otherwise gcc
* inlines everything into a single function which results in too much
@ -71,7 +82,9 @@ retry:
static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
unsigned long end, int write, struct page **pages, int *nr)
{
struct dev_pagemap *pgmap = NULL;
unsigned long mask;
int nr_start = *nr;
pte_t *ptep;
mask = _PAGE_PRESENT|_PAGE_USER;
@ -89,13 +102,21 @@ static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
return 0;
}
if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) {
page = pte_page(pte);
if (pte_devmap(pte)) {
pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
if (unlikely(!pgmap)) {
undo_dev_pagemap(nr, nr_start, pages);
pte_unmap(ptep);
return 0;
}
} else if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) {
pte_unmap(ptep);
return 0;
}
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
page = pte_page(pte);
get_page(page);
put_dev_pagemap(pgmap);
SetPageReferenced(page);
pages[*nr] = page;
(*nr)++;
@ -114,6 +135,32 @@ static inline void get_head_page_multiple(struct page *page, int nr)
SetPageReferenced(page);
}
static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
unsigned long end, struct page **pages, int *nr)
{
int nr_start = *nr;
unsigned long pfn = pmd_pfn(pmd);
struct dev_pagemap *pgmap = NULL;
pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
do {
struct page *page = pfn_to_page(pfn);
pgmap = get_dev_pagemap(pfn, pgmap);
if (unlikely(!pgmap)) {
undo_dev_pagemap(nr, nr_start, pages);
return 0;
}
SetPageReferenced(page);
pages[*nr] = page;
get_page(page);
put_dev_pagemap(pgmap);
(*nr)++;
pfn++;
} while (addr += PAGE_SIZE, addr != end);
return 1;
}
static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
unsigned long end, int write, struct page **pages, int *nr)
{
@ -126,9 +173,13 @@ static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
mask |= _PAGE_RW;
if ((pmd_flags(pmd) & mask) != mask)
return 0;
VM_BUG_ON(!pfn_valid(pmd_pfn(pmd)));
if (pmd_devmap(pmd))
return __gup_device_huge_pmd(pmd, addr, end, pages, nr);
/* hugepages are never "special" */
VM_BUG_ON(pmd_flags(pmd) & _PAGE_SPECIAL);
VM_BUG_ON(!pfn_valid(pmd_pfn(pmd)));
refs = 0;
head = pmd_page(pmd);
@ -136,8 +187,6 @@ static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
do {
VM_BUG_ON_PAGE(compound_head(page) != head, page);
pages[*nr] = page;
if (PageTail(page))
get_huge_page_tail(page);
(*nr)++;
page++;
refs++;
@ -158,18 +207,7 @@ static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
pmd_t pmd = *pmdp;
next = pmd_addr_end(addr, end);
/*
* The pmd_trans_splitting() check below explains why
* pmdp_splitting_flush has to flush the tlb, to stop
* this gup-fast code from running while we set the
* splitting bit in the pmd. Returning zero will take
* the slow path that will call wait_split_huge_page()
* if the pmd is still in splitting state. gup-fast
* can't because it has irq disabled and
* wait_split_huge_page() would never return as the
* tlb flush IPI wouldn't run.
*/
if (pmd_none(pmd) || pmd_trans_splitting(pmd))
if (pmd_none(pmd))
return 0;
if (unlikely(pmd_large(pmd) || !pmd_present(pmd))) {
/*
@ -212,8 +250,6 @@ static noinline int gup_huge_pud(pud_t pud, unsigned long addr,
do {
VM_BUG_ON_PAGE(compound_head(page) != head, page);
pages[*nr] = page;
if (PageTail(page))
get_huge_page_tail(page);
(*nr)++;
page++;
refs++;

View file

@ -30,6 +30,7 @@
#include <linux/module.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/memremap.h>
#include <linux/nmi.h>
#include <linux/gfp.h>
#include <linux/kcore.h>
@ -714,6 +715,12 @@ static void __meminit free_pagetable(struct page *page, int order)
{
unsigned long magic;
unsigned int nr_pages = 1 << order;
struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
if (altmap) {
vmem_altmap_free(altmap, nr_pages);
return;
}
/* bootmem page has reserved flag */
if (PageReserved(page)) {
@ -1017,13 +1024,19 @@ int __ref arch_remove_memory(u64 start, u64 size)
{
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
struct page *page = pfn_to_page(start_pfn);
struct vmem_altmap *altmap;
struct zone *zone;
int ret;
zone = page_zone(pfn_to_page(start_pfn));
kernel_physical_mapping_remove(start, start + size);
/* With altmap the first mapped page is offset from @start */
altmap = to_vmem_altmap((unsigned long) page);
if (altmap)
page += vmem_altmap_offset(altmap);
zone = page_zone(page);
ret = __remove_pages(zone, start_pfn, nr_pages);
WARN_ON_ONCE(ret);
kernel_physical_mapping_remove(start, start + size);
return ret;
}
@ -1235,7 +1248,7 @@ static void __meminitdata *p_start, *p_end;
static int __meminitdata node_start;
static int __meminit vmemmap_populate_hugepages(unsigned long start,
unsigned long end, int node)
unsigned long end, int node, struct vmem_altmap *altmap)
{
unsigned long addr;
unsigned long next;
@ -1258,7 +1271,7 @@ static int __meminit vmemmap_populate_hugepages(unsigned long start,
if (pmd_none(*pmd)) {
void *p;
p = vmemmap_alloc_block_buf(PMD_SIZE, node);
p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
if (p) {
pte_t entry;
@ -1279,7 +1292,8 @@ static int __meminit vmemmap_populate_hugepages(unsigned long start,
addr_end = addr + PMD_SIZE;
p_end = p + PMD_SIZE;
continue;
}
} else if (altmap)
return -ENOMEM; /* no fallback */
} else if (pmd_large(*pmd)) {
vmemmap_verify((pte_t *)pmd, node, addr, next);
continue;
@ -1293,11 +1307,16 @@ static int __meminit vmemmap_populate_hugepages(unsigned long start,
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
struct vmem_altmap *altmap = to_vmem_altmap(start);
int err;
if (cpu_has_pse)
err = vmemmap_populate_hugepages(start, end, node);
else
err = vmemmap_populate_hugepages(start, end, node, altmap);
else if (altmap) {
pr_err_once("%s: no cpu support for altmap allocations\n",
__func__);
err = -ENOMEM;
} else
err = vmemmap_populate_basepages(start, end, node);
if (!err)
sync_global_pgds(start, end - 1, 0);

View file

@ -12,6 +12,7 @@
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pfn_t.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/fs.h>
@ -949,7 +950,7 @@ int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
}
int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn)
pfn_t pfn)
{
enum page_cache_mode pcm;
@ -957,7 +958,7 @@ int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
return 0;
/* Set prot based on lookup */
pcm = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT);
pcm = lookup_memtype(pfn_t_to_phys(pfn));
*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
cachemode2protval(pcm));

View file

@ -505,19 +505,6 @@ int pmdp_clear_flush_young(struct vm_area_struct *vma,
return young;
}
void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
int set;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
(unsigned long *)pmdp);
if (set) {
/* need tlb flush only to serialize against gup-fast */
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
}
}
#endif
/**

View file

@ -86,8 +86,10 @@
#define MADV_SEQUENTIAL 2 /* expect sequential page references */
#define MADV_WILLNEED 3 /* will need these pages */
#define MADV_DONTNEED 4 /* don't need these pages */
#define MADV_FREE 5 /* free pages only if memory pressure */
/* common parameters: try to keep these consistent across architectures */
#define MADV_FREE 8 /* free pages only if memory pressure */
#define MADV_REMOVE 9 /* remove these pages & resources */
#define MADV_DONTFORK 10 /* don't inherit across fork */
#define MADV_DOFORK 11 /* do inherit across fork */

View file

@ -245,7 +245,7 @@ static int check_tlb_entry(unsigned w, unsigned e, bool dtlb)
page_mapcount(p));
if (!page_count(p))
rc |= TLB_INSANE;
else if (page_mapped(p))
else if (page_mapcount(p))
rc |= TLB_SUSPICIOUS;
} else {
rc |= TLB_INSANE;

View file

@ -647,6 +647,13 @@ static int add_memory_block(int base_section_nr)
return 0;
}
static bool is_zone_device_section(struct mem_section *ms)
{
struct page *page;
page = sparse_decode_mem_map(ms->section_mem_map, __section_nr(ms));
return is_zone_device_page(page);
}
/*
* need an interface for the VM to add new memory regions,
@ -657,6 +664,9 @@ int register_new_memory(int nid, struct mem_section *section)
int ret = 0;
struct memory_block *mem;
if (is_zone_device_section(section))
return 0;
mutex_lock(&mem_sysfs_mutex);
mem = find_memory_block(section);
@ -693,6 +703,9 @@ static int remove_memory_section(unsigned long node_id,
{
struct memory_block *mem;
if (is_zone_device_section(section))
return 0;
mutex_lock(&mem_sysfs_mutex);
mem = find_memory_block(section);
unregister_mem_sect_under_nodes(mem, __section_nr(section));

View file

@ -19,6 +19,9 @@
#include <linux/radix-tree.h>
#include <linux/fs.h>
#include <linux/slab.h>
#ifdef CONFIG_BLK_DEV_RAM_DAX
#include <linux/pfn_t.h>
#endif
#include <asm/uaccess.h>
@ -378,7 +381,7 @@ static int brd_rw_page(struct block_device *bdev, sector_t sector,
#ifdef CONFIG_BLK_DEV_RAM_DAX
static long brd_direct_access(struct block_device *bdev, sector_t sector,
void __pmem **kaddr, unsigned long *pfn)
void __pmem **kaddr, pfn_t *pfn)
{
struct brd_device *brd = bdev->bd_disk->private_data;
struct page *page;
@ -389,7 +392,7 @@ static long brd_direct_access(struct block_device *bdev, sector_t sector,
if (!page)
return -ENOSPC;
*kaddr = (void __pmem *)page_address(page);
*pfn = page_to_pfn(page);
*pfn = page_to_pfn_t(page);
return PAGE_SIZE;
}

View file

@ -1325,7 +1325,6 @@ static int zram_remove(struct zram *zram)
pr_info("Removed device: %s\n", zram->disk->disk_name);
idr_remove(&zram_index_idr, zram->disk->first_minor);
blk_cleanup_queue(zram->disk->queue);
del_gendisk(zram->disk);
put_disk(zram->disk);
@ -1367,10 +1366,12 @@ static ssize_t hot_remove_store(struct class *class,
mutex_lock(&zram_index_mutex);
zram = idr_find(&zram_index_idr, dev_id);
if (zram)
if (zram) {
ret = zram_remove(zram);
else
idr_remove(&zram_index_idr, dev_id);
} else {
ret = -ENODEV;
}
mutex_unlock(&zram_index_mutex);
return ret ? ret : count;

View file

@ -14,6 +14,7 @@
#include <linux/shmem_fs.h>
#include <linux/dma-buf.h>
#include <linux/pfn_t.h>
#include <drm/exynos_drm.h>
#include "exynos_drm_drv.h"
@ -490,7 +491,8 @@ int exynos_drm_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
}
pfn = page_to_pfn(exynos_gem->pages[page_offset]);
ret = vm_insert_mixed(vma, (unsigned long)vmf->virtual_address, pfn);
ret = vm_insert_mixed(vma, (unsigned long)vmf->virtual_address,
__pfn_to_pfn_t(pfn, PFN_DEV));
out:
switch (ret) {

View file

@ -21,6 +21,7 @@
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/pfn_t.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/slab.h>
@ -132,7 +133,8 @@ static int psbfb_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
for (i = 0; i < page_num; i++) {
pfn = (phys_addr >> PAGE_SHIFT);
ret = vm_insert_mixed(vma, address, pfn);
ret = vm_insert_mixed(vma, address,
__pfn_to_pfn_t(pfn, PFN_DEV));
if (unlikely((ret == -EBUSY) || (ret != 0 && i > 0)))
break;
else if (unlikely(ret != 0)) {

View file

@ -18,6 +18,7 @@
#include <linux/spinlock.h>
#include <linux/shmem_fs.h>
#include <linux/dma-buf.h>
#include <linux/pfn_t.h>
#include "msm_drv.h"
#include "msm_gem.h"
@ -222,7 +223,8 @@ int msm_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address,
pfn, pfn << PAGE_SHIFT);
ret = vm_insert_mixed(vma, (unsigned long)vmf->virtual_address, pfn);
ret = vm_insert_mixed(vma, (unsigned long)vmf->virtual_address,
__pfn_to_pfn_t(pfn, PFN_DEV));
out_unlock:
mutex_unlock(&dev->struct_mutex);

View file

@ -19,6 +19,7 @@
#include <linux/shmem_fs.h>
#include <linux/spinlock.h>
#include <linux/pfn_t.h>
#include <drm/drm_vma_manager.h>
@ -385,7 +386,8 @@ static int fault_1d(struct drm_gem_object *obj,
VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address,
pfn, pfn << PAGE_SHIFT);
return vm_insert_mixed(vma, (unsigned long)vmf->virtual_address, pfn);
return vm_insert_mixed(vma, (unsigned long)vmf->virtual_address,
__pfn_to_pfn_t(pfn, PFN_DEV));
}
/* Special handling for the case of faulting in 2d tiled buffers */
@ -478,7 +480,8 @@ static int fault_2d(struct drm_gem_object *obj,
pfn, pfn << PAGE_SHIFT);
for (i = n; i > 0; i--) {
vm_insert_mixed(vma, (unsigned long)vaddr, pfn);
vm_insert_mixed(vma, (unsigned long)vaddr,
__pfn_to_pfn_t(pfn, PFN_DEV));
pfn += usergart[fmt].stride_pfn;
vaddr += PAGE_SIZE * m;
}

View file

@ -35,6 +35,7 @@
#include <ttm/ttm_placement.h>
#include <drm/drm_vma_manager.h>
#include <linux/mm.h>
#include <linux/pfn_t.h>
#include <linux/rbtree.h>
#include <linux/module.h>
#include <linux/uaccess.h>
@ -229,7 +230,8 @@ static int ttm_bo_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
}
if (vma->vm_flags & VM_MIXEDMAP)
ret = vm_insert_mixed(&cvma, address, pfn);
ret = vm_insert_mixed(&cvma, address,
__pfn_to_pfn_t(pfn, PFN_DEV));
else
ret = vm_insert_pfn(&cvma, address, pfn);

View file

@ -433,16 +433,15 @@ ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
scale_db = true;
case IIO_VAL_INT_PLUS_MICRO:
if (vals[1] < 0)
return sprintf(buf, "-%ld.%06u%s\n", abs(vals[0]),
-vals[1],
scale_db ? " dB" : "");
return sprintf(buf, "-%d.%06u%s\n", abs(vals[0]),
-vals[1], scale_db ? " dB" : "");
else
return sprintf(buf, "%d.%06u%s\n", vals[0], vals[1],
scale_db ? " dB" : "");
case IIO_VAL_INT_PLUS_NANO:
if (vals[1] < 0)
return sprintf(buf, "-%ld.%09u\n", abs(vals[0]),
-vals[1]);
return sprintf(buf, "-%d.%09u\n", abs(vals[0]),
-vals[1]);
else
return sprintf(buf, "%d.%09u\n", vals[0], vals[1]);
case IIO_VAL_FRACTIONAL:

View file

@ -901,7 +901,7 @@ static void iwlagn_gain_computation(struct iwl_priv *priv,
/* bound gain by 2 bits value max, 3rd bit is sign */
data->delta_gain_code[i] =
min(abs(delta_g),
(long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
(s32) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
if (delta_g < 0)
/*

View file

@ -83,8 +83,7 @@ static ssize_t mode_store(struct device *dev,
if (strncmp(buf, "pmem\n", n) == 0
|| strncmp(buf, "pmem", n) == 0) {
/* TODO: allocate from PMEM support */
rc = -ENOTTY;
nd_pfn->mode = PFN_MODE_PMEM;
} else if (strncmp(buf, "ram\n", n) == 0
|| strncmp(buf, "ram", n) == 0)
nd_pfn->mode = PFN_MODE_RAM;

View file

@ -21,10 +21,11 @@
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/memory_hotplug.h>
#include <linux/moduleparam.h>
#include <linux/badblocks.h>
#include <linux/memremap.h>
#include <linux/vmalloc.h>
#include <linux/pfn_t.h>
#include <linux/slab.h>
#include <linux/pmem.h>
#include <linux/nd.h>
@ -40,6 +41,7 @@ struct pmem_device {
phys_addr_t phys_addr;
/* when non-zero this device is hosting a 'pfn' instance */
phys_addr_t data_offset;
unsigned long pfn_flags;
void __pmem *virt_addr;
size_t size;
struct badblocks bb;
@ -135,13 +137,13 @@ static int pmem_rw_page(struct block_device *bdev, sector_t sector,
}
static long pmem_direct_access(struct block_device *bdev, sector_t sector,
void __pmem **kaddr, unsigned long *pfn)
void __pmem **kaddr, pfn_t *pfn)
{
struct pmem_device *pmem = bdev->bd_disk->private_data;
resource_size_t offset = sector * 512 + pmem->data_offset;
*kaddr = pmem->virt_addr + offset;
*pfn = (pmem->phys_addr + offset) >> PAGE_SHIFT;
*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
return pmem->size - offset;
}
@ -157,6 +159,7 @@ static struct pmem_device *pmem_alloc(struct device *dev,
struct resource *res, int id)
{
struct pmem_device *pmem;
struct request_queue *q;
pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
if (!pmem)
@ -174,16 +177,26 @@ static struct pmem_device *pmem_alloc(struct device *dev,
return ERR_PTR(-EBUSY);
}
if (pmem_should_map_pages(dev))
pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res);
else
q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
if (!q)
return ERR_PTR(-ENOMEM);
pmem->pfn_flags = PFN_DEV;
if (pmem_should_map_pages(dev)) {
pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
&q->q_usage_counter, NULL);
pmem->pfn_flags |= PFN_MAP;
} else
pmem->virt_addr = (void __pmem *) devm_memremap(dev,
pmem->phys_addr, pmem->size,
ARCH_MEMREMAP_PMEM);
if (IS_ERR(pmem->virt_addr))
if (IS_ERR(pmem->virt_addr)) {
blk_cleanup_queue(q);
return (void __force *) pmem->virt_addr;
}
pmem->pmem_queue = q;
return pmem;
}
@ -203,10 +216,6 @@ static int pmem_attach_disk(struct device *dev,
int nid = dev_to_node(dev);
struct gendisk *disk;
pmem->pmem_queue = blk_alloc_queue_node(GFP_KERNEL, nid);
if (!pmem->pmem_queue)
return -ENOMEM;
blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
@ -352,12 +361,17 @@ static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
struct device *dev = &nd_pfn->dev;
struct vmem_altmap *altmap;
struct nd_region *nd_region;
struct vmem_altmap *altmap;
struct nd_pfn_sb *pfn_sb;
struct pmem_device *pmem;
struct request_queue *q;
phys_addr_t offset;
int rc;
struct vmem_altmap __altmap = {
.base_pfn = __phys_to_pfn(nsio->res.start),
.reserve = __phys_to_pfn(SZ_8K),
};
if (!nd_pfn->uuid || !nd_pfn->ndns)
return -ENODEV;
@ -375,6 +389,17 @@ static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
return -EINVAL;
nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
altmap = NULL;
} else if (nd_pfn->mode == PFN_MODE_PMEM) {
nd_pfn->npfns = (resource_size(&nsio->res) - offset)
/ PAGE_SIZE;
if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
dev_info(&nd_pfn->dev,
"number of pfns truncated from %lld to %ld\n",
le64_to_cpu(nd_pfn->pfn_sb->npfns),
nd_pfn->npfns);
altmap = & __altmap;
altmap->free = __phys_to_pfn(offset - SZ_8K);
altmap->alloc = 0;
} else {
rc = -ENXIO;
goto err;
@ -382,8 +407,11 @@ static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
/* establish pfn range for lookup, and switch to direct map */
pmem = dev_get_drvdata(dev);
q = pmem->pmem_queue;
devm_memunmap(dev, (void __force *) pmem->virt_addr);
pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &nsio->res);
pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &nsio->res,
&q->q_usage_counter, altmap);
pmem->pfn_flags |= PFN_MAP;
if (IS_ERR(pmem->virt_addr)) {
rc = PTR_ERR(pmem->virt_addr);
goto err;
@ -424,19 +452,22 @@ static int nd_pmem_probe(struct device *dev)
return -ENOMEM;
nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
if (is_nd_btt(dev))
if (is_nd_btt(dev)) {
/* btt allocates its own request_queue */
blk_cleanup_queue(pmem->pmem_queue);
pmem->pmem_queue = NULL;
return nvdimm_namespace_attach_btt(ndns);
}
if (is_nd_pfn(dev))
return nvdimm_namespace_attach_pfn(ndns);
if (nd_btt_probe(ndns, pmem) == 0) {
/* we'll come back as btt-pmem */
return -ENXIO;
}
if (nd_pfn_probe(ndns, pmem) == 0) {
/* we'll come back as pfn-pmem */
if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
/*
* We'll come back as either btt-pmem, or pfn-pmem, so
* drop the queue allocation for now.
*/
blk_cleanup_queue(pmem->pmem_queue);
return -ENXIO;
}

View file

@ -17,6 +17,7 @@
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/pfn_t.h>
#include <asm/extmem.h>
#include <asm/io.h>
@ -30,7 +31,7 @@ static void dcssblk_release(struct gendisk *disk, fmode_t mode);
static blk_qc_t dcssblk_make_request(struct request_queue *q,
struct bio *bio);
static long dcssblk_direct_access(struct block_device *bdev, sector_t secnum,
void __pmem **kaddr, unsigned long *pfn);
void __pmem **kaddr, pfn_t *pfn);
static char dcssblk_segments[DCSSBLK_PARM_LEN] = "\0";
@ -883,20 +884,18 @@ fail:
static long
dcssblk_direct_access (struct block_device *bdev, sector_t secnum,
void __pmem **kaddr, unsigned long *pfn)
void __pmem **kaddr, pfn_t *pfn)
{
struct dcssblk_dev_info *dev_info;
unsigned long offset, dev_sz;
void *addr;
dev_info = bdev->bd_disk->private_data;
if (!dev_info)
return -ENODEV;
dev_sz = dev_info->end - dev_info->start;
offset = secnum * 512;
addr = (void *) (dev_info->start + offset);
*pfn = virt_to_phys(addr) >> PAGE_SHIFT;
*kaddr = (void __pmem *) addr;
*kaddr = (void __pmem *) (dev_info->start + offset);
*pfn = __pfn_to_pfn_t(PFN_DOWN(dev_info->start + offset), PFN_DEV);
return dev_sz - offset;
}

View file

@ -50,7 +50,8 @@ config FS_DAX_PMD
bool
default FS_DAX
depends on FS_DAX
depends on BROKEN
depends on ZONE_DEVICE
depends on TRANSPARENT_HUGEPAGE
endif # BLOCK

View file

@ -455,10 +455,7 @@ EXPORT_SYMBOL_GPL(bdev_write_page);
/**
* bdev_direct_access() - Get the address for directly-accessibly memory
* @bdev: The device containing the memory
* @sector: The offset within the device
* @addr: Where to put the address of the memory
* @pfn: The Page Frame Number for the memory
* @size: The number of bytes requested
* @dax: control and output parameters for ->direct_access
*
* If a block device is made up of directly addressable memory, this function
* will tell the caller the PFN and the address of the memory. The address
@ -469,10 +466,10 @@ EXPORT_SYMBOL_GPL(bdev_write_page);
* Return: negative errno if an error occurs, otherwise the number of bytes
* accessible at this address.
*/
long bdev_direct_access(struct block_device *bdev, sector_t sector,
void __pmem **addr, unsigned long *pfn, long size)
long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
{
long avail;
sector_t sector = dax->sector;
long avail, size = dax->size;
const struct block_device_operations *ops = bdev->bd_disk->fops;
/*
@ -491,9 +488,11 @@ long bdev_direct_access(struct block_device *bdev, sector_t sector,
sector += get_start_sect(bdev);
if (sector % (PAGE_SIZE / 512))
return -EINVAL;
avail = ops->direct_access(bdev, sector, addr, pfn);
avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn);
if (!avail)
return -ERANGE;
if (avail > 0 && avail & ~PAGE_MASK)
return -ENXIO;
return min(avail, size);
}
EXPORT_SYMBOL_GPL(bdev_direct_access);

Some files were not shown because too many files have changed in this diff Show more