ARM: vexpress/TC2: basic PM support
This is the MCPM backend for the Virtual Express A15x2 A7x3 CoreTile aka TC2. This provides cluster management for SMP secondary boot and CPU hotplug. Signed-off-by: Nicolas Pitre <nico@linaro.org> Acked-by: Pawel Moll <pawel.moll@arm.com> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> [PM: made it drive SCC registers directly and provide base for SPC] Signed-off-by: Pawel Moll <pawel.moll@arm.com>
This commit is contained in:
parent
ceca0e1c39
commit
11b277eabe
3 changed files with 336 additions and 0 deletions
|
@ -66,4 +66,12 @@ config ARCH_VEXPRESS_DCSCB
|
|||
This is needed to provide CPU and cluster power management
|
||||
on RTSM implementing big.LITTLE.
|
||||
|
||||
config ARCH_VEXPRESS_TC2_PM
|
||||
bool "Versatile Express TC2 power management"
|
||||
depends on MCPM
|
||||
select ARM_CCI
|
||||
help
|
||||
Support for CPU and cluster power management on Versatile Express
|
||||
with a TC2 (A15x2 A7x3) big.LITTLE core tile.
|
||||
|
||||
endmenu
|
||||
|
|
|
@ -7,5 +7,6 @@ ccflags-$(CONFIG_ARCH_MULTIPLATFORM) := -I$(srctree)/$(src)/include \
|
|||
obj-y := v2m.o
|
||||
obj-$(CONFIG_ARCH_VEXPRESS_CA9X4) += ct-ca9x4.o
|
||||
obj-$(CONFIG_ARCH_VEXPRESS_DCSCB) += dcscb.o dcscb_setup.o
|
||||
obj-$(CONFIG_ARCH_VEXPRESS_TC2_PM) += tc2_pm.o spc.o
|
||||
obj-$(CONFIG_SMP) += platsmp.o
|
||||
obj-$(CONFIG_HOTPLUG_CPU) += hotplug.o
|
||||
|
|
327
arch/arm/mach-vexpress/tc2_pm.c
Normal file
327
arch/arm/mach-vexpress/tc2_pm.c
Normal file
|
@ -0,0 +1,327 @@
|
|||
/*
|
||||
* arch/arm/mach-vexpress/tc2_pm.c - TC2 power management support
|
||||
*
|
||||
* Created by: Nicolas Pitre, October 2012
|
||||
* Copyright: (C) 2012-2013 Linaro Limited
|
||||
*
|
||||
* Some portions of this file were originally written by Achin Gupta
|
||||
* Copyright: (C) 2012 ARM Limited
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/of_address.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/errno.h>
|
||||
|
||||
#include <asm/mcpm.h>
|
||||
#include <asm/proc-fns.h>
|
||||
#include <asm/cacheflush.h>
|
||||
#include <asm/cputype.h>
|
||||
#include <asm/cp15.h>
|
||||
|
||||
#include <linux/arm-cci.h>
|
||||
|
||||
#include "spc.h"
|
||||
|
||||
/* SCC conf registers */
|
||||
#define A15_CONF 0x400
|
||||
#define A7_CONF 0x500
|
||||
#define SYS_INFO 0x700
|
||||
#define SPC_BASE 0xb00
|
||||
|
||||
/*
|
||||
* We can't use regular spinlocks. In the switcher case, it is possible
|
||||
* for an outbound CPU to call power_down() after its inbound counterpart
|
||||
* is already live using the same logical CPU number which trips lockdep
|
||||
* debugging.
|
||||
*/
|
||||
static arch_spinlock_t tc2_pm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
|
||||
|
||||
#define TC2_CLUSTERS 2
|
||||
#define TC2_MAX_CPUS_PER_CLUSTER 3
|
||||
|
||||
static unsigned int tc2_nr_cpus[TC2_CLUSTERS];
|
||||
|
||||
/* Keep per-cpu usage count to cope with unordered up/down requests */
|
||||
static int tc2_pm_use_count[TC2_MAX_CPUS_PER_CLUSTER][TC2_CLUSTERS];
|
||||
|
||||
#define tc2_cluster_unused(cluster) \
|
||||
(!tc2_pm_use_count[0][cluster] && \
|
||||
!tc2_pm_use_count[1][cluster] && \
|
||||
!tc2_pm_use_count[2][cluster])
|
||||
|
||||
static int tc2_pm_power_up(unsigned int cpu, unsigned int cluster)
|
||||
{
|
||||
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||||
if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster])
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* Since this is called with IRQs enabled, and no arch_spin_lock_irq
|
||||
* variant exists, we need to disable IRQs manually here.
|
||||
*/
|
||||
local_irq_disable();
|
||||
arch_spin_lock(&tc2_pm_lock);
|
||||
|
||||
if (tc2_cluster_unused(cluster))
|
||||
ve_spc_powerdown(cluster, false);
|
||||
|
||||
tc2_pm_use_count[cpu][cluster]++;
|
||||
if (tc2_pm_use_count[cpu][cluster] == 1) {
|
||||
ve_spc_set_resume_addr(cluster, cpu,
|
||||
virt_to_phys(mcpm_entry_point));
|
||||
ve_spc_cpu_wakeup_irq(cluster, cpu, true);
|
||||
} else if (tc2_pm_use_count[cpu][cluster] != 2) {
|
||||
/*
|
||||
* The only possible values are:
|
||||
* 0 = CPU down
|
||||
* 1 = CPU (still) up
|
||||
* 2 = CPU requested to be up before it had a chance
|
||||
* to actually make itself down.
|
||||
* Any other value is a bug.
|
||||
*/
|
||||
BUG();
|
||||
}
|
||||
|
||||
arch_spin_unlock(&tc2_pm_lock);
|
||||
local_irq_enable();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void tc2_pm_power_down(void)
|
||||
{
|
||||
unsigned int mpidr, cpu, cluster;
|
||||
bool last_man = false, skip_wfi = false;
|
||||
|
||||
mpidr = read_cpuid_mpidr();
|
||||
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||||
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||||
|
||||
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||||
BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
|
||||
|
||||
__mcpm_cpu_going_down(cpu, cluster);
|
||||
|
||||
arch_spin_lock(&tc2_pm_lock);
|
||||
BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
|
||||
tc2_pm_use_count[cpu][cluster]--;
|
||||
if (tc2_pm_use_count[cpu][cluster] == 0) {
|
||||
ve_spc_cpu_wakeup_irq(cluster, cpu, true);
|
||||
if (tc2_cluster_unused(cluster)) {
|
||||
ve_spc_powerdown(cluster, true);
|
||||
ve_spc_global_wakeup_irq(true);
|
||||
last_man = true;
|
||||
}
|
||||
} else if (tc2_pm_use_count[cpu][cluster] == 1) {
|
||||
/*
|
||||
* A power_up request went ahead of us.
|
||||
* Even if we do not want to shut this CPU down,
|
||||
* the caller expects a certain state as if the WFI
|
||||
* was aborted. So let's continue with cache cleaning.
|
||||
*/
|
||||
skip_wfi = true;
|
||||
} else
|
||||
BUG();
|
||||
|
||||
if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
|
||||
arch_spin_unlock(&tc2_pm_lock);
|
||||
|
||||
if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A15) {
|
||||
/*
|
||||
* On the Cortex-A15 we need to disable
|
||||
* L2 prefetching before flushing the cache.
|
||||
*/
|
||||
asm volatile(
|
||||
"mcr p15, 1, %0, c15, c0, 3 \n\t"
|
||||
"isb \n\t"
|
||||
"dsb "
|
||||
: : "r" (0x400) );
|
||||
}
|
||||
|
||||
/*
|
||||
* We need to disable and flush the whole (L1 and L2) cache.
|
||||
* Let's do it in the safest possible way i.e. with
|
||||
* no memory access within the following sequence
|
||||
* including the stack.
|
||||
*/
|
||||
asm volatile(
|
||||
"mrc p15, 0, r0, c1, c0, 0 @ get CR \n\t"
|
||||
"bic r0, r0, #"__stringify(CR_C)" \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 0 @ set CR \n\t"
|
||||
"isb \n\t"
|
||||
"bl v7_flush_dcache_all \n\t"
|
||||
"clrex \n\t"
|
||||
"mrc p15, 0, r0, c1, c0, 1 @ get AUXCR \n\t"
|
||||
"bic r0, r0, #(1 << 6) @ disable local coherency \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 1 @ set AUXCR \n\t"
|
||||
"isb \n\t"
|
||||
"dsb "
|
||||
: : : "r0","r1","r2","r3","r4","r5","r6","r7",
|
||||
"r9","r10","r11","lr","memory");
|
||||
|
||||
cci_disable_port_by_cpu(mpidr);
|
||||
|
||||
__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
|
||||
} else {
|
||||
/*
|
||||
* If last man then undo any setup done previously.
|
||||
*/
|
||||
if (last_man) {
|
||||
ve_spc_powerdown(cluster, false);
|
||||
ve_spc_global_wakeup_irq(false);
|
||||
}
|
||||
|
||||
arch_spin_unlock(&tc2_pm_lock);
|
||||
|
||||
/*
|
||||
* We need to disable and flush only the L1 cache.
|
||||
* Let's do it in the safest possible way as above.
|
||||
*/
|
||||
asm volatile(
|
||||
"mrc p15, 0, r0, c1, c0, 0 @ get CR \n\t"
|
||||
"bic r0, r0, #"__stringify(CR_C)" \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 0 @ set CR \n\t"
|
||||
"isb \n\t"
|
||||
"bl v7_flush_dcache_louis \n\t"
|
||||
"clrex \n\t"
|
||||
"mrc p15, 0, r0, c1, c0, 1 @ get AUXCR \n\t"
|
||||
"bic r0, r0, #(1 << 6) @ disable local coherency \n\t"
|
||||
"mcr p15, 0, r0, c1, c0, 1 @ set AUXCR \n\t"
|
||||
"isb \n\t"
|
||||
"dsb "
|
||||
: : : "r0","r1","r2","r3","r4","r5","r6","r7",
|
||||
"r9","r10","r11","lr","memory");
|
||||
}
|
||||
|
||||
__mcpm_cpu_down(cpu, cluster);
|
||||
|
||||
/* Now we are prepared for power-down, do it: */
|
||||
if (!skip_wfi)
|
||||
wfi();
|
||||
|
||||
/* Not dead at this point? Let our caller cope. */
|
||||
}
|
||||
|
||||
static void tc2_pm_powered_up(void)
|
||||
{
|
||||
unsigned int mpidr, cpu, cluster;
|
||||
unsigned long flags;
|
||||
|
||||
mpidr = read_cpuid_mpidr();
|
||||
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||||
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||||
|
||||
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||||
BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
|
||||
|
||||
local_irq_save(flags);
|
||||
arch_spin_lock(&tc2_pm_lock);
|
||||
|
||||
if (tc2_cluster_unused(cluster)) {
|
||||
ve_spc_powerdown(cluster, false);
|
||||
ve_spc_global_wakeup_irq(false);
|
||||
}
|
||||
|
||||
if (!tc2_pm_use_count[cpu][cluster])
|
||||
tc2_pm_use_count[cpu][cluster] = 1;
|
||||
|
||||
ve_spc_cpu_wakeup_irq(cluster, cpu, false);
|
||||
ve_spc_set_resume_addr(cluster, cpu, 0);
|
||||
|
||||
arch_spin_unlock(&tc2_pm_lock);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
static const struct mcpm_platform_ops tc2_pm_power_ops = {
|
||||
.power_up = tc2_pm_power_up,
|
||||
.power_down = tc2_pm_power_down,
|
||||
.powered_up = tc2_pm_powered_up,
|
||||
};
|
||||
|
||||
static bool __init tc2_pm_usage_count_init(void)
|
||||
{
|
||||
unsigned int mpidr, cpu, cluster;
|
||||
|
||||
mpidr = read_cpuid_mpidr();
|
||||
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||||
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||||
|
||||
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||||
if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster]) {
|
||||
pr_err("%s: boot CPU is out of bound!\n", __func__);
|
||||
return false;
|
||||
}
|
||||
tc2_pm_use_count[cpu][cluster] = 1;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Enable cluster-level coherency, in preparation for turning on the MMU.
|
||||
*/
|
||||
static void __naked tc2_pm_power_up_setup(unsigned int affinity_level)
|
||||
{
|
||||
asm volatile (" \n"
|
||||
" cmp r0, #1 \n"
|
||||
" bxne lr \n"
|
||||
" b cci_enable_port_for_self ");
|
||||
}
|
||||
|
||||
static int __init tc2_pm_init(void)
|
||||
{
|
||||
int ret;
|
||||
void __iomem *scc;
|
||||
u32 a15_cluster_id, a7_cluster_id, sys_info;
|
||||
struct device_node *np;
|
||||
|
||||
/*
|
||||
* The power management-related features are hidden behind
|
||||
* SCC registers. We need to extract runtime information like
|
||||
* cluster ids and number of CPUs really available in clusters.
|
||||
*/
|
||||
np = of_find_compatible_node(NULL, NULL,
|
||||
"arm,vexpress-scc,v2p-ca15_a7");
|
||||
scc = of_iomap(np, 0);
|
||||
if (!scc)
|
||||
return -ENODEV;
|
||||
|
||||
a15_cluster_id = readl_relaxed(scc + A15_CONF) & 0xf;
|
||||
a7_cluster_id = readl_relaxed(scc + A7_CONF) & 0xf;
|
||||
if (a15_cluster_id >= TC2_CLUSTERS || a7_cluster_id >= TC2_CLUSTERS)
|
||||
return -EINVAL;
|
||||
|
||||
sys_info = readl_relaxed(scc + SYS_INFO);
|
||||
tc2_nr_cpus[a15_cluster_id] = (sys_info >> 16) & 0xf;
|
||||
tc2_nr_cpus[a7_cluster_id] = (sys_info >> 20) & 0xf;
|
||||
|
||||
/*
|
||||
* A subset of the SCC registers is also used to communicate
|
||||
* with the SPC (power controller). We need to be able to
|
||||
* drive it very early in the boot process to power up
|
||||
* processors, so we initialize the SPC driver here.
|
||||
*/
|
||||
ret = ve_spc_init(scc + SPC_BASE, a15_cluster_id);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (!cci_probed())
|
||||
return -ENODEV;
|
||||
|
||||
if (!tc2_pm_usage_count_init())
|
||||
return -EINVAL;
|
||||
|
||||
ret = mcpm_platform_register(&tc2_pm_power_ops);
|
||||
if (!ret) {
|
||||
mcpm_sync_init(tc2_pm_power_up_setup);
|
||||
pr_info("TC2 power management initialized\n");
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
early_initcall(tc2_pm_init);
|
Loading…
Reference in a new issue