ktime: Kill non-scalar ktime_t implementation for 2038
The non-scalar ktime_t implementation is basically a timespec which has to be changed to support dates past 2038 on 32bit systems. This patch removes the non-scalar ktime_t implementation, forcing the scalar s64 nanosecond version on all architectures. This may have additional performance overhead on some 32bit systems when converting between ktime_t and timespec structures, however the majority of 32bit systems (arm and i386) were already using scalar ktime_t, so no performance regressions will be seen on those platforms. On affected platforms, I'm open to finding optimizations, including avoiding converting to timespecs where possible. [ tglx: We can now cleanup the ktime_t.tv64 mess, but thats a different issue and we can throw a coccinelle script at it ] Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: John Stultz <john.stultz@linaro.org>
This commit is contained in:
parent
76f4108892
commit
24e4a8c3e8
9 changed files with 7 additions and 246 deletions
|
@ -64,7 +64,6 @@ config ARM
|
|||
select HAVE_UID16
|
||||
select HAVE_VIRT_CPU_ACCOUNTING_GEN
|
||||
select IRQ_FORCED_THREADING
|
||||
select KTIME_SCALAR
|
||||
select MODULES_USE_ELF_REL
|
||||
select NO_BOOTMEM
|
||||
select OLD_SIGACTION
|
||||
|
|
|
@ -23,7 +23,6 @@ config HEXAGON
|
|||
select GENERIC_IOMAP
|
||||
select GENERIC_SMP_IDLE_THREAD
|
||||
select STACKTRACE_SUPPORT
|
||||
select KTIME_SCALAR
|
||||
select GENERIC_CLOCKEVENTS
|
||||
select GENERIC_CLOCKEVENTS_BROADCAST
|
||||
select MODULES_USE_ELF_RELA
|
||||
|
|
|
@ -137,7 +137,6 @@ config S390
|
|||
select HAVE_SYSCALL_TRACEPOINTS
|
||||
select HAVE_UID16 if 32BIT
|
||||
select HAVE_VIRT_CPU_ACCOUNTING
|
||||
select KTIME_SCALAR if 32BIT
|
||||
select MODULES_USE_ELF_RELA
|
||||
select NO_BOOTMEM
|
||||
select OLD_SIGACTION
|
||||
|
|
|
@ -111,7 +111,6 @@ config X86
|
|||
select ARCH_CLOCKSOURCE_DATA
|
||||
select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
|
||||
select GENERIC_TIME_VSYSCALL
|
||||
select KTIME_SCALAR if X86_32
|
||||
select GENERIC_STRNCPY_FROM_USER
|
||||
select GENERIC_STRNLEN_USER
|
||||
select HAVE_CONTEXT_TRACKING if X86_64
|
||||
|
|
|
@ -27,43 +27,19 @@
|
|||
/*
|
||||
* ktime_t:
|
||||
*
|
||||
* On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
|
||||
* A single 64-bit variable is used to store the hrtimers
|
||||
* internal representation of time values in scalar nanoseconds. The
|
||||
* design plays out best on 64-bit CPUs, where most conversions are
|
||||
* NOPs and most arithmetic ktime_t operations are plain arithmetic
|
||||
* operations.
|
||||
*
|
||||
* On 32-bit CPUs an optimized representation of the timespec structure
|
||||
* is used to avoid expensive conversions from and to timespecs. The
|
||||
* endian-aware order of the tv struct members is chosen to allow
|
||||
* mathematical operations on the tv64 member of the union too, which
|
||||
* for certain operations produces better code.
|
||||
*
|
||||
* For architectures with efficient support for 64/32-bit conversions the
|
||||
* plain scalar nanosecond based representation can be selected by the
|
||||
* config switch CONFIG_KTIME_SCALAR.
|
||||
*/
|
||||
union ktime {
|
||||
s64 tv64;
|
||||
#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
|
||||
struct {
|
||||
# ifdef __BIG_ENDIAN
|
||||
s32 sec, nsec;
|
||||
# else
|
||||
s32 nsec, sec;
|
||||
# endif
|
||||
} tv;
|
||||
#endif
|
||||
};
|
||||
|
||||
typedef union ktime ktime_t; /* Kill this */
|
||||
|
||||
/*
|
||||
* ktime_t definitions when using the 64-bit scalar representation:
|
||||
*/
|
||||
|
||||
#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
|
||||
|
||||
/**
|
||||
* ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
|
||||
* @secs: seconds to set
|
||||
|
@ -123,153 +99,6 @@ static inline ktime_t timeval_to_ktime(struct timeval tv)
|
|||
/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
|
||||
#define ktime_to_ns(kt) ((kt).tv64)
|
||||
|
||||
#else /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
|
||||
|
||||
/*
|
||||
* Helper macros/inlines to get the ktime_t math right in the timespec
|
||||
* representation. The macros are sometimes ugly - their actual use is
|
||||
* pretty okay-ish, given the circumstances. We do all this for
|
||||
* performance reasons. The pure scalar nsec_t based code was nice and
|
||||
* simple, but created too many 64-bit / 32-bit conversions and divisions.
|
||||
*
|
||||
* Be especially aware that negative values are represented in a way
|
||||
* that the tv.sec field is negative and the tv.nsec field is greater
|
||||
* or equal to zero but less than nanoseconds per second. This is the
|
||||
* same representation which is used by timespecs.
|
||||
*
|
||||
* tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
|
||||
*/
|
||||
|
||||
/* Set a ktime_t variable to a value in sec/nsec representation: */
|
||||
static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
|
||||
{
|
||||
return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
|
||||
}
|
||||
|
||||
/**
|
||||
* ktime_sub - subtract two ktime_t variables
|
||||
* @lhs: minuend
|
||||
* @rhs: subtrahend
|
||||
*
|
||||
* Return: The remainder of the subtraction.
|
||||
*/
|
||||
static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
|
||||
{
|
||||
ktime_t res;
|
||||
|
||||
res.tv64 = lhs.tv64 - rhs.tv64;
|
||||
if (res.tv.nsec < 0)
|
||||
res.tv.nsec += NSEC_PER_SEC;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* ktime_add - add two ktime_t variables
|
||||
* @add1: addend1
|
||||
* @add2: addend2
|
||||
*
|
||||
* Return: The sum of @add1 and @add2.
|
||||
*/
|
||||
static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
|
||||
{
|
||||
ktime_t res;
|
||||
|
||||
res.tv64 = add1.tv64 + add2.tv64;
|
||||
/*
|
||||
* performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
|
||||
* so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
|
||||
*
|
||||
* it's equivalent to:
|
||||
* tv.nsec -= NSEC_PER_SEC
|
||||
* tv.sec ++;
|
||||
*/
|
||||
if (res.tv.nsec >= NSEC_PER_SEC)
|
||||
res.tv64 += (u32)-NSEC_PER_SEC;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
|
||||
* @kt: addend
|
||||
* @nsec: the scalar nsec value to add
|
||||
*
|
||||
* Return: The sum of @kt and @nsec in ktime_t format.
|
||||
*/
|
||||
extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
|
||||
|
||||
/**
|
||||
* ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
|
||||
* @kt: minuend
|
||||
* @nsec: the scalar nsec value to subtract
|
||||
*
|
||||
* Return: The subtraction of @nsec from @kt in ktime_t format.
|
||||
*/
|
||||
extern ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec);
|
||||
|
||||
/**
|
||||
* timespec_to_ktime - convert a timespec to ktime_t format
|
||||
* @ts: the timespec variable to convert
|
||||
*
|
||||
* Return: A ktime_t variable with the converted timespec value.
|
||||
*/
|
||||
static inline ktime_t timespec_to_ktime(const struct timespec ts)
|
||||
{
|
||||
return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
|
||||
.nsec = (s32)ts.tv_nsec } };
|
||||
}
|
||||
|
||||
/**
|
||||
* timeval_to_ktime - convert a timeval to ktime_t format
|
||||
* @tv: the timeval variable to convert
|
||||
*
|
||||
* Return: A ktime_t variable with the converted timeval value.
|
||||
*/
|
||||
static inline ktime_t timeval_to_ktime(const struct timeval tv)
|
||||
{
|
||||
return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
|
||||
.nsec = (s32)(tv.tv_usec *
|
||||
NSEC_PER_USEC) } };
|
||||
}
|
||||
|
||||
/**
|
||||
* ktime_to_timespec - convert a ktime_t variable to timespec format
|
||||
* @kt: the ktime_t variable to convert
|
||||
*
|
||||
* Return: The timespec representation of the ktime value.
|
||||
*/
|
||||
static inline struct timespec ktime_to_timespec(const ktime_t kt)
|
||||
{
|
||||
return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
|
||||
.tv_nsec = (long) kt.tv.nsec };
|
||||
}
|
||||
|
||||
/**
|
||||
* ktime_to_timeval - convert a ktime_t variable to timeval format
|
||||
* @kt: the ktime_t variable to convert
|
||||
*
|
||||
* Return: The timeval representation of the ktime value.
|
||||
*/
|
||||
static inline struct timeval ktime_to_timeval(const ktime_t kt)
|
||||
{
|
||||
return (struct timeval) {
|
||||
.tv_sec = (time_t) kt.tv.sec,
|
||||
.tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
|
||||
}
|
||||
|
||||
/**
|
||||
* ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
|
||||
* @kt: the ktime_t variable to convert
|
||||
*
|
||||
* Return: The scalar nanoseconds representation of @kt.
|
||||
*/
|
||||
static inline s64 ktime_to_ns(const ktime_t kt)
|
||||
{
|
||||
return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
|
||||
}
|
||||
|
||||
#endif /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
|
||||
|
||||
/**
|
||||
* ktime_equal - Compares two ktime_t variables to see if they are equal
|
||||
|
|
|
@ -19,6 +19,10 @@ extern struct timezone sys_tz;
|
|||
|
||||
#define TIME_T_MAX (time_t)((1UL << ((sizeof(time_t) << 3) - 1)) - 1)
|
||||
|
||||
/* Located here for timespec_valid_strict */
|
||||
#define KTIME_MAX ((s64)~((u64)1 << 63))
|
||||
#define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC)
|
||||
|
||||
static inline int timespec_equal(const struct timespec *a,
|
||||
const struct timespec *b)
|
||||
{
|
||||
|
@ -84,13 +88,6 @@ static inline struct timespec timespec_sub(struct timespec lhs,
|
|||
return ts_delta;
|
||||
}
|
||||
|
||||
#define KTIME_MAX ((s64)~((u64)1 << 63))
|
||||
#if (BITS_PER_LONG == 64)
|
||||
# define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC)
|
||||
#else
|
||||
# define KTIME_SEC_MAX LONG_MAX
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Returns true if the timespec is norm, false if denorm:
|
||||
*/
|
||||
|
|
|
@ -20,10 +20,6 @@ config GENERIC_TIME_VSYSCALL
|
|||
config GENERIC_TIME_VSYSCALL_OLD
|
||||
bool
|
||||
|
||||
# ktime_t scalar 64bit nsec representation
|
||||
config KTIME_SCALAR
|
||||
bool
|
||||
|
||||
# Old style timekeeping
|
||||
config ARCH_USES_GETTIMEOFFSET
|
||||
bool
|
||||
|
|
|
@ -261,60 +261,6 @@ lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
|
|||
* too large for inlining:
|
||||
*/
|
||||
#if BITS_PER_LONG < 64
|
||||
# ifndef CONFIG_KTIME_SCALAR
|
||||
/**
|
||||
* ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
|
||||
* @kt: addend
|
||||
* @nsec: the scalar nsec value to add
|
||||
*
|
||||
* Returns the sum of kt and nsec in ktime_t format
|
||||
*/
|
||||
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
|
||||
{
|
||||
ktime_t tmp;
|
||||
|
||||
if (likely(nsec < NSEC_PER_SEC)) {
|
||||
tmp.tv64 = nsec;
|
||||
} else {
|
||||
unsigned long rem = do_div(nsec, NSEC_PER_SEC);
|
||||
|
||||
/* Make sure nsec fits into long */
|
||||
if (unlikely(nsec > KTIME_SEC_MAX))
|
||||
return (ktime_t){ .tv64 = KTIME_MAX };
|
||||
|
||||
tmp = ktime_set((long)nsec, rem);
|
||||
}
|
||||
|
||||
return ktime_add(kt, tmp);
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(ktime_add_ns);
|
||||
|
||||
/**
|
||||
* ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
|
||||
* @kt: minuend
|
||||
* @nsec: the scalar nsec value to subtract
|
||||
*
|
||||
* Returns the subtraction of @nsec from @kt in ktime_t format
|
||||
*/
|
||||
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
|
||||
{
|
||||
ktime_t tmp;
|
||||
|
||||
if (likely(nsec < NSEC_PER_SEC)) {
|
||||
tmp.tv64 = nsec;
|
||||
} else {
|
||||
unsigned long rem = do_div(nsec, NSEC_PER_SEC);
|
||||
|
||||
tmp = ktime_set((long)nsec, rem);
|
||||
}
|
||||
|
||||
return ktime_sub(kt, tmp);
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(ktime_sub_ns);
|
||||
# endif /* !CONFIG_KTIME_SCALAR */
|
||||
|
||||
/*
|
||||
* Divide a ktime value by a nanosecond value
|
||||
*/
|
||||
|
|
|
@ -344,11 +344,8 @@ ktime_t ktime_get(void)
|
|||
nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
|
||||
|
||||
} while (read_seqcount_retry(&timekeeper_seq, seq));
|
||||
/*
|
||||
* Use ktime_set/ktime_add_ns to create a proper ktime on
|
||||
* 32-bit architectures without CONFIG_KTIME_SCALAR.
|
||||
*/
|
||||
return ktime_add_ns(ktime_set(secs, 0), nsecs);
|
||||
|
||||
return ktime_set(secs, nsecs);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(ktime_get);
|
||||
|
||||
|
|
Loading…
Reference in a new issue