Merge branch 'x86-mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MPX support from Thomas Gleixner: "This enables support for x86 MPX. MPX is a new debug feature for bound checking in user space. It requires kernel support to handle the bound tables and decode the bound violating instruction in the trap handler" * 'x86-mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: asm-generic: Remove asm-generic arch_bprm_mm_init() mm: Make arch_unmap()/bprm_mm_init() available to all architectures x86: Cleanly separate use of asm-generic/mm_hooks.h x86 mpx: Change return type of get_reg_offset() fs: Do not include mpx.h in exec.c x86, mpx: Add documentation on Intel MPX x86, mpx: Cleanup unused bound tables x86, mpx: On-demand kernel allocation of bounds tables x86, mpx: Decode MPX instruction to get bound violation information x86, mpx: Add MPX-specific mmap interface x86, mpx: Introduce VM_MPX to indicate that a VMA is MPX specific x86, mpx: Add MPX to disabled features ia64: Sync struct siginfo with general version mips: Sync struct siginfo with general version mpx: Extend siginfo structure to include bound violation information x86, mpx: Rename cfg_reg_u and status_reg x86: mpx: Give bndX registers actual names x86: Remove arbitrary instruction size limit in instruction decoder
This commit is contained in:
commit
3eb5b893eb
35 changed files with 1591 additions and 47 deletions
234
Documentation/x86/intel_mpx.txt
Normal file
234
Documentation/x86/intel_mpx.txt
Normal file
|
@ -0,0 +1,234 @@
|
|||
1. Intel(R) MPX Overview
|
||||
========================
|
||||
|
||||
Intel(R) Memory Protection Extensions (Intel(R) MPX) is a new capability
|
||||
introduced into Intel Architecture. Intel MPX provides hardware features
|
||||
that can be used in conjunction with compiler changes to check memory
|
||||
references, for those references whose compile-time normal intentions are
|
||||
usurped at runtime due to buffer overflow or underflow.
|
||||
|
||||
For more information, please refer to Intel(R) Architecture Instruction
|
||||
Set Extensions Programming Reference, Chapter 9: Intel(R) Memory Protection
|
||||
Extensions.
|
||||
|
||||
Note: Currently no hardware with MPX ISA is available but it is always
|
||||
possible to use SDE (Intel(R) Software Development Emulator) instead, which
|
||||
can be downloaded from
|
||||
http://software.intel.com/en-us/articles/intel-software-development-emulator
|
||||
|
||||
|
||||
2. How to get the advantage of MPX
|
||||
==================================
|
||||
|
||||
For MPX to work, changes are required in the kernel, binutils and compiler.
|
||||
No source changes are required for applications, just a recompile.
|
||||
|
||||
There are a lot of moving parts of this to all work right. The following
|
||||
is how we expect the compiler, application and kernel to work together.
|
||||
|
||||
1) Application developer compiles with -fmpx. The compiler will add the
|
||||
instrumentation as well as some setup code called early after the app
|
||||
starts. New instruction prefixes are noops for old CPUs.
|
||||
2) That setup code allocates (virtual) space for the "bounds directory",
|
||||
points the "bndcfgu" register to the directory and notifies the kernel
|
||||
(via the new prctl(PR_MPX_ENABLE_MANAGEMENT)) that the app will be using
|
||||
MPX.
|
||||
3) The kernel detects that the CPU has MPX, allows the new prctl() to
|
||||
succeed, and notes the location of the bounds directory. Userspace is
|
||||
expected to keep the bounds directory at that locationWe note it
|
||||
instead of reading it each time because the 'xsave' operation needed
|
||||
to access the bounds directory register is an expensive operation.
|
||||
4) If the application needs to spill bounds out of the 4 registers, it
|
||||
issues a bndstx instruction. Since the bounds directory is empty at
|
||||
this point, a bounds fault (#BR) is raised, the kernel allocates a
|
||||
bounds table (in the user address space) and makes the relevant entry
|
||||
in the bounds directory point to the new table.
|
||||
5) If the application violates the bounds specified in the bounds registers,
|
||||
a separate kind of #BR is raised which will deliver a signal with
|
||||
information about the violation in the 'struct siginfo'.
|
||||
6) Whenever memory is freed, we know that it can no longer contain valid
|
||||
pointers, and we attempt to free the associated space in the bounds
|
||||
tables. If an entire table becomes unused, we will attempt to free
|
||||
the table and remove the entry in the directory.
|
||||
|
||||
To summarize, there are essentially three things interacting here:
|
||||
|
||||
GCC with -fmpx:
|
||||
* enables annotation of code with MPX instructions and prefixes
|
||||
* inserts code early in the application to call in to the "gcc runtime"
|
||||
GCC MPX Runtime:
|
||||
* Checks for hardware MPX support in cpuid leaf
|
||||
* allocates virtual space for the bounds directory (malloc() essentially)
|
||||
* points the hardware BNDCFGU register at the directory
|
||||
* calls a new prctl(PR_MPX_ENABLE_MANAGEMENT) to notify the kernel to
|
||||
start managing the bounds directories
|
||||
Kernel MPX Code:
|
||||
* Checks for hardware MPX support in cpuid leaf
|
||||
* Handles #BR exceptions and sends SIGSEGV to the app when it violates
|
||||
bounds, like during a buffer overflow.
|
||||
* When bounds are spilled in to an unallocated bounds table, the kernel
|
||||
notices in the #BR exception, allocates the virtual space, then
|
||||
updates the bounds directory to point to the new table. It keeps
|
||||
special track of the memory with a VM_MPX flag.
|
||||
* Frees unused bounds tables at the time that the memory they described
|
||||
is unmapped.
|
||||
|
||||
|
||||
3. How does MPX kernel code work
|
||||
================================
|
||||
|
||||
Handling #BR faults caused by MPX
|
||||
---------------------------------
|
||||
|
||||
When MPX is enabled, there are 2 new situations that can generate
|
||||
#BR faults.
|
||||
* new bounds tables (BT) need to be allocated to save bounds.
|
||||
* bounds violation caused by MPX instructions.
|
||||
|
||||
We hook #BR handler to handle these two new situations.
|
||||
|
||||
On-demand kernel allocation of bounds tables
|
||||
--------------------------------------------
|
||||
|
||||
MPX only has 4 hardware registers for storing bounds information. If
|
||||
MPX-enabled code needs more than these 4 registers, it needs to spill
|
||||
them somewhere. It has two special instructions for this which allow
|
||||
the bounds to be moved between the bounds registers and some new "bounds
|
||||
tables".
|
||||
|
||||
#BR exceptions are a new class of exceptions just for MPX. They are
|
||||
similar conceptually to a page fault and will be raised by the MPX
|
||||
hardware during both bounds violations or when the tables are not
|
||||
present. The kernel handles those #BR exceptions for not-present tables
|
||||
by carving the space out of the normal processes address space and then
|
||||
pointing the bounds-directory over to it.
|
||||
|
||||
The tables need to be accessed and controlled by userspace because
|
||||
the instructions for moving bounds in and out of them are extremely
|
||||
frequent. They potentially happen every time a register points to
|
||||
memory. Any direct kernel involvement (like a syscall) to access the
|
||||
tables would obviously destroy performance.
|
||||
|
||||
Why not do this in userspace? MPX does not strictly require anything in
|
||||
the kernel. It can theoretically be done completely from userspace. Here
|
||||
are a few ways this could be done. We don't think any of them are practical
|
||||
in the real-world, but here they are.
|
||||
|
||||
Q: Can virtual space simply be reserved for the bounds tables so that we
|
||||
never have to allocate them?
|
||||
A: MPX-enabled application will possibly create a lot of bounds tables in
|
||||
process address space to save bounds information. These tables can take
|
||||
up huge swaths of memory (as much as 80% of the memory on the system)
|
||||
even if we clean them up aggressively. In the worst-case scenario, the
|
||||
tables can be 4x the size of the data structure being tracked. IOW, a
|
||||
1-page structure can require 4 bounds-table pages. An X-GB virtual
|
||||
area needs 4*X GB of virtual space, plus 2GB for the bounds directory.
|
||||
If we were to preallocate them for the 128TB of user virtual address
|
||||
space, we would need to reserve 512TB+2GB, which is larger than the
|
||||
entire virtual address space today. This means they can not be reserved
|
||||
ahead of time. Also, a single process's pre-popualated bounds directory
|
||||
consumes 2GB of virtual *AND* physical memory. IOW, it's completely
|
||||
infeasible to prepopulate bounds directories.
|
||||
|
||||
Q: Can we preallocate bounds table space at the same time memory is
|
||||
allocated which might contain pointers that might eventually need
|
||||
bounds tables?
|
||||
A: This would work if we could hook the site of each and every memory
|
||||
allocation syscall. This can be done for small, constrained applications.
|
||||
But, it isn't practical at a larger scale since a given app has no
|
||||
way of controlling how all the parts of the app might allocate memory
|
||||
(think libraries). The kernel is really the only place to intercept
|
||||
these calls.
|
||||
|
||||
Q: Could a bounds fault be handed to userspace and the tables allocated
|
||||
there in a signal handler intead of in the kernel?
|
||||
A: mmap() is not on the list of safe async handler functions and even
|
||||
if mmap() would work it still requires locking or nasty tricks to
|
||||
keep track of the allocation state there.
|
||||
|
||||
Having ruled out all of the userspace-only approaches for managing
|
||||
bounds tables that we could think of, we create them on demand in
|
||||
the kernel.
|
||||
|
||||
Decoding MPX instructions
|
||||
-------------------------
|
||||
|
||||
If a #BR is generated due to a bounds violation caused by MPX.
|
||||
We need to decode MPX instructions to get violation address and
|
||||
set this address into extended struct siginfo.
|
||||
|
||||
The _sigfault feild of struct siginfo is extended as follow:
|
||||
|
||||
87 /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */
|
||||
88 struct {
|
||||
89 void __user *_addr; /* faulting insn/memory ref. */
|
||||
90 #ifdef __ARCH_SI_TRAPNO
|
||||
91 int _trapno; /* TRAP # which caused the signal */
|
||||
92 #endif
|
||||
93 short _addr_lsb; /* LSB of the reported address */
|
||||
94 struct {
|
||||
95 void __user *_lower;
|
||||
96 void __user *_upper;
|
||||
97 } _addr_bnd;
|
||||
98 } _sigfault;
|
||||
|
||||
The '_addr' field refers to violation address, and new '_addr_and'
|
||||
field refers to the upper/lower bounds when a #BR is caused.
|
||||
|
||||
Glibc will be also updated to support this new siginfo. So user
|
||||
can get violation address and bounds when bounds violations occur.
|
||||
|
||||
Cleanup unused bounds tables
|
||||
----------------------------
|
||||
|
||||
When a BNDSTX instruction attempts to save bounds to a bounds directory
|
||||
entry marked as invalid, a #BR is generated. This is an indication that
|
||||
no bounds table exists for this entry. In this case the fault handler
|
||||
will allocate a new bounds table on demand.
|
||||
|
||||
Since the kernel allocated those tables on-demand without userspace
|
||||
knowledge, it is also responsible for freeing them when the associated
|
||||
mappings go away.
|
||||
|
||||
Here, the solution for this issue is to hook do_munmap() to check
|
||||
whether one process is MPX enabled. If yes, those bounds tables covered
|
||||
in the virtual address region which is being unmapped will be freed also.
|
||||
|
||||
Adding new prctl commands
|
||||
-------------------------
|
||||
|
||||
Two new prctl commands are added to enable and disable MPX bounds tables
|
||||
management in kernel.
|
||||
|
||||
155 #define PR_MPX_ENABLE_MANAGEMENT 43
|
||||
156 #define PR_MPX_DISABLE_MANAGEMENT 44
|
||||
|
||||
Runtime library in userspace is responsible for allocation of bounds
|
||||
directory. So kernel have to use XSAVE instruction to get the base
|
||||
of bounds directory from BNDCFG register.
|
||||
|
||||
But XSAVE is expected to be very expensive. In order to do performance
|
||||
optimization, we have to get the base of bounds directory and save it
|
||||
into struct mm_struct to be used in future during PR_MPX_ENABLE_MANAGEMENT
|
||||
command execution.
|
||||
|
||||
|
||||
4. Special rules
|
||||
================
|
||||
|
||||
1) If userspace is requesting help from the kernel to do the management
|
||||
of bounds tables, it may not create or modify entries in the bounds directory.
|
||||
|
||||
Certainly users can allocate bounds tables and forcibly point the bounds
|
||||
directory at them through XSAVE instruction, and then set valid bit
|
||||
of bounds entry to have this entry valid. But, the kernel will decline
|
||||
to assist in managing these tables.
|
||||
|
||||
2) Userspace may not take multiple bounds directory entries and point
|
||||
them at the same bounds table.
|
||||
|
||||
This is allowed architecturally. See more information "Intel(R) Architecture
|
||||
Instruction Set Extensions Programming Reference" (9.3.4).
|
||||
|
||||
However, if users did this, the kernel might be fooled in to unmaping an
|
||||
in-use bounds table since it does not recognize sharing.
|
|
@ -63,6 +63,10 @@ typedef struct siginfo {
|
|||
unsigned int _flags; /* see below */
|
||||
unsigned long _isr; /* isr */
|
||||
short _addr_lsb; /* lsb of faulting address */
|
||||
struct {
|
||||
void __user *_lower;
|
||||
void __user *_upper;
|
||||
} _addr_bnd;
|
||||
} _sigfault;
|
||||
|
||||
/* SIGPOLL */
|
||||
|
@ -110,9 +114,9 @@ typedef struct siginfo {
|
|||
/*
|
||||
* SIGSEGV si_codes
|
||||
*/
|
||||
#define __SEGV_PSTKOVF (__SI_FAULT|3) /* paragraph stack overflow */
|
||||
#define __SEGV_PSTKOVF (__SI_FAULT|4) /* paragraph stack overflow */
|
||||
#undef NSIGSEGV
|
||||
#define NSIGSEGV 3
|
||||
#define NSIGSEGV 4
|
||||
|
||||
#undef NSIGTRAP
|
||||
#define NSIGTRAP 4
|
||||
|
|
|
@ -92,6 +92,10 @@ typedef struct siginfo {
|
|||
int _trapno; /* TRAP # which caused the signal */
|
||||
#endif
|
||||
short _addr_lsb;
|
||||
struct {
|
||||
void __user *_lower;
|
||||
void __user *_upper;
|
||||
} _addr_bnd;
|
||||
} _sigfault;
|
||||
|
||||
/* SIGPOLL, SIGXFSZ (To do ...) */
|
||||
|
|
|
@ -120,4 +120,15 @@ static inline void arch_exit_mmap(struct mm_struct *mm)
|
|||
{
|
||||
}
|
||||
|
||||
static inline void arch_unmap(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void arch_bprm_mm_init(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma)
|
||||
{
|
||||
}
|
||||
|
||||
#endif /* __S390_MMU_CONTEXT_H */
|
||||
|
|
|
@ -10,7 +10,26 @@
|
|||
#include <asm/mmu.h>
|
||||
|
||||
extern void uml_setup_stubs(struct mm_struct *mm);
|
||||
/*
|
||||
* Needed since we do not use the asm-generic/mm_hooks.h:
|
||||
*/
|
||||
static inline void arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
|
||||
{
|
||||
uml_setup_stubs(mm);
|
||||
}
|
||||
extern void arch_exit_mmap(struct mm_struct *mm);
|
||||
static inline void arch_unmap(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
}
|
||||
static inline void arch_bprm_mm_init(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma)
|
||||
{
|
||||
}
|
||||
/*
|
||||
* end asm-generic/mm_hooks.h functions
|
||||
*/
|
||||
|
||||
#define deactivate_mm(tsk,mm) do { } while (0)
|
||||
|
||||
|
@ -41,11 +60,6 @@ static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
|
|||
}
|
||||
}
|
||||
|
||||
static inline void arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
|
||||
{
|
||||
uml_setup_stubs(mm);
|
||||
}
|
||||
|
||||
static inline void enter_lazy_tlb(struct mm_struct *mm,
|
||||
struct task_struct *tsk)
|
||||
{
|
||||
|
|
|
@ -86,4 +86,15 @@ static inline void arch_dup_mmap(struct mm_struct *oldmm,
|
|||
{
|
||||
}
|
||||
|
||||
static inline void arch_unmap(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void arch_bprm_mm_init(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma)
|
||||
{
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -248,6 +248,10 @@ config HAVE_INTEL_TXT
|
|||
def_bool y
|
||||
depends on INTEL_IOMMU && ACPI
|
||||
|
||||
config X86_INTEL_MPX
|
||||
def_bool y
|
||||
depends on CPU_SUP_INTEL
|
||||
|
||||
config X86_32_SMP
|
||||
def_bool y
|
||||
depends on X86_32 && SMP
|
||||
|
|
|
@ -10,6 +10,12 @@
|
|||
* cpu_feature_enabled().
|
||||
*/
|
||||
|
||||
#ifdef CONFIG_X86_INTEL_MPX
|
||||
# define DISABLE_MPX 0
|
||||
#else
|
||||
# define DISABLE_MPX (1<<(X86_FEATURE_MPX & 31))
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
# define DISABLE_VME (1<<(X86_FEATURE_VME & 31))
|
||||
# define DISABLE_K6_MTRR (1<<(X86_FEATURE_K6_MTRR & 31))
|
||||
|
@ -34,6 +40,6 @@
|
|||
#define DISABLED_MASK6 0
|
||||
#define DISABLED_MASK7 0
|
||||
#define DISABLED_MASK8 0
|
||||
#define DISABLED_MASK9 0
|
||||
#define DISABLED_MASK9 (DISABLE_MPX)
|
||||
|
||||
#endif /* _ASM_X86_DISABLED_FEATURES_H */
|
||||
|
|
|
@ -65,6 +65,7 @@ struct insn {
|
|||
unsigned char x86_64;
|
||||
|
||||
const insn_byte_t *kaddr; /* kernel address of insn to analyze */
|
||||
const insn_byte_t *end_kaddr; /* kernel address of last insn in buffer */
|
||||
const insn_byte_t *next_byte;
|
||||
};
|
||||
|
||||
|
@ -96,7 +97,7 @@ struct insn {
|
|||
#define X86_VEX_P(vex) ((vex) & 0x03) /* VEX3 Byte2, VEX2 Byte1 */
|
||||
#define X86_VEX_M_MAX 0x1f /* VEX3.M Maximum value */
|
||||
|
||||
extern void insn_init(struct insn *insn, const void *kaddr, int x86_64);
|
||||
extern void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64);
|
||||
extern void insn_get_prefixes(struct insn *insn);
|
||||
extern void insn_get_opcode(struct insn *insn);
|
||||
extern void insn_get_modrm(struct insn *insn);
|
||||
|
@ -115,12 +116,13 @@ static inline void insn_get_attribute(struct insn *insn)
|
|||
extern int insn_rip_relative(struct insn *insn);
|
||||
|
||||
/* Init insn for kernel text */
|
||||
static inline void kernel_insn_init(struct insn *insn, const void *kaddr)
|
||||
static inline void kernel_insn_init(struct insn *insn,
|
||||
const void *kaddr, int buf_len)
|
||||
{
|
||||
#ifdef CONFIG_X86_64
|
||||
insn_init(insn, kaddr, 1);
|
||||
insn_init(insn, kaddr, buf_len, 1);
|
||||
#else /* CONFIG_X86_32 */
|
||||
insn_init(insn, kaddr, 0);
|
||||
insn_init(insn, kaddr, buf_len, 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
|
@ -10,9 +10,8 @@
|
|||
#include <asm/pgalloc.h>
|
||||
#include <asm/tlbflush.h>
|
||||
#include <asm/paravirt.h>
|
||||
#include <asm/mpx.h>
|
||||
#ifndef CONFIG_PARAVIRT
|
||||
#include <asm-generic/mm_hooks.h>
|
||||
|
||||
static inline void paravirt_activate_mm(struct mm_struct *prev,
|
||||
struct mm_struct *next)
|
||||
{
|
||||
|
@ -102,4 +101,27 @@ do { \
|
|||
} while (0)
|
||||
#endif
|
||||
|
||||
static inline void arch_dup_mmap(struct mm_struct *oldmm,
|
||||
struct mm_struct *mm)
|
||||
{
|
||||
paravirt_arch_dup_mmap(oldmm, mm);
|
||||
}
|
||||
|
||||
static inline void arch_exit_mmap(struct mm_struct *mm)
|
||||
{
|
||||
paravirt_arch_exit_mmap(mm);
|
||||
}
|
||||
|
||||
static inline void arch_bprm_mm_init(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma)
|
||||
{
|
||||
mpx_mm_init(mm);
|
||||
}
|
||||
|
||||
static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
mpx_notify_unmap(mm, vma, start, end);
|
||||
}
|
||||
|
||||
#endif /* _ASM_X86_MMU_CONTEXT_H */
|
||||
|
|
103
arch/x86/include/asm/mpx.h
Normal file
103
arch/x86/include/asm/mpx.h
Normal file
|
@ -0,0 +1,103 @@
|
|||
#ifndef _ASM_X86_MPX_H
|
||||
#define _ASM_X86_MPX_H
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <asm/ptrace.h>
|
||||
#include <asm/insn.h>
|
||||
|
||||
/*
|
||||
* NULL is theoretically a valid place to put the bounds
|
||||
* directory, so point this at an invalid address.
|
||||
*/
|
||||
#define MPX_INVALID_BOUNDS_DIR ((void __user *)-1)
|
||||
#define MPX_BNDCFG_ENABLE_FLAG 0x1
|
||||
#define MPX_BD_ENTRY_VALID_FLAG 0x1
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
|
||||
/* upper 28 bits [47:20] of the virtual address in 64-bit used to
|
||||
* index into bounds directory (BD).
|
||||
*/
|
||||
#define MPX_BD_ENTRY_OFFSET 28
|
||||
#define MPX_BD_ENTRY_SHIFT 3
|
||||
/* bits [19:3] of the virtual address in 64-bit used to index into
|
||||
* bounds table (BT).
|
||||
*/
|
||||
#define MPX_BT_ENTRY_OFFSET 17
|
||||
#define MPX_BT_ENTRY_SHIFT 5
|
||||
#define MPX_IGN_BITS 3
|
||||
#define MPX_BD_ENTRY_TAIL 3
|
||||
|
||||
#else
|
||||
|
||||
#define MPX_BD_ENTRY_OFFSET 20
|
||||
#define MPX_BD_ENTRY_SHIFT 2
|
||||
#define MPX_BT_ENTRY_OFFSET 10
|
||||
#define MPX_BT_ENTRY_SHIFT 4
|
||||
#define MPX_IGN_BITS 2
|
||||
#define MPX_BD_ENTRY_TAIL 2
|
||||
|
||||
#endif
|
||||
|
||||
#define MPX_BD_SIZE_BYTES (1UL<<(MPX_BD_ENTRY_OFFSET+MPX_BD_ENTRY_SHIFT))
|
||||
#define MPX_BT_SIZE_BYTES (1UL<<(MPX_BT_ENTRY_OFFSET+MPX_BT_ENTRY_SHIFT))
|
||||
|
||||
#define MPX_BNDSTA_TAIL 2
|
||||
#define MPX_BNDCFG_TAIL 12
|
||||
#define MPX_BNDSTA_ADDR_MASK (~((1UL<<MPX_BNDSTA_TAIL)-1))
|
||||
#define MPX_BNDCFG_ADDR_MASK (~((1UL<<MPX_BNDCFG_TAIL)-1))
|
||||
#define MPX_BT_ADDR_MASK (~((1UL<<MPX_BD_ENTRY_TAIL)-1))
|
||||
|
||||
#define MPX_BNDCFG_ADDR_MASK (~((1UL<<MPX_BNDCFG_TAIL)-1))
|
||||
#define MPX_BNDSTA_ERROR_CODE 0x3
|
||||
|
||||
#define MPX_BD_ENTRY_MASK ((1<<MPX_BD_ENTRY_OFFSET)-1)
|
||||
#define MPX_BT_ENTRY_MASK ((1<<MPX_BT_ENTRY_OFFSET)-1)
|
||||
#define MPX_GET_BD_ENTRY_OFFSET(addr) ((((addr)>>(MPX_BT_ENTRY_OFFSET+ \
|
||||
MPX_IGN_BITS)) & MPX_BD_ENTRY_MASK) << MPX_BD_ENTRY_SHIFT)
|
||||
#define MPX_GET_BT_ENTRY_OFFSET(addr) ((((addr)>>MPX_IGN_BITS) & \
|
||||
MPX_BT_ENTRY_MASK) << MPX_BT_ENTRY_SHIFT)
|
||||
|
||||
#ifdef CONFIG_X86_INTEL_MPX
|
||||
siginfo_t *mpx_generate_siginfo(struct pt_regs *regs,
|
||||
struct xsave_struct *xsave_buf);
|
||||
int mpx_handle_bd_fault(struct xsave_struct *xsave_buf);
|
||||
static inline int kernel_managing_mpx_tables(struct mm_struct *mm)
|
||||
{
|
||||
return (mm->bd_addr != MPX_INVALID_BOUNDS_DIR);
|
||||
}
|
||||
static inline void mpx_mm_init(struct mm_struct *mm)
|
||||
{
|
||||
/*
|
||||
* NULL is theoretically a valid place to put the bounds
|
||||
* directory, so point this at an invalid address.
|
||||
*/
|
||||
mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
|
||||
}
|
||||
void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end);
|
||||
#else
|
||||
static inline siginfo_t *mpx_generate_siginfo(struct pt_regs *regs,
|
||||
struct xsave_struct *xsave_buf)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
static inline int mpx_handle_bd_fault(struct xsave_struct *xsave_buf)
|
||||
{
|
||||
return -EINVAL;
|
||||
}
|
||||
static inline int kernel_managing_mpx_tables(struct mm_struct *mm)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
static inline void mpx_mm_init(struct mm_struct *mm)
|
||||
{
|
||||
}
|
||||
static inline void mpx_notify_unmap(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
}
|
||||
#endif /* CONFIG_X86_INTEL_MPX */
|
||||
|
||||
#endif /* _ASM_X86_MPX_H */
|
|
@ -330,13 +330,13 @@ static inline void paravirt_activate_mm(struct mm_struct *prev,
|
|||
PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next);
|
||||
}
|
||||
|
||||
static inline void arch_dup_mmap(struct mm_struct *oldmm,
|
||||
struct mm_struct *mm)
|
||||
static inline void paravirt_arch_dup_mmap(struct mm_struct *oldmm,
|
||||
struct mm_struct *mm)
|
||||
{
|
||||
PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm);
|
||||
}
|
||||
|
||||
static inline void arch_exit_mmap(struct mm_struct *mm)
|
||||
static inline void paravirt_arch_exit_mmap(struct mm_struct *mm)
|
||||
{
|
||||
PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm);
|
||||
}
|
||||
|
@ -986,5 +986,15 @@ extern void default_banner(void);
|
|||
#endif /* __ASSEMBLY__ */
|
||||
#else /* CONFIG_PARAVIRT */
|
||||
# define default_banner x86_init_noop
|
||||
#ifndef __ASSEMBLY__
|
||||
static inline void paravirt_arch_dup_mmap(struct mm_struct *oldmm,
|
||||
struct mm_struct *mm)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void paravirt_arch_exit_mmap(struct mm_struct *mm)
|
||||
{
|
||||
}
|
||||
#endif /* __ASSEMBLY__ */
|
||||
#endif /* !CONFIG_PARAVIRT */
|
||||
#endif /* _ASM_X86_PARAVIRT_H */
|
||||
|
|
|
@ -374,13 +374,14 @@ struct lwp_struct {
|
|||
u8 reserved[128];
|
||||
};
|
||||
|
||||
struct bndregs_struct {
|
||||
u64 bndregs[8];
|
||||
struct bndreg {
|
||||
u64 lower_bound;
|
||||
u64 upper_bound;
|
||||
} __packed;
|
||||
|
||||
struct bndcsr_struct {
|
||||
u64 cfg_reg_u;
|
||||
u64 status_reg;
|
||||
struct bndcsr {
|
||||
u64 bndcfgu;
|
||||
u64 bndstatus;
|
||||
} __packed;
|
||||
|
||||
struct xsave_hdr_struct {
|
||||
|
@ -394,8 +395,8 @@ struct xsave_struct {
|
|||
struct xsave_hdr_struct xsave_hdr;
|
||||
struct ymmh_struct ymmh;
|
||||
struct lwp_struct lwp;
|
||||
struct bndregs_struct bndregs;
|
||||
struct bndcsr_struct bndcsr;
|
||||
struct bndreg bndreg[4];
|
||||
struct bndcsr bndcsr;
|
||||
/* new processor state extensions will go here */
|
||||
} __attribute__ ((packed, aligned (64)));
|
||||
|
||||
|
@ -953,6 +954,24 @@ extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
|
|||
extern int get_tsc_mode(unsigned long adr);
|
||||
extern int set_tsc_mode(unsigned int val);
|
||||
|
||||
/* Register/unregister a process' MPX related resource */
|
||||
#define MPX_ENABLE_MANAGEMENT(tsk) mpx_enable_management((tsk))
|
||||
#define MPX_DISABLE_MANAGEMENT(tsk) mpx_disable_management((tsk))
|
||||
|
||||
#ifdef CONFIG_X86_INTEL_MPX
|
||||
extern int mpx_enable_management(struct task_struct *tsk);
|
||||
extern int mpx_disable_management(struct task_struct *tsk);
|
||||
#else
|
||||
static inline int mpx_enable_management(struct task_struct *tsk)
|
||||
{
|
||||
return -EINVAL;
|
||||
}
|
||||
static inline int mpx_disable_management(struct task_struct *tsk)
|
||||
{
|
||||
return -EINVAL;
|
||||
}
|
||||
#endif /* CONFIG_X86_INTEL_MPX */
|
||||
|
||||
extern u16 amd_get_nb_id(int cpu);
|
||||
|
||||
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
|
||||
|
|
|
@ -724,6 +724,7 @@ static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
|
|||
unsigned long ip = regs->ip;
|
||||
int is_64bit = 0;
|
||||
void *kaddr;
|
||||
int size;
|
||||
|
||||
/*
|
||||
* We don't need to fixup if the PEBS assist is fault like
|
||||
|
@ -758,11 +759,12 @@ static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
|
|||
return 1;
|
||||
}
|
||||
|
||||
size = ip - to;
|
||||
if (!kernel_ip(ip)) {
|
||||
int size, bytes;
|
||||
int bytes;
|
||||
u8 *buf = this_cpu_read(insn_buffer);
|
||||
|
||||
size = ip - to; /* Must fit our buffer, see above */
|
||||
/* 'size' must fit our buffer, see above */
|
||||
bytes = copy_from_user_nmi(buf, (void __user *)to, size);
|
||||
if (bytes != 0)
|
||||
return 0;
|
||||
|
@ -780,11 +782,20 @@ static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
|
|||
#ifdef CONFIG_X86_64
|
||||
is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
|
||||
#endif
|
||||
insn_init(&insn, kaddr, is_64bit);
|
||||
insn_init(&insn, kaddr, size, is_64bit);
|
||||
insn_get_length(&insn);
|
||||
/*
|
||||
* Make sure there was not a problem decoding the
|
||||
* instruction and getting the length. This is
|
||||
* doubly important because we have an infinite
|
||||
* loop if insn.length=0.
|
||||
*/
|
||||
if (!insn.length)
|
||||
break;
|
||||
|
||||
to += insn.length;
|
||||
kaddr += insn.length;
|
||||
size -= insn.length;
|
||||
} while (to < ip);
|
||||
|
||||
if (to == ip) {
|
||||
|
|
|
@ -465,7 +465,7 @@ static int branch_type(unsigned long from, unsigned long to, int abort)
|
|||
{
|
||||
struct insn insn;
|
||||
void *addr;
|
||||
int bytes, size = MAX_INSN_SIZE;
|
||||
int bytes_read, bytes_left;
|
||||
int ret = X86_BR_NONE;
|
||||
int ext, to_plm, from_plm;
|
||||
u8 buf[MAX_INSN_SIZE];
|
||||
|
@ -493,8 +493,10 @@ static int branch_type(unsigned long from, unsigned long to, int abort)
|
|||
return X86_BR_NONE;
|
||||
|
||||
/* may fail if text not present */
|
||||
bytes = copy_from_user_nmi(buf, (void __user *)from, size);
|
||||
if (bytes != 0)
|
||||
bytes_left = copy_from_user_nmi(buf, (void __user *)from,
|
||||
MAX_INSN_SIZE);
|
||||
bytes_read = MAX_INSN_SIZE - bytes_left;
|
||||
if (!bytes_read)
|
||||
return X86_BR_NONE;
|
||||
|
||||
addr = buf;
|
||||
|
@ -505,10 +507,19 @@ static int branch_type(unsigned long from, unsigned long to, int abort)
|
|||
* Ensure we don't blindy read any address by validating it is
|
||||
* a known text address.
|
||||
*/
|
||||
if (kernel_text_address(from))
|
||||
if (kernel_text_address(from)) {
|
||||
addr = (void *)from;
|
||||
else
|
||||
/*
|
||||
* Assume we can get the maximum possible size
|
||||
* when grabbing kernel data. This is not
|
||||
* _strictly_ true since we could possibly be
|
||||
* executing up next to a memory hole, but
|
||||
* it is very unlikely to be a problem.
|
||||
*/
|
||||
bytes_read = MAX_INSN_SIZE;
|
||||
} else {
|
||||
return X86_BR_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -518,8 +529,10 @@ static int branch_type(unsigned long from, unsigned long to, int abort)
|
|||
#ifdef CONFIG_X86_64
|
||||
is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
|
||||
#endif
|
||||
insn_init(&insn, addr, is64);
|
||||
insn_init(&insn, addr, bytes_read, is64);
|
||||
insn_get_opcode(&insn);
|
||||
if (!insn.opcode.got)
|
||||
return X86_BR_ABORT;
|
||||
|
||||
switch (insn.opcode.bytes[0]) {
|
||||
case 0xf:
|
||||
|
|
|
@ -285,7 +285,7 @@ static int can_probe(unsigned long paddr)
|
|||
* normally used, we just go through if there is no kprobe.
|
||||
*/
|
||||
__addr = recover_probed_instruction(buf, addr);
|
||||
kernel_insn_init(&insn, (void *)__addr);
|
||||
kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
|
||||
insn_get_length(&insn);
|
||||
|
||||
/*
|
||||
|
@ -330,8 +330,10 @@ int __copy_instruction(u8 *dest, u8 *src)
|
|||
{
|
||||
struct insn insn;
|
||||
kprobe_opcode_t buf[MAX_INSN_SIZE];
|
||||
unsigned long recovered_insn =
|
||||
recover_probed_instruction(buf, (unsigned long)src);
|
||||
|
||||
kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src));
|
||||
kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
|
||||
insn_get_length(&insn);
|
||||
/* Another subsystem puts a breakpoint, failed to recover */
|
||||
if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
|
||||
|
@ -342,7 +344,7 @@ int __copy_instruction(u8 *dest, u8 *src)
|
|||
if (insn_rip_relative(&insn)) {
|
||||
s64 newdisp;
|
||||
u8 *disp;
|
||||
kernel_insn_init(&insn, dest);
|
||||
kernel_insn_init(&insn, dest, insn.length);
|
||||
insn_get_displacement(&insn);
|
||||
/*
|
||||
* The copied instruction uses the %rip-relative addressing
|
||||
|
|
|
@ -251,13 +251,15 @@ static int can_optimize(unsigned long paddr)
|
|||
/* Decode instructions */
|
||||
addr = paddr - offset;
|
||||
while (addr < paddr - offset + size) { /* Decode until function end */
|
||||
unsigned long recovered_insn;
|
||||
if (search_exception_tables(addr))
|
||||
/*
|
||||
* Since some fixup code will jumps into this function,
|
||||
* we can't optimize kprobe in this function.
|
||||
*/
|
||||
return 0;
|
||||
kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, addr));
|
||||
recovered_insn = recover_probed_instruction(buf, addr);
|
||||
kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
|
||||
insn_get_length(&insn);
|
||||
/* Another subsystem puts a breakpoint */
|
||||
if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
|
||||
|
|
|
@ -960,6 +960,8 @@ void __init setup_arch(char **cmdline_p)
|
|||
init_mm.end_data = (unsigned long) _edata;
|
||||
init_mm.brk = _brk_end;
|
||||
|
||||
mpx_mm_init(&init_mm);
|
||||
|
||||
code_resource.start = __pa_symbol(_text);
|
||||
code_resource.end = __pa_symbol(_etext)-1;
|
||||
data_resource.start = __pa_symbol(_etext);
|
||||
|
|
|
@ -60,6 +60,7 @@
|
|||
#include <asm/fixmap.h>
|
||||
#include <asm/mach_traps.h>
|
||||
#include <asm/alternative.h>
|
||||
#include <asm/mpx.h>
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
#include <asm/x86_init.h>
|
||||
|
@ -228,7 +229,6 @@ dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
|
|||
|
||||
DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
|
||||
DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
|
||||
DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
|
||||
DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
|
||||
DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
|
||||
DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
|
||||
|
@ -286,6 +286,89 @@ dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
|
|||
}
|
||||
#endif
|
||||
|
||||
dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
|
||||
{
|
||||
struct task_struct *tsk = current;
|
||||
struct xsave_struct *xsave_buf;
|
||||
enum ctx_state prev_state;
|
||||
struct bndcsr *bndcsr;
|
||||
siginfo_t *info;
|
||||
|
||||
prev_state = exception_enter();
|
||||
if (notify_die(DIE_TRAP, "bounds", regs, error_code,
|
||||
X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
|
||||
goto exit;
|
||||
conditional_sti(regs);
|
||||
|
||||
if (!user_mode(regs))
|
||||
die("bounds", regs, error_code);
|
||||
|
||||
if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
|
||||
/* The exception is not from Intel MPX */
|
||||
goto exit_trap;
|
||||
}
|
||||
|
||||
/*
|
||||
* We need to look at BNDSTATUS to resolve this exception.
|
||||
* It is not directly accessible, though, so we need to
|
||||
* do an xsave and then pull it out of the xsave buffer.
|
||||
*/
|
||||
fpu_save_init(&tsk->thread.fpu);
|
||||
xsave_buf = &(tsk->thread.fpu.state->xsave);
|
||||
bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
|
||||
if (!bndcsr)
|
||||
goto exit_trap;
|
||||
|
||||
/*
|
||||
* The error code field of the BNDSTATUS register communicates status
|
||||
* information of a bound range exception #BR or operation involving
|
||||
* bound directory.
|
||||
*/
|
||||
switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
|
||||
case 2: /* Bound directory has invalid entry. */
|
||||
if (mpx_handle_bd_fault(xsave_buf))
|
||||
goto exit_trap;
|
||||
break; /* Success, it was handled */
|
||||
case 1: /* Bound violation. */
|
||||
info = mpx_generate_siginfo(regs, xsave_buf);
|
||||
if (PTR_ERR(info)) {
|
||||
/*
|
||||
* We failed to decode the MPX instruction. Act as if
|
||||
* the exception was not caused by MPX.
|
||||
*/
|
||||
goto exit_trap;
|
||||
}
|
||||
/*
|
||||
* Success, we decoded the instruction and retrieved
|
||||
* an 'info' containing the address being accessed
|
||||
* which caused the exception. This information
|
||||
* allows and application to possibly handle the
|
||||
* #BR exception itself.
|
||||
*/
|
||||
do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
|
||||
kfree(info);
|
||||
break;
|
||||
case 0: /* No exception caused by Intel MPX operations. */
|
||||
goto exit_trap;
|
||||
default:
|
||||
die("bounds", regs, error_code);
|
||||
}
|
||||
|
||||
exit:
|
||||
exception_exit(prev_state);
|
||||
return;
|
||||
exit_trap:
|
||||
/*
|
||||
* This path out is for all the cases where we could not
|
||||
* handle the exception in some way (like allocating a
|
||||
* table or telling userspace about it. We will also end
|
||||
* up here if the kernel has MPX turned off at compile
|
||||
* time..
|
||||
*/
|
||||
do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
|
||||
exception_exit(prev_state);
|
||||
}
|
||||
|
||||
dotraplinkage void
|
||||
do_general_protection(struct pt_regs *regs, long error_code)
|
||||
{
|
||||
|
|
|
@ -219,7 +219,7 @@ static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool
|
|||
{
|
||||
u32 volatile *good_insns;
|
||||
|
||||
insn_init(insn, auprobe->insn, x86_64);
|
||||
insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
|
||||
/* has the side-effect of processing the entire instruction */
|
||||
insn_get_length(insn);
|
||||
if (WARN_ON_ONCE(!insn_complete(insn)))
|
||||
|
|
|
@ -28,7 +28,7 @@
|
|||
|
||||
/* Verify next sizeof(t) bytes can be on the same instruction */
|
||||
#define validate_next(t, insn, n) \
|
||||
((insn)->next_byte + sizeof(t) + n - (insn)->kaddr <= MAX_INSN_SIZE)
|
||||
((insn)->next_byte + sizeof(t) + n < (insn)->end_kaddr)
|
||||
|
||||
#define __get_next(t, insn) \
|
||||
({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
|
||||
|
@ -50,10 +50,11 @@
|
|||
* @kaddr: address (in kernel memory) of instruction (or copy thereof)
|
||||
* @x86_64: !0 for 64-bit kernel or 64-bit app
|
||||
*/
|
||||
void insn_init(struct insn *insn, const void *kaddr, int x86_64)
|
||||
void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
|
||||
{
|
||||
memset(insn, 0, sizeof(*insn));
|
||||
insn->kaddr = kaddr;
|
||||
insn->end_kaddr = kaddr + buf_len;
|
||||
insn->next_byte = kaddr;
|
||||
insn->x86_64 = x86_64 ? 1 : 0;
|
||||
insn->opnd_bytes = 4;
|
||||
|
|
|
@ -30,3 +30,5 @@ obj-$(CONFIG_ACPI_NUMA) += srat.o
|
|||
obj-$(CONFIG_NUMA_EMU) += numa_emulation.o
|
||||
|
||||
obj-$(CONFIG_MEMTEST) += memtest.o
|
||||
|
||||
obj-$(CONFIG_X86_INTEL_MPX) += mpx.o
|
||||
|
|
928
arch/x86/mm/mpx.c
Normal file
928
arch/x86/mm/mpx.c
Normal file
|
@ -0,0 +1,928 @@
|
|||
/*
|
||||
* mpx.c - Memory Protection eXtensions
|
||||
*
|
||||
* Copyright (c) 2014, Intel Corporation.
|
||||
* Qiaowei Ren <qiaowei.ren@intel.com>
|
||||
* Dave Hansen <dave.hansen@intel.com>
|
||||
*/
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/syscalls.h>
|
||||
#include <linux/sched/sysctl.h>
|
||||
|
||||
#include <asm/i387.h>
|
||||
#include <asm/insn.h>
|
||||
#include <asm/mman.h>
|
||||
#include <asm/mmu_context.h>
|
||||
#include <asm/mpx.h>
|
||||
#include <asm/processor.h>
|
||||
#include <asm/fpu-internal.h>
|
||||
|
||||
static const char *mpx_mapping_name(struct vm_area_struct *vma)
|
||||
{
|
||||
return "[mpx]";
|
||||
}
|
||||
|
||||
static struct vm_operations_struct mpx_vma_ops = {
|
||||
.name = mpx_mapping_name,
|
||||
};
|
||||
|
||||
static int is_mpx_vma(struct vm_area_struct *vma)
|
||||
{
|
||||
return (vma->vm_ops == &mpx_vma_ops);
|
||||
}
|
||||
|
||||
/*
|
||||
* This is really a simplified "vm_mmap". it only handles MPX
|
||||
* bounds tables (the bounds directory is user-allocated).
|
||||
*
|
||||
* Later on, we use the vma->vm_ops to uniquely identify these
|
||||
* VMAs.
|
||||
*/
|
||||
static unsigned long mpx_mmap(unsigned long len)
|
||||
{
|
||||
unsigned long ret;
|
||||
unsigned long addr, pgoff;
|
||||
struct mm_struct *mm = current->mm;
|
||||
vm_flags_t vm_flags;
|
||||
struct vm_area_struct *vma;
|
||||
|
||||
/* Only bounds table and bounds directory can be allocated here */
|
||||
if (len != MPX_BD_SIZE_BYTES && len != MPX_BT_SIZE_BYTES)
|
||||
return -EINVAL;
|
||||
|
||||
down_write(&mm->mmap_sem);
|
||||
|
||||
/* Too many mappings? */
|
||||
if (mm->map_count > sysctl_max_map_count) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* Obtain the address to map to. we verify (or select) it and ensure
|
||||
* that it represents a valid section of the address space.
|
||||
*/
|
||||
addr = get_unmapped_area(NULL, 0, len, 0, MAP_ANONYMOUS | MAP_PRIVATE);
|
||||
if (addr & ~PAGE_MASK) {
|
||||
ret = addr;
|
||||
goto out;
|
||||
}
|
||||
|
||||
vm_flags = VM_READ | VM_WRITE | VM_MPX |
|
||||
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
|
||||
|
||||
/* Set pgoff according to addr for anon_vma */
|
||||
pgoff = addr >> PAGE_SHIFT;
|
||||
|
||||
ret = mmap_region(NULL, addr, len, vm_flags, pgoff);
|
||||
if (IS_ERR_VALUE(ret))
|
||||
goto out;
|
||||
|
||||
vma = find_vma(mm, ret);
|
||||
if (!vma) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
vma->vm_ops = &mpx_vma_ops;
|
||||
|
||||
if (vm_flags & VM_LOCKED) {
|
||||
up_write(&mm->mmap_sem);
|
||||
mm_populate(ret, len);
|
||||
return ret;
|
||||
}
|
||||
|
||||
out:
|
||||
up_write(&mm->mmap_sem);
|
||||
return ret;
|
||||
}
|
||||
|
||||
enum reg_type {
|
||||
REG_TYPE_RM = 0,
|
||||
REG_TYPE_INDEX,
|
||||
REG_TYPE_BASE,
|
||||
};
|
||||
|
||||
static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
|
||||
enum reg_type type)
|
||||
{
|
||||
int regno = 0;
|
||||
|
||||
static const int regoff[] = {
|
||||
offsetof(struct pt_regs, ax),
|
||||
offsetof(struct pt_regs, cx),
|
||||
offsetof(struct pt_regs, dx),
|
||||
offsetof(struct pt_regs, bx),
|
||||
offsetof(struct pt_regs, sp),
|
||||
offsetof(struct pt_regs, bp),
|
||||
offsetof(struct pt_regs, si),
|
||||
offsetof(struct pt_regs, di),
|
||||
#ifdef CONFIG_X86_64
|
||||
offsetof(struct pt_regs, r8),
|
||||
offsetof(struct pt_regs, r9),
|
||||
offsetof(struct pt_regs, r10),
|
||||
offsetof(struct pt_regs, r11),
|
||||
offsetof(struct pt_regs, r12),
|
||||
offsetof(struct pt_regs, r13),
|
||||
offsetof(struct pt_regs, r14),
|
||||
offsetof(struct pt_regs, r15),
|
||||
#endif
|
||||
};
|
||||
int nr_registers = ARRAY_SIZE(regoff);
|
||||
/*
|
||||
* Don't possibly decode a 32-bit instructions as
|
||||
* reading a 64-bit-only register.
|
||||
*/
|
||||
if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
|
||||
nr_registers -= 8;
|
||||
|
||||
switch (type) {
|
||||
case REG_TYPE_RM:
|
||||
regno = X86_MODRM_RM(insn->modrm.value);
|
||||
if (X86_REX_B(insn->rex_prefix.value) == 1)
|
||||
regno += 8;
|
||||
break;
|
||||
|
||||
case REG_TYPE_INDEX:
|
||||
regno = X86_SIB_INDEX(insn->sib.value);
|
||||
if (X86_REX_X(insn->rex_prefix.value) == 1)
|
||||
regno += 8;
|
||||
break;
|
||||
|
||||
case REG_TYPE_BASE:
|
||||
regno = X86_SIB_BASE(insn->sib.value);
|
||||
if (X86_REX_B(insn->rex_prefix.value) == 1)
|
||||
regno += 8;
|
||||
break;
|
||||
|
||||
default:
|
||||
pr_err("invalid register type");
|
||||
BUG();
|
||||
break;
|
||||
}
|
||||
|
||||
if (regno > nr_registers) {
|
||||
WARN_ONCE(1, "decoded an instruction with an invalid register");
|
||||
return -EINVAL;
|
||||
}
|
||||
return regoff[regno];
|
||||
}
|
||||
|
||||
/*
|
||||
* return the address being referenced be instruction
|
||||
* for rm=3 returning the content of the rm reg
|
||||
* for rm!=3 calculates the address using SIB and Disp
|
||||
*/
|
||||
static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
|
||||
{
|
||||
unsigned long addr, base, indx;
|
||||
int addr_offset, base_offset, indx_offset;
|
||||
insn_byte_t sib;
|
||||
|
||||
insn_get_modrm(insn);
|
||||
insn_get_sib(insn);
|
||||
sib = insn->sib.value;
|
||||
|
||||
if (X86_MODRM_MOD(insn->modrm.value) == 3) {
|
||||
addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
|
||||
if (addr_offset < 0)
|
||||
goto out_err;
|
||||
addr = regs_get_register(regs, addr_offset);
|
||||
} else {
|
||||
if (insn->sib.nbytes) {
|
||||
base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
|
||||
if (base_offset < 0)
|
||||
goto out_err;
|
||||
|
||||
indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
|
||||
if (indx_offset < 0)
|
||||
goto out_err;
|
||||
|
||||
base = regs_get_register(regs, base_offset);
|
||||
indx = regs_get_register(regs, indx_offset);
|
||||
addr = base + indx * (1 << X86_SIB_SCALE(sib));
|
||||
} else {
|
||||
addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
|
||||
if (addr_offset < 0)
|
||||
goto out_err;
|
||||
addr = regs_get_register(regs, addr_offset);
|
||||
}
|
||||
addr += insn->displacement.value;
|
||||
}
|
||||
return (void __user *)addr;
|
||||
out_err:
|
||||
return (void __user *)-1;
|
||||
}
|
||||
|
||||
static int mpx_insn_decode(struct insn *insn,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
unsigned char buf[MAX_INSN_SIZE];
|
||||
int x86_64 = !test_thread_flag(TIF_IA32);
|
||||
int not_copied;
|
||||
int nr_copied;
|
||||
|
||||
not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
|
||||
nr_copied = sizeof(buf) - not_copied;
|
||||
/*
|
||||
* The decoder _should_ fail nicely if we pass it a short buffer.
|
||||
* But, let's not depend on that implementation detail. If we
|
||||
* did not get anything, just error out now.
|
||||
*/
|
||||
if (!nr_copied)
|
||||
return -EFAULT;
|
||||
insn_init(insn, buf, nr_copied, x86_64);
|
||||
insn_get_length(insn);
|
||||
/*
|
||||
* copy_from_user() tries to get as many bytes as we could see in
|
||||
* the largest possible instruction. If the instruction we are
|
||||
* after is shorter than that _and_ we attempt to copy from
|
||||
* something unreadable, we might get a short read. This is OK
|
||||
* as long as the read did not stop in the middle of the
|
||||
* instruction. Check to see if we got a partial instruction.
|
||||
*/
|
||||
if (nr_copied < insn->length)
|
||||
return -EFAULT;
|
||||
|
||||
insn_get_opcode(insn);
|
||||
/*
|
||||
* We only _really_ need to decode bndcl/bndcn/bndcu
|
||||
* Error out on anything else.
|
||||
*/
|
||||
if (insn->opcode.bytes[0] != 0x0f)
|
||||
goto bad_opcode;
|
||||
if ((insn->opcode.bytes[1] != 0x1a) &&
|
||||
(insn->opcode.bytes[1] != 0x1b))
|
||||
goto bad_opcode;
|
||||
|
||||
return 0;
|
||||
bad_opcode:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/*
|
||||
* If a bounds overflow occurs then a #BR is generated. This
|
||||
* function decodes MPX instructions to get violation address
|
||||
* and set this address into extended struct siginfo.
|
||||
*
|
||||
* Note that this is not a super precise way of doing this.
|
||||
* Userspace could have, by the time we get here, written
|
||||
* anything it wants in to the instructions. We can not
|
||||
* trust anything about it. They might not be valid
|
||||
* instructions or might encode invalid registers, etc...
|
||||
*
|
||||
* The caller is expected to kfree() the returned siginfo_t.
|
||||
*/
|
||||
siginfo_t *mpx_generate_siginfo(struct pt_regs *regs,
|
||||
struct xsave_struct *xsave_buf)
|
||||
{
|
||||
struct bndreg *bndregs, *bndreg;
|
||||
siginfo_t *info = NULL;
|
||||
struct insn insn;
|
||||
uint8_t bndregno;
|
||||
int err;
|
||||
|
||||
err = mpx_insn_decode(&insn, regs);
|
||||
if (err)
|
||||
goto err_out;
|
||||
|
||||
/*
|
||||
* We know at this point that we are only dealing with
|
||||
* MPX instructions.
|
||||
*/
|
||||
insn_get_modrm(&insn);
|
||||
bndregno = X86_MODRM_REG(insn.modrm.value);
|
||||
if (bndregno > 3) {
|
||||
err = -EINVAL;
|
||||
goto err_out;
|
||||
}
|
||||
/* get the bndregs _area_ of the xsave structure */
|
||||
bndregs = get_xsave_addr(xsave_buf, XSTATE_BNDREGS);
|
||||
if (!bndregs) {
|
||||
err = -EINVAL;
|
||||
goto err_out;
|
||||
}
|
||||
/* now go select the individual register in the set of 4 */
|
||||
bndreg = &bndregs[bndregno];
|
||||
|
||||
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
||||
if (!info) {
|
||||
err = -ENOMEM;
|
||||
goto err_out;
|
||||
}
|
||||
/*
|
||||
* The registers are always 64-bit, but the upper 32
|
||||
* bits are ignored in 32-bit mode. Also, note that the
|
||||
* upper bounds are architecturally represented in 1's
|
||||
* complement form.
|
||||
*
|
||||
* The 'unsigned long' cast is because the compiler
|
||||
* complains when casting from integers to different-size
|
||||
* pointers.
|
||||
*/
|
||||
info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
|
||||
info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
|
||||
info->si_addr_lsb = 0;
|
||||
info->si_signo = SIGSEGV;
|
||||
info->si_errno = 0;
|
||||
info->si_code = SEGV_BNDERR;
|
||||
info->si_addr = mpx_get_addr_ref(&insn, regs);
|
||||
/*
|
||||
* We were not able to extract an address from the instruction,
|
||||
* probably because there was something invalid in it.
|
||||
*/
|
||||
if (info->si_addr == (void *)-1) {
|
||||
err = -EINVAL;
|
||||
goto err_out;
|
||||
}
|
||||
return info;
|
||||
err_out:
|
||||
/* info might be NULL, but kfree() handles that */
|
||||
kfree(info);
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
static __user void *task_get_bounds_dir(struct task_struct *tsk)
|
||||
{
|
||||
struct bndcsr *bndcsr;
|
||||
|
||||
if (!cpu_feature_enabled(X86_FEATURE_MPX))
|
||||
return MPX_INVALID_BOUNDS_DIR;
|
||||
|
||||
/*
|
||||
* The bounds directory pointer is stored in a register
|
||||
* only accessible if we first do an xsave.
|
||||
*/
|
||||
fpu_save_init(&tsk->thread.fpu);
|
||||
bndcsr = get_xsave_addr(&tsk->thread.fpu.state->xsave, XSTATE_BNDCSR);
|
||||
if (!bndcsr)
|
||||
return MPX_INVALID_BOUNDS_DIR;
|
||||
|
||||
/*
|
||||
* Make sure the register looks valid by checking the
|
||||
* enable bit.
|
||||
*/
|
||||
if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
|
||||
return MPX_INVALID_BOUNDS_DIR;
|
||||
|
||||
/*
|
||||
* Lastly, mask off the low bits used for configuration
|
||||
* flags, and return the address of the bounds table.
|
||||
*/
|
||||
return (void __user *)(unsigned long)
|
||||
(bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
|
||||
}
|
||||
|
||||
int mpx_enable_management(struct task_struct *tsk)
|
||||
{
|
||||
void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
|
||||
struct mm_struct *mm = tsk->mm;
|
||||
int ret = 0;
|
||||
|
||||
/*
|
||||
* runtime in the userspace will be responsible for allocation of
|
||||
* the bounds directory. Then, it will save the base of the bounds
|
||||
* directory into XSAVE/XRSTOR Save Area and enable MPX through
|
||||
* XRSTOR instruction.
|
||||
*
|
||||
* fpu_xsave() is expected to be very expensive. Storing the bounds
|
||||
* directory here means that we do not have to do xsave in the unmap
|
||||
* path; we can just use mm->bd_addr instead.
|
||||
*/
|
||||
bd_base = task_get_bounds_dir(tsk);
|
||||
down_write(&mm->mmap_sem);
|
||||
mm->bd_addr = bd_base;
|
||||
if (mm->bd_addr == MPX_INVALID_BOUNDS_DIR)
|
||||
ret = -ENXIO;
|
||||
|
||||
up_write(&mm->mmap_sem);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int mpx_disable_management(struct task_struct *tsk)
|
||||
{
|
||||
struct mm_struct *mm = current->mm;
|
||||
|
||||
if (!cpu_feature_enabled(X86_FEATURE_MPX))
|
||||
return -ENXIO;
|
||||
|
||||
down_write(&mm->mmap_sem);
|
||||
mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
|
||||
up_write(&mm->mmap_sem);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* With 32-bit mode, MPX_BT_SIZE_BYTES is 4MB, and the size of each
|
||||
* bounds table is 16KB. With 64-bit mode, MPX_BT_SIZE_BYTES is 2GB,
|
||||
* and the size of each bounds table is 4MB.
|
||||
*/
|
||||
static int allocate_bt(long __user *bd_entry)
|
||||
{
|
||||
unsigned long expected_old_val = 0;
|
||||
unsigned long actual_old_val = 0;
|
||||
unsigned long bt_addr;
|
||||
int ret = 0;
|
||||
|
||||
/*
|
||||
* Carve the virtual space out of userspace for the new
|
||||
* bounds table:
|
||||
*/
|
||||
bt_addr = mpx_mmap(MPX_BT_SIZE_BYTES);
|
||||
if (IS_ERR((void *)bt_addr))
|
||||
return PTR_ERR((void *)bt_addr);
|
||||
/*
|
||||
* Set the valid flag (kinda like _PAGE_PRESENT in a pte)
|
||||
*/
|
||||
bt_addr = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
|
||||
|
||||
/*
|
||||
* Go poke the address of the new bounds table in to the
|
||||
* bounds directory entry out in userspace memory. Note:
|
||||
* we may race with another CPU instantiating the same table.
|
||||
* In that case the cmpxchg will see an unexpected
|
||||
* 'actual_old_val'.
|
||||
*
|
||||
* This can fault, but that's OK because we do not hold
|
||||
* mmap_sem at this point, unlike some of the other part
|
||||
* of the MPX code that have to pagefault_disable().
|
||||
*/
|
||||
ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
|
||||
expected_old_val, bt_addr);
|
||||
if (ret)
|
||||
goto out_unmap;
|
||||
|
||||
/*
|
||||
* The user_atomic_cmpxchg_inatomic() will only return nonzero
|
||||
* for faults, *not* if the cmpxchg itself fails. Now we must
|
||||
* verify that the cmpxchg itself completed successfully.
|
||||
*/
|
||||
/*
|
||||
* We expected an empty 'expected_old_val', but instead found
|
||||
* an apparently valid entry. Assume we raced with another
|
||||
* thread to instantiate this table and desclare succecss.
|
||||
*/
|
||||
if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
|
||||
ret = 0;
|
||||
goto out_unmap;
|
||||
}
|
||||
/*
|
||||
* We found a non-empty bd_entry but it did not have the
|
||||
* VALID_FLAG set. Return an error which will result in
|
||||
* a SEGV since this probably means that somebody scribbled
|
||||
* some invalid data in to a bounds table.
|
||||
*/
|
||||
if (expected_old_val != actual_old_val) {
|
||||
ret = -EINVAL;
|
||||
goto out_unmap;
|
||||
}
|
||||
return 0;
|
||||
out_unmap:
|
||||
vm_munmap(bt_addr & MPX_BT_ADDR_MASK, MPX_BT_SIZE_BYTES);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* When a BNDSTX instruction attempts to save bounds to a bounds
|
||||
* table, it will first attempt to look up the table in the
|
||||
* first-level bounds directory. If it does not find a table in
|
||||
* the directory, a #BR is generated and we get here in order to
|
||||
* allocate a new table.
|
||||
*
|
||||
* With 32-bit mode, the size of BD is 4MB, and the size of each
|
||||
* bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
|
||||
* and the size of each bound table is 4MB.
|
||||
*/
|
||||
static int do_mpx_bt_fault(struct xsave_struct *xsave_buf)
|
||||
{
|
||||
unsigned long bd_entry, bd_base;
|
||||
struct bndcsr *bndcsr;
|
||||
|
||||
bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
|
||||
if (!bndcsr)
|
||||
return -EINVAL;
|
||||
/*
|
||||
* Mask off the preserve and enable bits
|
||||
*/
|
||||
bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
|
||||
/*
|
||||
* The hardware provides the address of the missing or invalid
|
||||
* entry via BNDSTATUS, so we don't have to go look it up.
|
||||
*/
|
||||
bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
|
||||
/*
|
||||
* Make sure the directory entry is within where we think
|
||||
* the directory is.
|
||||
*/
|
||||
if ((bd_entry < bd_base) ||
|
||||
(bd_entry >= bd_base + MPX_BD_SIZE_BYTES))
|
||||
return -EINVAL;
|
||||
|
||||
return allocate_bt((long __user *)bd_entry);
|
||||
}
|
||||
|
||||
int mpx_handle_bd_fault(struct xsave_struct *xsave_buf)
|
||||
{
|
||||
/*
|
||||
* Userspace never asked us to manage the bounds tables,
|
||||
* so refuse to help.
|
||||
*/
|
||||
if (!kernel_managing_mpx_tables(current->mm))
|
||||
return -EINVAL;
|
||||
|
||||
if (do_mpx_bt_fault(xsave_buf)) {
|
||||
force_sig(SIGSEGV, current);
|
||||
/*
|
||||
* The force_sig() is essentially "handling" this
|
||||
* exception, so we do not pass up the error
|
||||
* from do_mpx_bt_fault().
|
||||
*/
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* A thin wrapper around get_user_pages(). Returns 0 if the
|
||||
* fault was resolved or -errno if not.
|
||||
*/
|
||||
static int mpx_resolve_fault(long __user *addr, int write)
|
||||
{
|
||||
long gup_ret;
|
||||
int nr_pages = 1;
|
||||
int force = 0;
|
||||
|
||||
gup_ret = get_user_pages(current, current->mm, (unsigned long)addr,
|
||||
nr_pages, write, force, NULL, NULL);
|
||||
/*
|
||||
* get_user_pages() returns number of pages gotten.
|
||||
* 0 means we failed to fault in and get anything,
|
||||
* probably because 'addr' is bad.
|
||||
*/
|
||||
if (!gup_ret)
|
||||
return -EFAULT;
|
||||
/* Other error, return it */
|
||||
if (gup_ret < 0)
|
||||
return gup_ret;
|
||||
/* must have gup'd a page and gup_ret>0, success */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the base of bounds tables pointed by specific bounds
|
||||
* directory entry.
|
||||
*/
|
||||
static int get_bt_addr(struct mm_struct *mm,
|
||||
long __user *bd_entry, unsigned long *bt_addr)
|
||||
{
|
||||
int ret;
|
||||
int valid_bit;
|
||||
|
||||
if (!access_ok(VERIFY_READ, (bd_entry), sizeof(*bd_entry)))
|
||||
return -EFAULT;
|
||||
|
||||
while (1) {
|
||||
int need_write = 0;
|
||||
|
||||
pagefault_disable();
|
||||
ret = get_user(*bt_addr, bd_entry);
|
||||
pagefault_enable();
|
||||
if (!ret)
|
||||
break;
|
||||
if (ret == -EFAULT)
|
||||
ret = mpx_resolve_fault(bd_entry, need_write);
|
||||
/*
|
||||
* If we could not resolve the fault, consider it
|
||||
* userspace's fault and error out.
|
||||
*/
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
valid_bit = *bt_addr & MPX_BD_ENTRY_VALID_FLAG;
|
||||
*bt_addr &= MPX_BT_ADDR_MASK;
|
||||
|
||||
/*
|
||||
* When the kernel is managing bounds tables, a bounds directory
|
||||
* entry will either have a valid address (plus the valid bit)
|
||||
* *OR* be completely empty. If we see a !valid entry *and* some
|
||||
* data in the address field, we know something is wrong. This
|
||||
* -EINVAL return will cause a SIGSEGV.
|
||||
*/
|
||||
if (!valid_bit && *bt_addr)
|
||||
return -EINVAL;
|
||||
/*
|
||||
* Do we have an completely zeroed bt entry? That is OK. It
|
||||
* just means there was no bounds table for this memory. Make
|
||||
* sure to distinguish this from -EINVAL, which will cause
|
||||
* a SEGV.
|
||||
*/
|
||||
if (!valid_bit)
|
||||
return -ENOENT;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Free the backing physical pages of bounds table 'bt_addr'.
|
||||
* Assume start...end is within that bounds table.
|
||||
*/
|
||||
static int zap_bt_entries(struct mm_struct *mm,
|
||||
unsigned long bt_addr,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
struct vm_area_struct *vma;
|
||||
unsigned long addr, len;
|
||||
|
||||
/*
|
||||
* Find the first overlapping vma. If vma->vm_start > start, there
|
||||
* will be a hole in the bounds table. This -EINVAL return will
|
||||
* cause a SIGSEGV.
|
||||
*/
|
||||
vma = find_vma(mm, start);
|
||||
if (!vma || vma->vm_start > start)
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* A NUMA policy on a VM_MPX VMA could cause this bouds table to
|
||||
* be split. So we need to look across the entire 'start -> end'
|
||||
* range of this bounds table, find all of the VM_MPX VMAs, and
|
||||
* zap only those.
|
||||
*/
|
||||
addr = start;
|
||||
while (vma && vma->vm_start < end) {
|
||||
/*
|
||||
* We followed a bounds directory entry down
|
||||
* here. If we find a non-MPX VMA, that's bad,
|
||||
* so stop immediately and return an error. This
|
||||
* probably results in a SIGSEGV.
|
||||
*/
|
||||
if (!is_mpx_vma(vma))
|
||||
return -EINVAL;
|
||||
|
||||
len = min(vma->vm_end, end) - addr;
|
||||
zap_page_range(vma, addr, len, NULL);
|
||||
|
||||
vma = vma->vm_next;
|
||||
addr = vma->vm_start;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int unmap_single_bt(struct mm_struct *mm,
|
||||
long __user *bd_entry, unsigned long bt_addr)
|
||||
{
|
||||
unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
|
||||
unsigned long actual_old_val = 0;
|
||||
int ret;
|
||||
|
||||
while (1) {
|
||||
int need_write = 1;
|
||||
|
||||
pagefault_disable();
|
||||
ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
|
||||
expected_old_val, 0);
|
||||
pagefault_enable();
|
||||
if (!ret)
|
||||
break;
|
||||
if (ret == -EFAULT)
|
||||
ret = mpx_resolve_fault(bd_entry, need_write);
|
||||
/*
|
||||
* If we could not resolve the fault, consider it
|
||||
* userspace's fault and error out.
|
||||
*/
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
/*
|
||||
* The cmpxchg was performed, check the results.
|
||||
*/
|
||||
if (actual_old_val != expected_old_val) {
|
||||
/*
|
||||
* Someone else raced with us to unmap the table.
|
||||
* There was no bounds table pointed to by the
|
||||
* directory, so declare success. Somebody freed
|
||||
* it.
|
||||
*/
|
||||
if (!actual_old_val)
|
||||
return 0;
|
||||
/*
|
||||
* Something messed with the bounds directory
|
||||
* entry. We hold mmap_sem for read or write
|
||||
* here, so it could not be a _new_ bounds table
|
||||
* that someone just allocated. Something is
|
||||
* wrong, so pass up the error and SIGSEGV.
|
||||
*/
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Note, we are likely being called under do_munmap() already. To
|
||||
* avoid recursion, do_munmap() will check whether it comes
|
||||
* from one bounds table through VM_MPX flag.
|
||||
*/
|
||||
return do_munmap(mm, bt_addr, MPX_BT_SIZE_BYTES);
|
||||
}
|
||||
|
||||
/*
|
||||
* If the bounds table pointed by bounds directory 'bd_entry' is
|
||||
* not shared, unmap this whole bounds table. Otherwise, only free
|
||||
* those backing physical pages of bounds table entries covered
|
||||
* in this virtual address region start...end.
|
||||
*/
|
||||
static int unmap_shared_bt(struct mm_struct *mm,
|
||||
long __user *bd_entry, unsigned long start,
|
||||
unsigned long end, bool prev_shared, bool next_shared)
|
||||
{
|
||||
unsigned long bt_addr;
|
||||
int ret;
|
||||
|
||||
ret = get_bt_addr(mm, bd_entry, &bt_addr);
|
||||
/*
|
||||
* We could see an "error" ret for not-present bounds
|
||||
* tables (not really an error), or actual errors, but
|
||||
* stop unmapping either way.
|
||||
*/
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (prev_shared && next_shared)
|
||||
ret = zap_bt_entries(mm, bt_addr,
|
||||
bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
|
||||
bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
|
||||
else if (prev_shared)
|
||||
ret = zap_bt_entries(mm, bt_addr,
|
||||
bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
|
||||
bt_addr+MPX_BT_SIZE_BYTES);
|
||||
else if (next_shared)
|
||||
ret = zap_bt_entries(mm, bt_addr, bt_addr,
|
||||
bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
|
||||
else
|
||||
ret = unmap_single_bt(mm, bd_entry, bt_addr);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* A virtual address region being munmap()ed might share bounds table
|
||||
* with adjacent VMAs. We only need to free the backing physical
|
||||
* memory of these shared bounds tables entries covered in this virtual
|
||||
* address region.
|
||||
*/
|
||||
static int unmap_edge_bts(struct mm_struct *mm,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
int ret;
|
||||
long __user *bde_start, *bde_end;
|
||||
struct vm_area_struct *prev, *next;
|
||||
bool prev_shared = false, next_shared = false;
|
||||
|
||||
bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
|
||||
bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
|
||||
|
||||
/*
|
||||
* Check whether bde_start and bde_end are shared with adjacent
|
||||
* VMAs.
|
||||
*
|
||||
* We already unliked the VMAs from the mm's rbtree so 'start'
|
||||
* is guaranteed to be in a hole. This gets us the first VMA
|
||||
* before the hole in to 'prev' and the next VMA after the hole
|
||||
* in to 'next'.
|
||||
*/
|
||||
next = find_vma_prev(mm, start, &prev);
|
||||
if (prev && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(prev->vm_end-1))
|
||||
== bde_start)
|
||||
prev_shared = true;
|
||||
if (next && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(next->vm_start))
|
||||
== bde_end)
|
||||
next_shared = true;
|
||||
|
||||
/*
|
||||
* This virtual address region being munmap()ed is only
|
||||
* covered by one bounds table.
|
||||
*
|
||||
* In this case, if this table is also shared with adjacent
|
||||
* VMAs, only part of the backing physical memory of the bounds
|
||||
* table need be freeed. Otherwise the whole bounds table need
|
||||
* be unmapped.
|
||||
*/
|
||||
if (bde_start == bde_end) {
|
||||
return unmap_shared_bt(mm, bde_start, start, end,
|
||||
prev_shared, next_shared);
|
||||
}
|
||||
|
||||
/*
|
||||
* If more than one bounds tables are covered in this virtual
|
||||
* address region being munmap()ed, we need to separately check
|
||||
* whether bde_start and bde_end are shared with adjacent VMAs.
|
||||
*/
|
||||
ret = unmap_shared_bt(mm, bde_start, start, end, prev_shared, false);
|
||||
if (ret)
|
||||
return ret;
|
||||
ret = unmap_shared_bt(mm, bde_end, start, end, false, next_shared);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mpx_unmap_tables(struct mm_struct *mm,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
int ret;
|
||||
long __user *bd_entry, *bde_start, *bde_end;
|
||||
unsigned long bt_addr;
|
||||
|
||||
/*
|
||||
* "Edge" bounds tables are those which are being used by the region
|
||||
* (start -> end), but that may be shared with adjacent areas. If they
|
||||
* turn out to be completely unshared, they will be freed. If they are
|
||||
* shared, we will free the backing store (like an MADV_DONTNEED) for
|
||||
* areas used by this region.
|
||||
*/
|
||||
ret = unmap_edge_bts(mm, start, end);
|
||||
switch (ret) {
|
||||
/* non-present tables are OK */
|
||||
case 0:
|
||||
case -ENOENT:
|
||||
/* Success, or no tables to unmap */
|
||||
break;
|
||||
case -EINVAL:
|
||||
case -EFAULT:
|
||||
default:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Only unmap the bounds table that are
|
||||
* 1. fully covered
|
||||
* 2. not at the edges of the mapping, even if full aligned
|
||||
*/
|
||||
bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
|
||||
bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
|
||||
for (bd_entry = bde_start + 1; bd_entry < bde_end; bd_entry++) {
|
||||
ret = get_bt_addr(mm, bd_entry, &bt_addr);
|
||||
switch (ret) {
|
||||
case 0:
|
||||
break;
|
||||
case -ENOENT:
|
||||
/* No table here, try the next one */
|
||||
continue;
|
||||
case -EINVAL:
|
||||
case -EFAULT:
|
||||
default:
|
||||
/*
|
||||
* Note: we are being strict here.
|
||||
* Any time we run in to an issue
|
||||
* unmapping tables, we stop and
|
||||
* SIGSEGV.
|
||||
*/
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = unmap_single_bt(mm, bd_entry, bt_addr);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Free unused bounds tables covered in a virtual address region being
|
||||
* munmap()ed. Assume end > start.
|
||||
*
|
||||
* This function will be called by do_munmap(), and the VMAs covering
|
||||
* the virtual address region start...end have already been split if
|
||||
* necessary, and the 'vma' is the first vma in this range (start -> end).
|
||||
*/
|
||||
void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* Refuse to do anything unless userspace has asked
|
||||
* the kernel to help manage the bounds tables,
|
||||
*/
|
||||
if (!kernel_managing_mpx_tables(current->mm))
|
||||
return;
|
||||
/*
|
||||
* This will look across the entire 'start -> end' range,
|
||||
* and find all of the non-VM_MPX VMAs.
|
||||
*
|
||||
* To avoid recursion, if a VM_MPX vma is found in the range
|
||||
* (start->end), we will not continue follow-up work. This
|
||||
* recursion represents having bounds tables for bounds tables,
|
||||
* which should not occur normally. Being strict about it here
|
||||
* helps ensure that we do not have an exploitable stack overflow.
|
||||
*/
|
||||
do {
|
||||
if (vma->vm_flags & VM_MPX)
|
||||
return;
|
||||
vma = vma->vm_next;
|
||||
} while (vma && vma->vm_start < end);
|
||||
|
||||
ret = mpx_unmap_tables(mm, start, end);
|
||||
if (ret)
|
||||
force_sig(SIGSEGV, current);
|
||||
}
|
|
@ -254,7 +254,7 @@ int main(int argc, char **argv)
|
|||
continue;
|
||||
|
||||
/* Decode an instruction */
|
||||
insn_init(&insn, insn_buf, x86_64);
|
||||
insn_init(&insn, insn_buf, sizeof(insn_buf), x86_64);
|
||||
insn_get_length(&insn);
|
||||
|
||||
if (insn.next_byte <= insn.kaddr ||
|
||||
|
|
|
@ -149,7 +149,7 @@ int main(int argc, char **argv)
|
|||
break;
|
||||
}
|
||||
/* Decode an instruction */
|
||||
insn_init(&insn, insn_buf, x86_64);
|
||||
insn_init(&insn, insn_buf, sizeof(insn_buf), x86_64);
|
||||
insn_get_length(&insn);
|
||||
if (insn.length != nb) {
|
||||
warnings++;
|
||||
|
|
|
@ -277,6 +277,7 @@ static int __bprm_mm_init(struct linux_binprm *bprm)
|
|||
goto err;
|
||||
|
||||
mm->stack_vm = mm->total_vm = 1;
|
||||
arch_bprm_mm_init(mm, vma);
|
||||
up_write(&mm->mmap_sem);
|
||||
bprm->p = vma->vm_end - sizeof(void *);
|
||||
return 0;
|
||||
|
|
|
@ -552,6 +552,9 @@ static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
|
|||
[ilog2(VM_GROWSDOWN)] = "gd",
|
||||
[ilog2(VM_PFNMAP)] = "pf",
|
||||
[ilog2(VM_DENYWRITE)] = "dw",
|
||||
#ifdef CONFIG_X86_INTEL_MPX
|
||||
[ilog2(VM_MPX)] = "mp",
|
||||
#endif
|
||||
[ilog2(VM_LOCKED)] = "lo",
|
||||
[ilog2(VM_IO)] = "io",
|
||||
[ilog2(VM_SEQ_READ)] = "sr",
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
* Define generic no-op hooks for arch_dup_mmap and arch_exit_mmap, to
|
||||
* be included in asm-FOO/mmu_context.h for any arch FOO which doesn't
|
||||
* need to hook these.
|
||||
* Define generic no-op hooks for arch_dup_mmap, arch_exit_mmap
|
||||
* and arch_unmap to be included in asm-FOO/mmu_context.h for any
|
||||
* arch FOO which doesn't need to hook these.
|
||||
*/
|
||||
#ifndef _ASM_GENERIC_MM_HOOKS_H
|
||||
#define _ASM_GENERIC_MM_HOOKS_H
|
||||
|
@ -15,4 +15,15 @@ static inline void arch_exit_mmap(struct mm_struct *mm)
|
|||
{
|
||||
}
|
||||
|
||||
static inline void arch_unmap(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void arch_bprm_mm_init(struct mm_struct *mm,
|
||||
struct vm_area_struct *vma)
|
||||
{
|
||||
}
|
||||
|
||||
#endif /* _ASM_GENERIC_MM_HOOKS_H */
|
||||
|
|
|
@ -128,6 +128,7 @@ extern unsigned int kobjsize(const void *objp);
|
|||
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
|
||||
#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
|
||||
#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
|
||||
#define VM_ARCH_2 0x02000000
|
||||
#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
|
||||
|
||||
#ifdef CONFIG_MEM_SOFT_DIRTY
|
||||
|
@ -155,6 +156,11 @@ extern unsigned int kobjsize(const void *objp);
|
|||
# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_X86)
|
||||
/* MPX specific bounds table or bounds directory */
|
||||
# define VM_MPX VM_ARCH_2
|
||||
#endif
|
||||
|
||||
#ifndef VM_GROWSUP
|
||||
# define VM_GROWSUP VM_NONE
|
||||
#endif
|
||||
|
|
|
@ -454,6 +454,10 @@ struct mm_struct {
|
|||
bool tlb_flush_pending;
|
||||
#endif
|
||||
struct uprobes_state uprobes_state;
|
||||
#ifdef CONFIG_X86_INTEL_MPX
|
||||
/* address of the bounds directory */
|
||||
void __user *bd_addr;
|
||||
#endif
|
||||
};
|
||||
|
||||
static inline void mm_init_cpumask(struct mm_struct *mm)
|
||||
|
|
|
@ -91,6 +91,10 @@ typedef struct siginfo {
|
|||
int _trapno; /* TRAP # which caused the signal */
|
||||
#endif
|
||||
short _addr_lsb; /* LSB of the reported address */
|
||||
struct {
|
||||
void __user *_lower;
|
||||
void __user *_upper;
|
||||
} _addr_bnd;
|
||||
} _sigfault;
|
||||
|
||||
/* SIGPOLL */
|
||||
|
@ -131,6 +135,8 @@ typedef struct siginfo {
|
|||
#define si_trapno _sifields._sigfault._trapno
|
||||
#endif
|
||||
#define si_addr_lsb _sifields._sigfault._addr_lsb
|
||||
#define si_lower _sifields._sigfault._addr_bnd._lower
|
||||
#define si_upper _sifields._sigfault._addr_bnd._upper
|
||||
#define si_band _sifields._sigpoll._band
|
||||
#define si_fd _sifields._sigpoll._fd
|
||||
#ifdef __ARCH_SIGSYS
|
||||
|
@ -199,7 +205,8 @@ typedef struct siginfo {
|
|||
*/
|
||||
#define SEGV_MAPERR (__SI_FAULT|1) /* address not mapped to object */
|
||||
#define SEGV_ACCERR (__SI_FAULT|2) /* invalid permissions for mapped object */
|
||||
#define NSIGSEGV 2
|
||||
#define SEGV_BNDERR (__SI_FAULT|3) /* failed address bound checks */
|
||||
#define NSIGSEGV 3
|
||||
|
||||
/*
|
||||
* SIGBUS si_codes
|
||||
|
|
|
@ -179,4 +179,10 @@ struct prctl_mm_map {
|
|||
#define PR_SET_THP_DISABLE 41
|
||||
#define PR_GET_THP_DISABLE 42
|
||||
|
||||
/*
|
||||
* Tell the kernel to start/stop helping userspace manage bounds tables.
|
||||
*/
|
||||
#define PR_MPX_ENABLE_MANAGEMENT 43
|
||||
#define PR_MPX_DISABLE_MANAGEMENT 44
|
||||
|
||||
#endif /* _LINUX_PRCTL_H */
|
||||
|
|
|
@ -2755,6 +2755,10 @@ int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
|
|||
*/
|
||||
if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
|
||||
err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
|
||||
#endif
|
||||
#ifdef SEGV_BNDERR
|
||||
err |= __put_user(from->si_lower, &to->si_lower);
|
||||
err |= __put_user(from->si_upper, &to->si_upper);
|
||||
#endif
|
||||
break;
|
||||
case __SI_CHLD:
|
||||
|
|
12
kernel/sys.c
12
kernel/sys.c
|
@ -91,6 +91,12 @@
|
|||
#ifndef SET_TSC_CTL
|
||||
# define SET_TSC_CTL(a) (-EINVAL)
|
||||
#endif
|
||||
#ifndef MPX_ENABLE_MANAGEMENT
|
||||
# define MPX_ENABLE_MANAGEMENT(a) (-EINVAL)
|
||||
#endif
|
||||
#ifndef MPX_DISABLE_MANAGEMENT
|
||||
# define MPX_DISABLE_MANAGEMENT(a) (-EINVAL)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* this is where the system-wide overflow UID and GID are defined, for
|
||||
|
@ -2203,6 +2209,12 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
|
|||
me->mm->def_flags &= ~VM_NOHUGEPAGE;
|
||||
up_write(&me->mm->mmap_sem);
|
||||
break;
|
||||
case PR_MPX_ENABLE_MANAGEMENT:
|
||||
error = MPX_ENABLE_MANAGEMENT(me);
|
||||
break;
|
||||
case PR_MPX_DISABLE_MANAGEMENT:
|
||||
error = MPX_DISABLE_MANAGEMENT(me);
|
||||
break;
|
||||
default:
|
||||
error = -EINVAL;
|
||||
break;
|
||||
|
|
|
@ -2601,6 +2601,8 @@ int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
|
|||
detach_vmas_to_be_unmapped(mm, vma, prev, end);
|
||||
unmap_region(mm, vma, prev, start, end);
|
||||
|
||||
arch_unmap(mm, vma, start, end);
|
||||
|
||||
/* Fix up all other VM information */
|
||||
remove_vma_list(mm, vma);
|
||||
|
||||
|
|
Loading…
Reference in a new issue