m68k: introduce little-endian bitops

Introduce little-endian bit operations by renaming native ext2 bit
operations and changing find_*_bit_le() to take a "void *".  The ext2 bit
operations are kept as wrapper macros using little-endian bit operations
to maintain bisectability until the conversions are finished.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Akinobu Mita 2011-03-23 16:41:58 -07:00 committed by Linus Torvalds
parent f6b57e322f
commit 3f5527fe7e

View file

@ -359,24 +359,45 @@ static inline int minix_test_bit(int nr, const void *vaddr)
return (p[nr >> 4] & (1U << (nr & 15))) != 0;
}
/* Bitmap functions for the ext2 filesystem. */
/* Bitmap functions for the little endian bitmap. */
#define ext2_set_bit(nr, addr) __test_and_set_bit((nr) ^ 24, (unsigned long *)(addr))
#define ext2_set_bit_atomic(lock, nr, addr) test_and_set_bit((nr) ^ 24, (unsigned long *)(addr))
#define ext2_clear_bit(nr, addr) __test_and_clear_bit((nr) ^ 24, (unsigned long *)(addr))
#define ext2_clear_bit_atomic(lock, nr, addr) test_and_clear_bit((nr) ^ 24, (unsigned long *)(addr))
#define ext2_find_next_zero_bit(addr, size, offset) \
find_next_zero_bit_le((unsigned long *)addr, size, offset)
#define ext2_find_next_bit(addr, size, offset) \
find_next_bit_le((unsigned long *)addr, size, offset)
static inline void __set_bit_le(int nr, void *addr)
{
__set_bit(nr ^ 24, addr);
}
static inline int ext2_test_bit(int nr, const void *vaddr)
static inline void __clear_bit_le(int nr, void *addr)
{
__clear_bit(nr ^ 24, addr);
}
static inline int __test_and_set_bit_le(int nr, void *addr)
{
return __test_and_set_bit(nr ^ 24, addr);
}
static inline int test_and_set_bit_le(int nr, void *addr)
{
return test_and_set_bit(nr ^ 24, addr);
}
static inline int __test_and_clear_bit_le(int nr, void *addr)
{
return __test_and_clear_bit(nr ^ 24, addr);
}
static inline int test_and_clear_bit_le(int nr, void *addr)
{
return test_and_clear_bit(nr ^ 24, addr);
}
static inline int test_bit_le(int nr, const void *vaddr)
{
const unsigned char *p = vaddr;
return (p[nr >> 3] & (1U << (nr & 7))) != 0;
}
static inline int ext2_find_first_zero_bit(const void *vaddr, unsigned size)
static inline int find_first_zero_bit_le(const void *vaddr, unsigned size)
{
const unsigned long *p = vaddr, *addr = vaddr;
int res;
@ -393,33 +414,36 @@ static inline int ext2_find_first_zero_bit(const void *vaddr, unsigned size)
--p;
for (res = 0; res < 32; res++)
if (!ext2_test_bit (res, p))
if (!test_bit_le(res, p))
break;
return (p - addr) * 32 + res;
}
static inline unsigned long find_next_zero_bit_le(const unsigned long *addr,
static inline unsigned long find_next_zero_bit_le(const void *addr,
unsigned long size, unsigned long offset)
{
const unsigned long *p = addr + (offset >> 5);
const unsigned long *p = addr;
int bit = offset & 31UL, res;
if (offset >= size)
return size;
p += offset >> 5;
if (bit) {
offset -= bit;
/* Look for zero in first longword */
for (res = bit; res < 32; res++)
if (!ext2_test_bit (res, p))
return (p - addr) * 32 + res;
if (!test_bit_le(res, p))
return offset + res;
p++;
offset += 32;
}
/* No zero yet, search remaining full bytes for a zero */
res = ext2_find_first_zero_bit (p, size - 32 * (p - addr));
return (p - addr) * 32 + res;
return offset + find_first_zero_bit_le(p, size - offset);
}
static inline int ext2_find_first_bit(const void *vaddr, unsigned size)
static inline int find_first_bit_le(const void *vaddr, unsigned size)
{
const unsigned long *p = vaddr, *addr = vaddr;
int res;
@ -435,32 +459,49 @@ static inline int ext2_find_first_bit(const void *vaddr, unsigned size)
--p;
for (res = 0; res < 32; res++)
if (ext2_test_bit(res, p))
if (test_bit_le(res, p))
break;
return (p - addr) * 32 + res;
}
static inline unsigned long find_next_bit_le(const unsigned long *addr,
static inline unsigned long find_next_bit_le(const void *addr,
unsigned long size, unsigned long offset)
{
const unsigned long *p = addr + (offset >> 5);
const unsigned long *p = addr;
int bit = offset & 31UL, res;
if (offset >= size)
return size;
p += offset >> 5;
if (bit) {
offset -= bit;
/* Look for one in first longword */
for (res = bit; res < 32; res++)
if (ext2_test_bit(res, p))
return (p - addr) * 32 + res;
if (test_bit_le(res, p))
return offset + res;
p++;
offset += 32;
}
/* No set bit yet, search remaining full bytes for a set bit */
res = ext2_find_first_bit(p, size - 32 * (p - addr));
return (p - addr) * 32 + res;
return offset + find_first_bit_le(p, size - offset);
}
/* Bitmap functions for the ext2 filesystem. */
#define ext2_set_bit __test_and_set_bit_le
#define ext2_set_bit_atomic(lock, nr, addr) \
test_and_set_bit_le(nr, addr)
#define ext2_clear_bit __test_and_clear_bit_le
#define ext2_clear_bit_atomic(lock, nr, addr) \
test_and_clear_bit_le(nr, addr)
#define ext2_find_next_zero_bit find_next_zero_bit_le
#define ext2_find_next_bit find_next_bit_le
#define ext2_test_bit test_bit_le
#define ext2_find_first_zero_bit find_first_zero_bit_le
#define ext2_find_first_bit find_first_bit_le
#endif /* __KERNEL__ */
#endif /* _M68K_BITOPS_H */