lguest: Sanitize the lguest clock.
Now the TSC code handles a zero return from calculate_cpu_khz(), lguest can simply pass through the value it gets from the Host: if non-zero, all the normal TSC code applies. Otherwise (or if the Host really doesn't support TSC), the clocksource code will fall back to the slower but reasonable lguest clock. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
parent
f14ae652ba
commit
3fabc55f34
1 changed files with 21 additions and 32 deletions
|
@ -84,7 +84,6 @@ struct lguest_data lguest_data = {
|
|||
.blocked_interrupts = { 1 }, /* Block timer interrupts */
|
||||
.syscall_vec = SYSCALL_VECTOR,
|
||||
};
|
||||
static cycle_t clock_base;
|
||||
|
||||
/*G:037 async_hcall() is pretty simple: I'm quite proud of it really. We have a
|
||||
* ring buffer of stored hypercalls which the Host will run though next time we
|
||||
|
@ -327,8 +326,8 @@ static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
|
|||
case 1: /* Basic feature request. */
|
||||
/* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */
|
||||
*cx &= 0x00002201;
|
||||
/* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, FPU. */
|
||||
*dx &= 0x07808101;
|
||||
/* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU. */
|
||||
*dx &= 0x07808111;
|
||||
/* The Host can do a nice optimization if it knows that the
|
||||
* kernel mappings (addresses above 0xC0000000 or whatever
|
||||
* PAGE_OFFSET is set to) haven't changed. But Linux calls
|
||||
|
@ -595,19 +594,25 @@ static unsigned long lguest_get_wallclock(void)
|
|||
return lguest_data.time.tv_sec;
|
||||
}
|
||||
|
||||
/* The TSC is a Time Stamp Counter. The Host tells us what speed it runs at,
|
||||
* or 0 if it's unusable as a reliable clock source. This matches what we want
|
||||
* here: if we return 0 from this function, the x86 TSC clock will not register
|
||||
* itself. */
|
||||
static unsigned long lguest_cpu_khz(void)
|
||||
{
|
||||
return lguest_data.tsc_khz;
|
||||
}
|
||||
|
||||
/* If we can't use the TSC, the kernel falls back to our "lguest_clock", where
|
||||
* we read the time value given to us by the Host. */
|
||||
static cycle_t lguest_clock_read(void)
|
||||
{
|
||||
unsigned long sec, nsec;
|
||||
|
||||
/* If the Host tells the TSC speed, we can trust that. */
|
||||
if (lguest_data.tsc_khz)
|
||||
return native_read_tsc();
|
||||
|
||||
/* If we can't use the TSC, we read the time value written by the Host.
|
||||
* Since it's in two parts (seconds and nanoseconds), we risk reading
|
||||
* it just as it's changing from 99 & 0.999999999 to 100 and 0, and
|
||||
* getting 99 and 0. As Linux tends to come apart under the stress of
|
||||
* time travel, we must be careful: */
|
||||
/* Since the time is in two parts (seconds and nanoseconds), we risk
|
||||
* reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
|
||||
* and getting 99 and 0. As Linux tends to come apart under the stress
|
||||
* of time travel, we must be careful: */
|
||||
do {
|
||||
/* First we read the seconds part. */
|
||||
sec = lguest_data.time.tv_sec;
|
||||
|
@ -622,14 +627,14 @@ static cycle_t lguest_clock_read(void)
|
|||
/* Now if the seconds part has changed, try again. */
|
||||
} while (unlikely(lguest_data.time.tv_sec != sec));
|
||||
|
||||
/* Our non-TSC clock is in real nanoseconds. */
|
||||
/* Our lguest clock is in real nanoseconds. */
|
||||
return sec*1000000000ULL + nsec;
|
||||
}
|
||||
|
||||
/* This is what we tell the kernel is our clocksource. */
|
||||
/* This is the fallback clocksource: lower priority than the TSC clocksource. */
|
||||
static struct clocksource lguest_clock = {
|
||||
.name = "lguest",
|
||||
.rating = 400,
|
||||
.rating = 200,
|
||||
.read = lguest_clock_read,
|
||||
.mask = CLOCKSOURCE_MASK(64),
|
||||
.mult = 1 << 22,
|
||||
|
@ -637,12 +642,6 @@ static struct clocksource lguest_clock = {
|
|||
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||||
};
|
||||
|
||||
/* The "scheduler clock" is just our real clock, adjusted to start at zero */
|
||||
static unsigned long long lguest_sched_clock(void)
|
||||
{
|
||||
return cyc2ns(&lguest_clock, lguest_clock_read() - clock_base);
|
||||
}
|
||||
|
||||
/* We also need a "struct clock_event_device": Linux asks us to set it to go
|
||||
* off some time in the future. Actually, James Morris figured all this out, I
|
||||
* just applied the patch. */
|
||||
|
@ -712,19 +711,8 @@ static void lguest_time_init(void)
|
|||
/* Set up the timer interrupt (0) to go to our simple timer routine */
|
||||
set_irq_handler(0, lguest_time_irq);
|
||||
|
||||
/* Our clock structure looks like arch/x86/kernel/tsc_32.c if we can
|
||||
* use the TSC, otherwise it's a dumb nanosecond-resolution clock.
|
||||
* Either way, the "rating" is set so high that it's always chosen over
|
||||
* any other clocksource. */
|
||||
if (lguest_data.tsc_khz)
|
||||
lguest_clock.mult = clocksource_khz2mult(lguest_data.tsc_khz,
|
||||
lguest_clock.shift);
|
||||
clock_base = lguest_clock_read();
|
||||
clocksource_register(&lguest_clock);
|
||||
|
||||
/* Now we've set up our clock, we can use it as the scheduler clock */
|
||||
pv_time_ops.sched_clock = lguest_sched_clock;
|
||||
|
||||
/* We can't set cpumask in the initializer: damn C limitations! Set it
|
||||
* here and register our timer device. */
|
||||
lguest_clockevent.cpumask = cpumask_of_cpu(0);
|
||||
|
@ -995,6 +983,7 @@ __init void lguest_init(void)
|
|||
/* time operations */
|
||||
pv_time_ops.get_wallclock = lguest_get_wallclock;
|
||||
pv_time_ops.time_init = lguest_time_init;
|
||||
pv_time_ops.get_cpu_khz = lguest_cpu_khz;
|
||||
|
||||
/* Now is a good time to look at the implementations of these functions
|
||||
* before returning to the rest of lguest_init(). */
|
||||
|
|
Loading…
Reference in a new issue