ASoC: fsl_esai: Add ESAI CPU DAI driver

This patch implements a device-tree-only CPU DAI driver for Freescale ESAI
controller that supports:

 - 12 channels playback and 8 channels record.
   [ Some of the inner transmitters and receivers are sharing same group of
     pins. So the maxmium 12 output or 8 input channels are only valid if
     there is no pin conflict occurring to it. ]

 - Independent (asynchronous mode) or shared (synchronous mode) transmit and
   receive sections with separate or shared internal/external clocks and frame
   syncs, operating in Master or Slave mode.
   [ Current ALSA seems not to allow CPU DAI drivers to configure DAI format
     separately for PLAYBACK and CAPTURE. So this first version only supports
     the case that uses the same DAI format for both directions. ]

 - Various DAI formats: I2S, Left-Justified, Right-Justified, DSP-A and DSP-B.

 - Programmable word length (8, 16, 20 or 24bits)

 - Flexible selection between system clock or external oscillator as input
   clock source, programmable internal clock divider and frame sync generation.

Signed-off-by: Nicolin Chen <Guangyu.Chen@freescale.com>
Signed-off-by: Mark Brown <broonie@linaro.org>
This commit is contained in:
Nicolin Chen 2014-01-10 17:54:06 +08:00 committed by Mark Brown
parent 633ff8f8a4
commit 43d24e76b6
5 changed files with 1224 additions and 0 deletions

View file

@ -0,0 +1,50 @@
Freescale Enhanced Serial Audio Interface (ESAI) Controller
The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port
for serial communication with a variety of serial devices, including industry
standard codecs, Sony/Phillips Digital Interface (S/PDIF) transceivers, and
other DSPs. It has up to six transmitters and four receivers.
Required properties:
- compatible : Compatible list, must contain "fsl,imx35-esai".
- reg : Offset and length of the register set for the device.
- interrupts : Contains the spdif interrupt.
- dmas : Generic dma devicetree binding as described in
Documentation/devicetree/bindings/dma/dma.txt.
- dma-names : Two dmas have to be defined, "tx" and "rx".
- clocks: Contains an entry for each entry in clock-names.
- clock-names : Includes the following entries:
"core" The core clock used to access registers
"extal" The esai baud clock for esai controller used to derive
HCK, SCK and FS.
"fsys" The system clock derived from ahb clock used to derive
HCK, SCK and FS.
- fsl,fifo-depth: The number of elements in the transmit and receive FIFOs.
This number is the maximum allowed value for TFCR[TFWM] or RFCR[RFWM].
- fsl,esai-synchronous: This is a boolean property. If present, indicating
that ESAI would work in the synchronous mode, which means all the settings
for Receiving would be duplicated from Transmition related registers.
Example:
esai: esai@02024000 {
compatible = "fsl,imx35-esai";
reg = <0x02024000 0x4000>;
interrupts = <0 51 0x04>;
clocks = <&clks 208>, <&clks 118>, <&clks 208>;
clock-names = "core", "extal", "fsys";
dmas = <&sdma 23 21 0>, <&sdma 24 21 0>;
dma-names = "rx", "tx";
fsl,fifo-depth = <128>;
fsl,esai-synchronous;
status = "disabled";
};

View file

@ -8,6 +8,9 @@ config SND_SOC_FSL_SSI
config SND_SOC_FSL_SPDIF
tristate
config SND_SOC_FSL_ESAI
tristate
config SND_SOC_FSL_UTILS
tristate

View file

@ -14,11 +14,13 @@ obj-$(CONFIG_SND_SOC_P1022_RDK) += snd-soc-p1022-rdk.o
snd-soc-fsl-sai-objs := fsl_sai.o
snd-soc-fsl-ssi-objs := fsl_ssi.o
snd-soc-fsl-spdif-objs := fsl_spdif.o
snd-soc-fsl-esai-objs := fsl_esai.o
snd-soc-fsl-utils-objs := fsl_utils.o
snd-soc-fsl-dma-objs := fsl_dma.o
obj-$(CONFIG_SND_SOC_FSL_SAI) += snd-soc-fsl-sai.o
obj-$(CONFIG_SND_SOC_FSL_SSI) += snd-soc-fsl-ssi.o
obj-$(CONFIG_SND_SOC_FSL_SPDIF) += snd-soc-fsl-spdif.o
obj-$(CONFIG_SND_SOC_FSL_ESAI) += snd-soc-fsl-esai.o
obj-$(CONFIG_SND_SOC_FSL_UTILS) += snd-soc-fsl-utils.o
obj-$(CONFIG_SND_SOC_POWERPC_DMA) += snd-soc-fsl-dma.o

815
sound/soc/fsl/fsl_esai.c Normal file
View file

@ -0,0 +1,815 @@
/*
* Freescale ESAI ALSA SoC Digital Audio Interface (DAI) driver
*
* Copyright (C) 2014 Freescale Semiconductor, Inc.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include "fsl_esai.h"
#include "imx-pcm.h"
#define FSL_ESAI_RATES SNDRV_PCM_RATE_8000_192000
#define FSL_ESAI_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_LE)
/**
* fsl_esai: ESAI private data
*
* @dma_params_rx: DMA parameters for receive channel
* @dma_params_tx: DMA parameters for transmit channel
* @pdev: platform device pointer
* @regmap: regmap handler
* @coreclk: clock source to access register
* @extalclk: esai clock source to derive HCK, SCK and FS
* @fsysclk: system clock source to derive HCK, SCK and FS
* @fifo_depth: depth of tx/rx FIFO
* @slot_width: width of each DAI slot
* @hck_rate: clock rate of desired HCKx clock
* @sck_div: if using PSR/PM dividers for SCKx clock
* @slave_mode: if fully using DAI slave mode
* @synchronous: if using tx/rx synchronous mode
* @name: driver name
*/
struct fsl_esai {
struct snd_dmaengine_dai_dma_data dma_params_rx;
struct snd_dmaengine_dai_dma_data dma_params_tx;
struct platform_device *pdev;
struct regmap *regmap;
struct clk *coreclk;
struct clk *extalclk;
struct clk *fsysclk;
u32 fifo_depth;
u32 slot_width;
u32 hck_rate[2];
bool sck_div[2];
bool slave_mode;
bool synchronous;
char name[32];
};
static irqreturn_t esai_isr(int irq, void *devid)
{
struct fsl_esai *esai_priv = (struct fsl_esai *)devid;
struct platform_device *pdev = esai_priv->pdev;
u32 esr;
regmap_read(esai_priv->regmap, REG_ESAI_ESR, &esr);
if (esr & ESAI_ESR_TINIT_MASK)
dev_dbg(&pdev->dev, "isr: Transmition Initialized\n");
if (esr & ESAI_ESR_RFF_MASK)
dev_warn(&pdev->dev, "isr: Receiving overrun\n");
if (esr & ESAI_ESR_TFE_MASK)
dev_warn(&pdev->dev, "isr: Transmition underrun\n");
if (esr & ESAI_ESR_TLS_MASK)
dev_dbg(&pdev->dev, "isr: Just transmitted the last slot\n");
if (esr & ESAI_ESR_TDE_MASK)
dev_dbg(&pdev->dev, "isr: Transmition data exception\n");
if (esr & ESAI_ESR_TED_MASK)
dev_dbg(&pdev->dev, "isr: Transmitting even slots\n");
if (esr & ESAI_ESR_TD_MASK)
dev_dbg(&pdev->dev, "isr: Transmitting data\n");
if (esr & ESAI_ESR_RLS_MASK)
dev_dbg(&pdev->dev, "isr: Just received the last slot\n");
if (esr & ESAI_ESR_RDE_MASK)
dev_dbg(&pdev->dev, "isr: Receiving data exception\n");
if (esr & ESAI_ESR_RED_MASK)
dev_dbg(&pdev->dev, "isr: Receiving even slots\n");
if (esr & ESAI_ESR_RD_MASK)
dev_dbg(&pdev->dev, "isr: Receiving data\n");
return IRQ_HANDLED;
}
/**
* This function is used to calculate the divisors of psr, pm, fp and it is
* supposed to be called in set_dai_sysclk() and set_bclk().
*
* @ratio: desired overall ratio for the paticipating dividers
* @usefp: for HCK setting, there is no need to set fp divider
* @fp: bypass other dividers by setting fp directly if fp != 0
* @tx: current setting is for playback or capture
*/
static int fsl_esai_divisor_cal(struct snd_soc_dai *dai, bool tx, u32 ratio,
bool usefp, u32 fp)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
u32 psr, pm = 999, maxfp, prod, sub, savesub, i, j;
maxfp = usefp ? 16 : 1;
if (usefp && fp)
goto out_fp;
if (ratio > 2 * 8 * 256 * maxfp || ratio < 2) {
dev_err(dai->dev, "the ratio is out of range (2 ~ %d)\n",
2 * 8 * 256 * maxfp);
return -EINVAL;
} else if (ratio % 2) {
dev_err(dai->dev, "the raio must be even if using upper divider\n");
return -EINVAL;
}
ratio /= 2;
psr = ratio <= 256 * maxfp ? ESAI_xCCR_xPSR_BYPASS : ESAI_xCCR_xPSR_DIV8;
/* Set the max fluctuation -- 0.1% of the max devisor */
savesub = (psr ? 1 : 8) * 256 * maxfp / 1000;
/* Find the best value for PM */
for (i = 1; i <= 256; i++) {
for (j = 1; j <= maxfp; j++) {
/* PSR (1 or 8) * PM (1 ~ 256) * FP (1 ~ 16) */
prod = (psr ? 1 : 8) * i * j;
if (prod == ratio)
sub = 0;
else if (prod / ratio == 1)
sub = prod - ratio;
else if (ratio / prod == 1)
sub = ratio - prod;
else
continue;
/* Calculate the fraction */
sub = sub * 1000 / ratio;
if (sub < savesub) {
savesub = sub;
pm = i;
fp = j;
}
/* We are lucky */
if (savesub == 0)
goto out;
}
}
if (pm == 999) {
dev_err(dai->dev, "failed to calculate proper divisors\n");
return -EINVAL;
}
out:
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
ESAI_xCCR_xPSR_MASK | ESAI_xCCR_xPM_MASK,
psr | ESAI_xCCR_xPM(pm));
out_fp:
/* Bypass fp if not being required */
if (maxfp <= 1)
return 0;
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
ESAI_xCCR_xFP_MASK, ESAI_xCCR_xFP(fp));
return 0;
}
/**
* This function mainly configures the clock frequency of MCLK (HCKT/HCKR)
*
* @Parameters:
* clk_id: The clock source of HCKT/HCKR
* (Input from outside; output from inside, FSYS or EXTAL)
* freq: The required clock rate of HCKT/HCKR
* dir: The clock direction of HCKT/HCKR
*
* Note: If the direction is input, we do not care about clk_id.
*/
static int fsl_esai_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
struct clk *clksrc = esai_priv->extalclk;
bool tx = clk_id <= ESAI_HCKT_EXTAL;
bool in = dir == SND_SOC_CLOCK_IN;
u32 ret, ratio, ecr = 0;
unsigned long clk_rate;
/* sck_div can be only bypassed if ETO/ERO=0 and SNC_SOC_CLOCK_OUT */
esai_priv->sck_div[tx] = true;
/* Set the direction of HCKT/HCKR pins */
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
ESAI_xCCR_xHCKD, in ? 0 : ESAI_xCCR_xHCKD);
if (in)
goto out;
switch (clk_id) {
case ESAI_HCKT_FSYS:
case ESAI_HCKR_FSYS:
clksrc = esai_priv->fsysclk;
break;
case ESAI_HCKT_EXTAL:
ecr |= ESAI_ECR_ETI;
case ESAI_HCKR_EXTAL:
ecr |= ESAI_ECR_ERI;
break;
default:
return -EINVAL;
}
if (IS_ERR(clksrc)) {
dev_err(dai->dev, "no assigned %s clock\n",
clk_id % 2 ? "extal" : "fsys");
return PTR_ERR(clksrc);
}
clk_rate = clk_get_rate(clksrc);
ratio = clk_rate / freq;
if (ratio * freq > clk_rate)
ret = ratio * freq - clk_rate;
else if (ratio * freq < clk_rate)
ret = clk_rate - ratio * freq;
else
ret = 0;
/* Block if clock source can not be divided into the required rate */
if (ret != 0 && clk_rate / ret < 1000) {
dev_err(dai->dev, "failed to derive required HCK%c rate\n",
tx ? 'T' : 'R');
return -EINVAL;
}
if (ratio == 1) {
/* Bypass all the dividers if not being needed */
ecr |= tx ? ESAI_ECR_ETO : ESAI_ECR_ERO;
goto out;
}
ret = fsl_esai_divisor_cal(dai, tx, ratio, false, 0);
if (ret)
return ret;
esai_priv->sck_div[tx] = false;
out:
esai_priv->hck_rate[tx] = freq;
regmap_update_bits(esai_priv->regmap, REG_ESAI_ECR,
tx ? ESAI_ECR_ETI | ESAI_ECR_ETO :
ESAI_ECR_ERI | ESAI_ECR_ERO, ecr);
return 0;
}
/**
* This function configures the related dividers according to the bclk rate
*/
static int fsl_esai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
u32 hck_rate = esai_priv->hck_rate[tx];
u32 sub, ratio = hck_rate / freq;
/* Don't apply for fully slave mode*/
if (esai_priv->slave_mode)
return 0;
if (ratio * freq > hck_rate)
sub = ratio * freq - hck_rate;
else if (ratio * freq < hck_rate)
sub = hck_rate - ratio * freq;
else
sub = 0;
/* Block if clock source can not be divided into the required rate */
if (sub != 0 && hck_rate / sub < 1000) {
dev_err(dai->dev, "failed to derive required SCK%c rate\n",
tx ? 'T' : 'R');
return -EINVAL;
}
if (esai_priv->sck_div[tx] && (ratio > 16 || ratio == 0)) {
dev_err(dai->dev, "the ratio is out of range (1 ~ 16)\n");
return -EINVAL;
}
return fsl_esai_divisor_cal(dai, tx, ratio, true,
esai_priv->sck_div[tx] ? 0 : ratio);
}
static int fsl_esai_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
u32 rx_mask, int slots, int slot_width)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR,
ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots));
regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMA,
ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(tx_mask));
regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMB,
ESAI_xSMA_xS_MASK, ESAI_xSMB_xS(tx_mask));
regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR,
ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots));
regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMA,
ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(rx_mask));
regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMB,
ESAI_xSMA_xS_MASK, ESAI_xSMB_xS(rx_mask));
esai_priv->slot_width = slot_width;
return 0;
}
static int fsl_esai_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
u32 xcr = 0, xccr = 0, mask;
/* DAI mode */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
/* Data on rising edge of bclk, frame low, 1clk before data */
xcr |= ESAI_xCR_xFSR;
xccr |= ESAI_xCCR_xFSP | ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
break;
case SND_SOC_DAIFMT_LEFT_J:
/* Data on rising edge of bclk, frame high */
xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
break;
case SND_SOC_DAIFMT_RIGHT_J:
/* Data on rising edge of bclk, frame high, right aligned */
xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCR_xWA;
break;
case SND_SOC_DAIFMT_DSP_A:
/* Data on rising edge of bclk, frame high, 1clk before data */
xcr |= ESAI_xCR_xFSL | ESAI_xCR_xFSR;
xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
break;
case SND_SOC_DAIFMT_DSP_B:
/* Data on rising edge of bclk, frame high */
xcr |= ESAI_xCR_xFSL;
xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
break;
default:
return -EINVAL;
}
/* DAI clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
/* Nothing to do for both normal cases */
break;
case SND_SOC_DAIFMT_IB_NF:
/* Invert bit clock */
xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
break;
case SND_SOC_DAIFMT_NB_IF:
/* Invert frame clock */
xccr ^= ESAI_xCCR_xFSP;
break;
case SND_SOC_DAIFMT_IB_IF:
/* Invert both clocks */
xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP;
break;
default:
return -EINVAL;
}
esai_priv->slave_mode = false;
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
esai_priv->slave_mode = true;
break;
case SND_SOC_DAIFMT_CBS_CFM:
xccr |= ESAI_xCCR_xCKD;
break;
case SND_SOC_DAIFMT_CBM_CFS:
xccr |= ESAI_xCCR_xFSD;
break;
case SND_SOC_DAIFMT_CBS_CFS:
xccr |= ESAI_xCCR_xFSD | ESAI_xCCR_xCKD;
break;
default:
return -EINVAL;
}
mask = ESAI_xCR_xFSL | ESAI_xCR_xFSR;
regmap_update_bits(esai_priv->regmap, REG_ESAI_TCR, mask, xcr);
regmap_update_bits(esai_priv->regmap, REG_ESAI_RCR, mask, xcr);
mask = ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP |
ESAI_xCCR_xFSD | ESAI_xCCR_xCKD | ESAI_xCR_xWA;
regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR, mask, xccr);
regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR, mask, xccr);
return 0;
}
static int fsl_esai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
/*
* Some platforms might use the same bit to gate all three or two of
* clocks, so keep all clocks open/close at the same time for safety
*/
clk_prepare_enable(esai_priv->coreclk);
if (!IS_ERR(esai_priv->extalclk))
clk_prepare_enable(esai_priv->extalclk);
if (!IS_ERR(esai_priv->fsysclk))
clk_prepare_enable(esai_priv->fsysclk);
if (!dai->active) {
/* Reset Port C */
regmap_update_bits(esai_priv->regmap, REG_ESAI_PRRC,
ESAI_PRRC_PDC_MASK, ESAI_PRRC_PDC(ESAI_GPIO));
regmap_update_bits(esai_priv->regmap, REG_ESAI_PCRC,
ESAI_PCRC_PC_MASK, ESAI_PCRC_PC(ESAI_GPIO));
/* Set synchronous mode */
regmap_update_bits(esai_priv->regmap, REG_ESAI_SAICR,
ESAI_SAICR_SYNC, esai_priv->synchronous ?
ESAI_SAICR_SYNC : 0);
/* Set a default slot number -- 2 */
regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR,
ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2));
regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR,
ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2));
}
return 0;
}
static int fsl_esai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
u32 width = snd_pcm_format_width(params_format(params));
u32 channels = params_channels(params);
u32 bclk, mask, val, ret;
bclk = params_rate(params) * esai_priv->slot_width * 2;
ret = fsl_esai_set_bclk(dai, tx, bclk);
if (ret)
return ret;
/* Use Normal mode to support monaural audio */
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
ESAI_xCR_xMOD_MASK, params_channels(params) > 1 ?
ESAI_xCR_xMOD_NETWORK : 0);
regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
ESAI_xFCR_xFR_MASK, ESAI_xFCR_xFR);
mask = ESAI_xFCR_xFR_MASK | ESAI_xFCR_xWA_MASK | ESAI_xFCR_xFWM_MASK |
(tx ? ESAI_xFCR_TE_MASK | ESAI_xFCR_TIEN : ESAI_xFCR_RE_MASK);
val = ESAI_xFCR_xWA(width) | ESAI_xFCR_xFWM(esai_priv->fifo_depth) |
(tx ? ESAI_xFCR_TE(channels) | ESAI_xFCR_TIEN : ESAI_xFCR_RE(channels));
regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx), mask, val);
mask = ESAI_xCR_xSWS_MASK | (tx ? ESAI_xCR_PADC : 0);
val = ESAI_xCR_xSWS(esai_priv->slot_width, width) | (tx ? ESAI_xCR_PADC : 0);
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx), mask, val);
return 0;
}
static void fsl_esai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
if (!IS_ERR(esai_priv->fsysclk))
clk_disable_unprepare(esai_priv->fsysclk);
if (!IS_ERR(esai_priv->extalclk))
clk_disable_unprepare(esai_priv->extalclk);
clk_disable_unprepare(esai_priv->coreclk);
}
static int fsl_esai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
u8 i, channels = substream->runtime->channels;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
ESAI_xFCR_xFEN_MASK, ESAI_xFCR_xFEN);
/* Write initial words reqiured by ESAI as normal procedure */
for (i = 0; tx && i < channels; i++)
regmap_write(esai_priv->regmap, REG_ESAI_ETDR, 0x0);
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK,
tx ? ESAI_xCR_TE(channels) : ESAI_xCR_RE(channels));
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK, 0);
/* Disable and reset FIFO */
regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
ESAI_xFCR_xFR | ESAI_xFCR_xFEN, ESAI_xFCR_xFR);
regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
ESAI_xFCR_xFR, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static struct snd_soc_dai_ops fsl_esai_dai_ops = {
.startup = fsl_esai_startup,
.shutdown = fsl_esai_shutdown,
.trigger = fsl_esai_trigger,
.hw_params = fsl_esai_hw_params,
.set_sysclk = fsl_esai_set_dai_sysclk,
.set_fmt = fsl_esai_set_dai_fmt,
.set_tdm_slot = fsl_esai_set_dai_tdm_slot,
};
static int fsl_esai_dai_probe(struct snd_soc_dai *dai)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai, &esai_priv->dma_params_tx,
&esai_priv->dma_params_rx);
return 0;
}
static struct snd_soc_dai_driver fsl_esai_dai = {
.probe = fsl_esai_dai_probe,
.playback = {
.channels_min = 1,
.channels_max = 12,
.rates = FSL_ESAI_RATES,
.formats = FSL_ESAI_FORMATS,
},
.capture = {
.channels_min = 1,
.channels_max = 8,
.rates = FSL_ESAI_RATES,
.formats = FSL_ESAI_FORMATS,
},
.ops = &fsl_esai_dai_ops,
};
static const struct snd_soc_component_driver fsl_esai_component = {
.name = "fsl-esai",
};
static bool fsl_esai_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ESAI_ERDR:
case REG_ESAI_ECR:
case REG_ESAI_ESR:
case REG_ESAI_TFCR:
case REG_ESAI_TFSR:
case REG_ESAI_RFCR:
case REG_ESAI_RFSR:
case REG_ESAI_RX0:
case REG_ESAI_RX1:
case REG_ESAI_RX2:
case REG_ESAI_RX3:
case REG_ESAI_SAISR:
case REG_ESAI_SAICR:
case REG_ESAI_TCR:
case REG_ESAI_TCCR:
case REG_ESAI_RCR:
case REG_ESAI_RCCR:
case REG_ESAI_TSMA:
case REG_ESAI_TSMB:
case REG_ESAI_RSMA:
case REG_ESAI_RSMB:
case REG_ESAI_PRRC:
case REG_ESAI_PCRC:
return true;
default:
return false;
}
}
static bool fsl_esai_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ESAI_ETDR:
case REG_ESAI_ECR:
case REG_ESAI_TFCR:
case REG_ESAI_RFCR:
case REG_ESAI_TX0:
case REG_ESAI_TX1:
case REG_ESAI_TX2:
case REG_ESAI_TX3:
case REG_ESAI_TX4:
case REG_ESAI_TX5:
case REG_ESAI_TSR:
case REG_ESAI_SAICR:
case REG_ESAI_TCR:
case REG_ESAI_TCCR:
case REG_ESAI_RCR:
case REG_ESAI_RCCR:
case REG_ESAI_TSMA:
case REG_ESAI_TSMB:
case REG_ESAI_RSMA:
case REG_ESAI_RSMB:
case REG_ESAI_PRRC:
case REG_ESAI_PCRC:
return true;
default:
return false;
}
}
static const struct regmap_config fsl_esai_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = REG_ESAI_PCRC,
.readable_reg = fsl_esai_readable_reg,
.writeable_reg = fsl_esai_writeable_reg,
};
static int fsl_esai_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_esai *esai_priv;
struct resource *res;
const uint32_t *iprop;
void __iomem *regs;
int irq, ret;
esai_priv = devm_kzalloc(&pdev->dev, sizeof(*esai_priv), GFP_KERNEL);
if (!esai_priv)
return -ENOMEM;
esai_priv->pdev = pdev;
strcpy(esai_priv->name, np->name);
/* Get the addresses and IRQ */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
esai_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
"core", regs, &fsl_esai_regmap_config);
if (IS_ERR(esai_priv->regmap)) {
dev_err(&pdev->dev, "failed to init regmap: %ld\n",
PTR_ERR(esai_priv->regmap));
return PTR_ERR(esai_priv->regmap);
}
esai_priv->coreclk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(esai_priv->coreclk)) {
dev_err(&pdev->dev, "failed to get core clock: %ld\n",
PTR_ERR(esai_priv->coreclk));
return PTR_ERR(esai_priv->coreclk);
}
esai_priv->extalclk = devm_clk_get(&pdev->dev, "extal");
if (IS_ERR(esai_priv->extalclk))
dev_warn(&pdev->dev, "failed to get extal clock: %ld\n",
PTR_ERR(esai_priv->extalclk));
esai_priv->fsysclk = devm_clk_get(&pdev->dev, "fsys");
if (IS_ERR(esai_priv->fsysclk))
dev_warn(&pdev->dev, "failed to get fsys clock: %ld\n",
PTR_ERR(esai_priv->fsysclk));
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, esai_isr, 0,
esai_priv->name, esai_priv);
if (ret) {
dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
return ret;
}
/* Set a default slot size */
esai_priv->slot_width = 32;
/* Set a default master/slave state */
esai_priv->slave_mode = true;
/* Determine the FIFO depth */
iprop = of_get_property(np, "fsl,fifo-depth", NULL);
if (iprop)
esai_priv->fifo_depth = be32_to_cpup(iprop);
else
esai_priv->fifo_depth = 64;
esai_priv->dma_params_tx.maxburst = 16;
esai_priv->dma_params_rx.maxburst = 16;
esai_priv->dma_params_tx.addr = res->start + REG_ESAI_ETDR;
esai_priv->dma_params_rx.addr = res->start + REG_ESAI_ERDR;
esai_priv->synchronous =
of_property_read_bool(np, "fsl,esai-synchronous");
/* Implement full symmetry for synchronous mode */
if (esai_priv->synchronous) {
fsl_esai_dai.symmetric_rates = 1;
fsl_esai_dai.symmetric_channels = 1;
fsl_esai_dai.symmetric_samplebits = 1;
}
dev_set_drvdata(&pdev->dev, esai_priv);
/* Reset ESAI unit */
ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ERST);
if (ret) {
dev_err(&pdev->dev, "failed to reset ESAI: %d\n", ret);
return ret;
}
/*
* We need to enable ESAI so as to access some of its registers.
* Otherwise, we would fail to dump regmap from user space.
*/
ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ESAIEN);
if (ret) {
dev_err(&pdev->dev, "failed to enable ESAI: %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(&pdev->dev, &fsl_esai_component,
&fsl_esai_dai, 1);
if (ret) {
dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
return ret;
}
ret = imx_pcm_dma_init(pdev);
if (ret)
dev_err(&pdev->dev, "failed to init imx pcm dma: %d\n", ret);
return ret;
}
static const struct of_device_id fsl_esai_dt_ids[] = {
{ .compatible = "fsl,imx35-esai", },
{}
};
MODULE_DEVICE_TABLE(of, fsl_esai_dt_ids);
static struct platform_driver fsl_esai_driver = {
.probe = fsl_esai_probe,
.driver = {
.name = "fsl-esai-dai",
.owner = THIS_MODULE,
.of_match_table = fsl_esai_dt_ids,
},
};
module_platform_driver(fsl_esai_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Freescale ESAI CPU DAI driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:fsl-esai-dai");

354
sound/soc/fsl/fsl_esai.h Normal file
View file

@ -0,0 +1,354 @@
/*
* fsl_esai.h - ALSA ESAI interface for the Freescale i.MX SoC
*
* Copyright (C) 2014 Freescale Semiconductor, Inc.
*
* Author: Nicolin Chen <Guangyu.Chen@freescale.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#ifndef _FSL_ESAI_DAI_H
#define _FSL_ESAI_DAI_H
/* ESAI Register Map */
#define REG_ESAI_ETDR 0x00
#define REG_ESAI_ERDR 0x04
#define REG_ESAI_ECR 0x08
#define REG_ESAI_ESR 0x0C
#define REG_ESAI_TFCR 0x10
#define REG_ESAI_TFSR 0x14
#define REG_ESAI_RFCR 0x18
#define REG_ESAI_RFSR 0x1C
#define REG_ESAI_xFCR(tx) (tx ? REG_ESAI_TFCR : REG_ESAI_RFCR)
#define REG_ESAI_xFSR(tx) (tx ? REG_ESAI_TFSR : REG_ESAI_RFSR)
#define REG_ESAI_TX0 0x80
#define REG_ESAI_TX1 0x84
#define REG_ESAI_TX2 0x88
#define REG_ESAI_TX3 0x8C
#define REG_ESAI_TX4 0x90
#define REG_ESAI_TX5 0x94
#define REG_ESAI_TSR 0x98
#define REG_ESAI_RX0 0xA0
#define REG_ESAI_RX1 0xA4
#define REG_ESAI_RX2 0xA8
#define REG_ESAI_RX3 0xAC
#define REG_ESAI_SAISR 0xCC
#define REG_ESAI_SAICR 0xD0
#define REG_ESAI_TCR 0xD4
#define REG_ESAI_TCCR 0xD8
#define REG_ESAI_RCR 0xDC
#define REG_ESAI_RCCR 0xE0
#define REG_ESAI_xCR(tx) (tx ? REG_ESAI_TCR : REG_ESAI_RCR)
#define REG_ESAI_xCCR(tx) (tx ? REG_ESAI_TCCR : REG_ESAI_RCCR)
#define REG_ESAI_TSMA 0xE4
#define REG_ESAI_TSMB 0xE8
#define REG_ESAI_RSMA 0xEC
#define REG_ESAI_RSMB 0xF0
#define REG_ESAI_xSMA(tx) (tx ? REG_ESAI_TSMA : REG_ESAI_RSMA)
#define REG_ESAI_xSMB(tx) (tx ? REG_ESAI_TSMB : REG_ESAI_RSMB)
#define REG_ESAI_PRRC 0xF8
#define REG_ESAI_PCRC 0xFC
/* ESAI Control Register -- REG_ESAI_ECR 0x8 */
#define ESAI_ECR_ETI_SHIFT 19
#define ESAI_ECR_ETI_MASK (1 << ESAI_ECR_ETI_SHIFT)
#define ESAI_ECR_ETI (1 << ESAI_ECR_ETI_SHIFT)
#define ESAI_ECR_ETO_SHIFT 18
#define ESAI_ECR_ETO_MASK (1 << ESAI_ECR_ETO_SHIFT)
#define ESAI_ECR_ETO (1 << ESAI_ECR_ETO_SHIFT)
#define ESAI_ECR_ERI_SHIFT 17
#define ESAI_ECR_ERI_MASK (1 << ESAI_ECR_ERI_SHIFT)
#define ESAI_ECR_ERI (1 << ESAI_ECR_ERI_SHIFT)
#define ESAI_ECR_ERO_SHIFT 16
#define ESAI_ECR_ERO_MASK (1 << ESAI_ECR_ERO_SHIFT)
#define ESAI_ECR_ERO (1 << ESAI_ECR_ERO_SHIFT)
#define ESAI_ECR_ERST_SHIFT 1
#define ESAI_ECR_ERST_MASK (1 << ESAI_ECR_ERST_SHIFT)
#define ESAI_ECR_ERST (1 << ESAI_ECR_ERST_SHIFT)
#define ESAI_ECR_ESAIEN_SHIFT 0
#define ESAI_ECR_ESAIEN_MASK (1 << ESAI_ECR_ESAIEN_SHIFT)
#define ESAI_ECR_ESAIEN (1 << ESAI_ECR_ESAIEN_SHIFT)
/* ESAI Status Register -- REG_ESAI_ESR 0xC */
#define ESAI_ESR_TINIT_SHIFT 10
#define ESAI_ESR_TINIT_MASK (1 << ESAI_ESR_TINIT_SHIFT)
#define ESAI_ESR_TINIT (1 << ESAI_ESR_TINIT_SHIFT)
#define ESAI_ESR_RFF_SHIFT 9
#define ESAI_ESR_RFF_MASK (1 << ESAI_ESR_RFF_SHIFT)
#define ESAI_ESR_RFF (1 << ESAI_ESR_RFF_SHIFT)
#define ESAI_ESR_TFE_SHIFT 8
#define ESAI_ESR_TFE_MASK (1 << ESAI_ESR_TFE_SHIFT)
#define ESAI_ESR_TFE (1 << ESAI_ESR_TFE_SHIFT)
#define ESAI_ESR_TLS_SHIFT 7
#define ESAI_ESR_TLS_MASK (1 << ESAI_ESR_TLS_SHIFT)
#define ESAI_ESR_TLS (1 << ESAI_ESR_TLS_SHIFT)
#define ESAI_ESR_TDE_SHIFT 6
#define ESAI_ESR_TDE_MASK (1 << ESAI_ESR_TDE_SHIFT)
#define ESAI_ESR_TDE (1 << ESAI_ESR_TDE_SHIFT)
#define ESAI_ESR_TED_SHIFT 5
#define ESAI_ESR_TED_MASK (1 << ESAI_ESR_TED_SHIFT)
#define ESAI_ESR_TED (1 << ESAI_ESR_TED_SHIFT)
#define ESAI_ESR_TD_SHIFT 4
#define ESAI_ESR_TD_MASK (1 << ESAI_ESR_TD_SHIFT)
#define ESAI_ESR_TD (1 << ESAI_ESR_TD_SHIFT)
#define ESAI_ESR_RLS_SHIFT 3
#define ESAI_ESR_RLS_MASK (1 << ESAI_ESR_RLS_SHIFT)
#define ESAI_ESR_RLS (1 << ESAI_ESR_RLS_SHIFT)
#define ESAI_ESR_RDE_SHIFT 2
#define ESAI_ESR_RDE_MASK (1 << ESAI_ESR_RDE_SHIFT)
#define ESAI_ESR_RDE (1 << ESAI_ESR_RDE_SHIFT)
#define ESAI_ESR_RED_SHIFT 1
#define ESAI_ESR_RED_MASK (1 << ESAI_ESR_RED_SHIFT)
#define ESAI_ESR_RED (1 << ESAI_ESR_RED_SHIFT)
#define ESAI_ESR_RD_SHIFT 0
#define ESAI_ESR_RD_MASK (1 << ESAI_ESR_RD_SHIFT)
#define ESAI_ESR_RD (1 << ESAI_ESR_RD_SHIFT)
/*
* Transmit FIFO Configuration Register -- REG_ESAI_TFCR 0x10
* Receive FIFO Configuration Register -- REG_ESAI_RFCR 0x18
*/
#define ESAI_xFCR_TIEN_SHIFT 19
#define ESAI_xFCR_TIEN_MASK (1 << ESAI_xFCR_TIEN_SHIFT)
#define ESAI_xFCR_TIEN (1 << ESAI_xFCR_TIEN_SHIFT)
#define ESAI_xFCR_REXT_SHIFT 19
#define ESAI_xFCR_REXT_MASK (1 << ESAI_xFCR_REXT_SHIFT)
#define ESAI_xFCR_REXT (1 << ESAI_xFCR_REXT_SHIFT)
#define ESAI_xFCR_xWA_SHIFT 16
#define ESAI_xFCR_xWA_WIDTH 3
#define ESAI_xFCR_xWA_MASK (((1 << ESAI_xFCR_xWA_WIDTH) - 1) << ESAI_xFCR_xWA_SHIFT)
#define ESAI_xFCR_xWA(v) (((8 - ((v) >> 2)) << ESAI_xFCR_xWA_SHIFT) & ESAI_xFCR_xWA_MASK)
#define ESAI_xFCR_xFWM_SHIFT 8
#define ESAI_xFCR_xFWM_WIDTH 8
#define ESAI_xFCR_xFWM_MASK (((1 << ESAI_xFCR_xFWM_WIDTH) - 1) << ESAI_xFCR_xFWM_SHIFT)
#define ESAI_xFCR_xFWM(v) ((((v) - 1) << ESAI_xFCR_xFWM_SHIFT) & ESAI_xFCR_xFWM_MASK)
#define ESAI_xFCR_xE_SHIFT 2
#define ESAI_xFCR_TE_WIDTH 6
#define ESAI_xFCR_RE_WIDTH 4
#define ESAI_xFCR_TE_MASK (((1 << ESAI_xFCR_TE_WIDTH) - 1) << ESAI_xFCR_xE_SHIFT)
#define ESAI_xFCR_RE_MASK (((1 << ESAI_xFCR_RE_WIDTH) - 1) << ESAI_xFCR_xE_SHIFT)
#define ESAI_xFCR_TE(x) ((ESAI_xFCR_TE_MASK >> (ESAI_xFCR_TE_WIDTH - ((x + 1) >> 1))) & ESAI_xFCR_TE_MASK)
#define ESAI_xFCR_RE(x) ((ESAI_xFCR_RE_MASK >> (ESAI_xFCR_RE_WIDTH - ((x + 1) >> 1))) & ESAI_xFCR_RE_MASK)
#define ESAI_xFCR_xFR_SHIFT 1
#define ESAI_xFCR_xFR_MASK (1 << ESAI_xFCR_xFR_SHIFT)
#define ESAI_xFCR_xFR (1 << ESAI_xFCR_xFR_SHIFT)
#define ESAI_xFCR_xFEN_SHIFT 0
#define ESAI_xFCR_xFEN_MASK (1 << ESAI_xFCR_xFEN_SHIFT)
#define ESAI_xFCR_xFEN (1 << ESAI_xFCR_xFEN_SHIFT)
/*
* Transmit FIFO Status Register -- REG_ESAI_TFSR 0x14
* Receive FIFO Status Register --REG_ESAI_RFSR 0x1C
*/
#define ESAI_xFSR_NTFO_SHIFT 12
#define ESAI_xFSR_NRFI_SHIFT 12
#define ESAI_xFSR_NTFI_SHIFT 8
#define ESAI_xFSR_NRFO_SHIFT 8
#define ESAI_xFSR_NTFx_WIDTH 3
#define ESAI_xFSR_NRFx_WIDTH 2
#define ESAI_xFSR_NTFO_MASK (((1 << ESAI_xFSR_NTFx_WIDTH) - 1) << ESAI_xFSR_NTFO_SHIFT)
#define ESAI_xFSR_NTFI_MASK (((1 << ESAI_xFSR_NTFx_WIDTH) - 1) << ESAI_xFSR_NTFI_SHIFT)
#define ESAI_xFSR_NRFO_MASK (((1 << ESAI_xFSR_NRFx_WIDTH) - 1) << ESAI_xFSR_NRFO_SHIFT)
#define ESAI_xFSR_NRFI_MASK (((1 << ESAI_xFSR_NRFx_WIDTH) - 1) << ESAI_xFSR_NRFI_SHIFT)
#define ESAI_xFSR_xFCNT_SHIFT 0
#define ESAI_xFSR_xFCNT_WIDTH 8
#define ESAI_xFSR_xFCNT_MASK (((1 << ESAI_xFSR_xFCNT_WIDTH) - 1) << ESAI_xFSR_xFCNT_SHIFT)
/* ESAI Transmit Slot Register -- REG_ESAI_TSR 0x98 */
#define ESAI_TSR_SHIFT 0
#define ESAI_TSR_WIDTH 24
#define ESAI_TSR_MASK (((1 << ESAI_TSR_WIDTH) - 1) << ESAI_TSR_SHIFT)
/* Serial Audio Interface Status Register -- REG_ESAI_SAISR 0xCC */
#define ESAI_SAISR_TODFE_SHIFT 17
#define ESAI_SAISR_TODFE_MASK (1 << ESAI_SAISR_TODFE_SHIFT)
#define ESAI_SAISR_TODFE (1 << ESAI_SAISR_TODFE_SHIFT)
#define ESAI_SAISR_TEDE_SHIFT 16
#define ESAI_SAISR_TEDE_MASK (1 << ESAI_SAISR_TEDE_SHIFT)
#define ESAI_SAISR_TEDE (1 << ESAI_SAISR_TEDE_SHIFT)
#define ESAI_SAISR_TDE_SHIFT 15
#define ESAI_SAISR_TDE_MASK (1 << ESAI_SAISR_TDE_SHIFT)
#define ESAI_SAISR_TDE (1 << ESAI_SAISR_TDE_SHIFT)
#define ESAI_SAISR_TUE_SHIFT 14
#define ESAI_SAISR_TUE_MASK (1 << ESAI_SAISR_TUE_SHIFT)
#define ESAI_SAISR_TUE (1 << ESAI_SAISR_TUE_SHIFT)
#define ESAI_SAISR_TFS_SHIFT 13
#define ESAI_SAISR_TFS_MASK (1 << ESAI_SAISR_TFS_SHIFT)
#define ESAI_SAISR_TFS (1 << ESAI_SAISR_TFS_SHIFT)
#define ESAI_SAISR_RODF_SHIFT 10
#define ESAI_SAISR_RODF_MASK (1 << ESAI_SAISR_RODF_SHIFT)
#define ESAI_SAISR_RODF (1 << ESAI_SAISR_RODF_SHIFT)
#define ESAI_SAISR_REDF_SHIFT 9
#define ESAI_SAISR_REDF_MASK (1 << ESAI_SAISR_REDF_SHIFT)
#define ESAI_SAISR_REDF (1 << ESAI_SAISR_REDF_SHIFT)
#define ESAI_SAISR_RDF_SHIFT 8
#define ESAI_SAISR_RDF_MASK (1 << ESAI_SAISR_RDF_SHIFT)
#define ESAI_SAISR_RDF (1 << ESAI_SAISR_RDF_SHIFT)
#define ESAI_SAISR_ROE_SHIFT 7
#define ESAI_SAISR_ROE_MASK (1 << ESAI_SAISR_ROE_SHIFT)
#define ESAI_SAISR_ROE (1 << ESAI_SAISR_ROE_SHIFT)
#define ESAI_SAISR_RFS_SHIFT 6
#define ESAI_SAISR_RFS_MASK (1 << ESAI_SAISR_RFS_SHIFT)
#define ESAI_SAISR_RFS (1 << ESAI_SAISR_RFS_SHIFT)
#define ESAI_SAISR_IF2_SHIFT 2
#define ESAI_SAISR_IF2_MASK (1 << ESAI_SAISR_IF2_SHIFT)
#define ESAI_SAISR_IF2 (1 << ESAI_SAISR_IF2_SHIFT)
#define ESAI_SAISR_IF1_SHIFT 1
#define ESAI_SAISR_IF1_MASK (1 << ESAI_SAISR_IF1_SHIFT)
#define ESAI_SAISR_IF1 (1 << ESAI_SAISR_IF1_SHIFT)
#define ESAI_SAISR_IF0_SHIFT 0
#define ESAI_SAISR_IF0_MASK (1 << ESAI_SAISR_IF0_SHIFT)
#define ESAI_SAISR_IF0 (1 << ESAI_SAISR_IF0_SHIFT)
/* Serial Audio Interface Control Register -- REG_ESAI_SAICR 0xD0 */
#define ESAI_SAICR_ALC_SHIFT 8
#define ESAI_SAICR_ALC_MASK (1 << ESAI_SAICR_ALC_SHIFT)
#define ESAI_SAICR_ALC (1 << ESAI_SAICR_ALC_SHIFT)
#define ESAI_SAICR_TEBE_SHIFT 7
#define ESAI_SAICR_TEBE_MASK (1 << ESAI_SAICR_TEBE_SHIFT)
#define ESAI_SAICR_TEBE (1 << ESAI_SAICR_TEBE_SHIFT)
#define ESAI_SAICR_SYNC_SHIFT 6
#define ESAI_SAICR_SYNC_MASK (1 << ESAI_SAICR_SYNC_SHIFT)
#define ESAI_SAICR_SYNC (1 << ESAI_SAICR_SYNC_SHIFT)
#define ESAI_SAICR_OF2_SHIFT 2
#define ESAI_SAICR_OF2_MASK (1 << ESAI_SAICR_OF2_SHIFT)
#define ESAI_SAICR_OF2 (1 << ESAI_SAICR_OF2_SHIFT)
#define ESAI_SAICR_OF1_SHIFT 1
#define ESAI_SAICR_OF1_MASK (1 << ESAI_SAICR_OF1_SHIFT)
#define ESAI_SAICR_OF1 (1 << ESAI_SAICR_OF1_SHIFT)
#define ESAI_SAICR_OF0_SHIFT 0
#define ESAI_SAICR_OF0_MASK (1 << ESAI_SAICR_OF0_SHIFT)
#define ESAI_SAICR_OF0 (1 << ESAI_SAICR_OF0_SHIFT)
/*
* Transmit Control Register -- REG_ESAI_TCR 0xD4
* Receive Control Register -- REG_ESAI_RCR 0xDC
*/
#define ESAI_xCR_xLIE_SHIFT 23
#define ESAI_xCR_xLIE_MASK (1 << ESAI_xCR_xLIE_SHIFT)
#define ESAI_xCR_xLIE (1 << ESAI_xCR_xLIE_SHIFT)
#define ESAI_xCR_xIE_SHIFT 22
#define ESAI_xCR_xIE_MASK (1 << ESAI_xCR_xIE_SHIFT)
#define ESAI_xCR_xIE (1 << ESAI_xCR_xIE_SHIFT)
#define ESAI_xCR_xEDIE_SHIFT 21
#define ESAI_xCR_xEDIE_MASK (1 << ESAI_xCR_xEDIE_SHIFT)
#define ESAI_xCR_xEDIE (1 << ESAI_xCR_xEDIE_SHIFT)
#define ESAI_xCR_xEIE_SHIFT 20
#define ESAI_xCR_xEIE_MASK (1 << ESAI_xCR_xEIE_SHIFT)
#define ESAI_xCR_xEIE (1 << ESAI_xCR_xEIE_SHIFT)
#define ESAI_xCR_xPR_SHIFT 19
#define ESAI_xCR_xPR_MASK (1 << ESAI_xCR_xPR_SHIFT)
#define ESAI_xCR_xPR (1 << ESAI_xCR_xPR_SHIFT)
#define ESAI_xCR_PADC_SHIFT 17
#define ESAI_xCR_PADC_MASK (1 << ESAI_xCR_PADC_SHIFT)
#define ESAI_xCR_PADC (1 << ESAI_xCR_PADC_SHIFT)
#define ESAI_xCR_xFSR_SHIFT 16
#define ESAI_xCR_xFSR_MASK (1 << ESAI_xCR_xFSR_SHIFT)
#define ESAI_xCR_xFSR (1 << ESAI_xCR_xFSR_SHIFT)
#define ESAI_xCR_xFSL_SHIFT 15
#define ESAI_xCR_xFSL_MASK (1 << ESAI_xCR_xFSL_SHIFT)
#define ESAI_xCR_xFSL (1 << ESAI_xCR_xFSL_SHIFT)
#define ESAI_xCR_xSWS_SHIFT 10
#define ESAI_xCR_xSWS_WIDTH 5
#define ESAI_xCR_xSWS_MASK (((1 << ESAI_xCR_xSWS_WIDTH) - 1) << ESAI_xCR_xSWS_SHIFT)
#define ESAI_xCR_xSWS(s, w) ((w < 24 ? (s - w + ((w - 8) >> 2)) : (s < 32 ? 0x1e : 0x1f)) << ESAI_xCR_xSWS_SHIFT)
#define ESAI_xCR_xMOD_SHIFT 8
#define ESAI_xCR_xMOD_WIDTH 2
#define ESAI_xCR_xMOD_MASK (((1 << ESAI_xCR_xMOD_WIDTH) - 1) << ESAI_xCR_xMOD_SHIFT)
#define ESAI_xCR_xMOD_ONDEMAND (0x1 << ESAI_xCR_xMOD_SHIFT)
#define ESAI_xCR_xMOD_NETWORK (0x1 << ESAI_xCR_xMOD_SHIFT)
#define ESAI_xCR_xMOD_AC97 (0x3 << ESAI_xCR_xMOD_SHIFT)
#define ESAI_xCR_xWA_SHIFT 7
#define ESAI_xCR_xWA_MASK (1 << ESAI_xCR_xWA_SHIFT)
#define ESAI_xCR_xWA (1 << ESAI_xCR_xWA_SHIFT)
#define ESAI_xCR_xSHFD_SHIFT 6
#define ESAI_xCR_xSHFD_MASK (1 << ESAI_xCR_xSHFD_SHIFT)
#define ESAI_xCR_xSHFD (1 << ESAI_xCR_xSHFD_SHIFT)
#define ESAI_xCR_xE_SHIFT 0
#define ESAI_xCR_TE_WIDTH 6
#define ESAI_xCR_RE_WIDTH 4
#define ESAI_xCR_TE_MASK (((1 << ESAI_xCR_TE_WIDTH) - 1) << ESAI_xCR_xE_SHIFT)
#define ESAI_xCR_RE_MASK (((1 << ESAI_xCR_RE_WIDTH) - 1) << ESAI_xCR_xE_SHIFT)
#define ESAI_xCR_TE(x) ((ESAI_xCR_TE_MASK >> (ESAI_xCR_TE_WIDTH - ((x + 1) >> 1))) & ESAI_xCR_TE_MASK)
#define ESAI_xCR_RE(x) ((ESAI_xCR_RE_MASK >> (ESAI_xCR_RE_WIDTH - ((x + 1) >> 1))) & ESAI_xCR_RE_MASK)
/*
* Transmit Clock Control Register -- REG_ESAI_TCCR 0xD8
* Receive Clock Control Register -- REG_ESAI_RCCR 0xE0
*/
#define ESAI_xCCR_xHCKD_SHIFT 23
#define ESAI_xCCR_xHCKD_MASK (1 << ESAI_xCCR_xHCKD_SHIFT)
#define ESAI_xCCR_xHCKD (1 << ESAI_xCCR_xHCKD_SHIFT)
#define ESAI_xCCR_xFSD_SHIFT 22
#define ESAI_xCCR_xFSD_MASK (1 << ESAI_xCCR_xFSD_SHIFT)
#define ESAI_xCCR_xFSD (1 << ESAI_xCCR_xFSD_SHIFT)
#define ESAI_xCCR_xCKD_SHIFT 21
#define ESAI_xCCR_xCKD_MASK (1 << ESAI_xCCR_xCKD_SHIFT)
#define ESAI_xCCR_xCKD (1 << ESAI_xCCR_xCKD_SHIFT)
#define ESAI_xCCR_xHCKP_SHIFT 20
#define ESAI_xCCR_xHCKP_MASK (1 << ESAI_xCCR_xHCKP_SHIFT)
#define ESAI_xCCR_xHCKP (1 << ESAI_xCCR_xHCKP_SHIFT)
#define ESAI_xCCR_xFSP_SHIFT 19
#define ESAI_xCCR_xFSP_MASK (1 << ESAI_xCCR_xFSP_SHIFT)
#define ESAI_xCCR_xFSP (1 << ESAI_xCCR_xFSP_SHIFT)
#define ESAI_xCCR_xCKP_SHIFT 18
#define ESAI_xCCR_xCKP_MASK (1 << ESAI_xCCR_xCKP_SHIFT)
#define ESAI_xCCR_xCKP (1 << ESAI_xCCR_xCKP_SHIFT)
#define ESAI_xCCR_xFP_SHIFT 14
#define ESAI_xCCR_xFP_WIDTH 4
#define ESAI_xCCR_xFP_MASK (((1 << ESAI_xCCR_xFP_WIDTH) - 1) << ESAI_xCCR_xFP_SHIFT)
#define ESAI_xCCR_xFP(v) ((((v) - 1) << ESAI_xCCR_xFP_SHIFT) & ESAI_xCCR_xFP_MASK)
#define ESAI_xCCR_xDC_SHIFT 9
#define ESAI_xCCR_xDC_WIDTH 4
#define ESAI_xCCR_xDC_MASK (((1 << ESAI_xCCR_xDC_WIDTH) - 1) << ESAI_xCCR_xDC_SHIFT)
#define ESAI_xCCR_xDC(v) ((((v) - 1) << ESAI_xCCR_xDC_SHIFT) & ESAI_xCCR_xDC_MASK)
#define ESAI_xCCR_xPSR_SHIFT 8
#define ESAI_xCCR_xPSR_MASK (1 << ESAI_xCCR_xPSR_SHIFT)
#define ESAI_xCCR_xPSR_BYPASS (1 << ESAI_xCCR_xPSR_SHIFT)
#define ESAI_xCCR_xPSR_DIV8 (0 << ESAI_xCCR_xPSR_SHIFT)
#define ESAI_xCCR_xPM_SHIFT 0
#define ESAI_xCCR_xPM_WIDTH 8
#define ESAI_xCCR_xPM_MASK (((1 << ESAI_xCCR_xPM_WIDTH) - 1) << ESAI_xCCR_xPM_SHIFT)
#define ESAI_xCCR_xPM(v) ((((v) - 1) << ESAI_xCCR_xPM_SHIFT) & ESAI_xCCR_xPM_MASK)
/* Transmit Slot Mask Register A/B -- REG_ESAI_TSMA/B 0xE4 ~ 0xF0 */
#define ESAI_xSMA_xS_SHIFT 0
#define ESAI_xSMA_xS_WIDTH 16
#define ESAI_xSMA_xS_MASK (((1 << ESAI_xSMA_xS_WIDTH) - 1) << ESAI_xSMA_xS_SHIFT)
#define ESAI_xSMA_xS(v) ((v) & ESAI_xSMA_xS_MASK)
#define ESAI_xSMB_xS_SHIFT 0
#define ESAI_xSMB_xS_WIDTH 16
#define ESAI_xSMB_xS_MASK (((1 << ESAI_xSMB_xS_WIDTH) - 1) << ESAI_xSMB_xS_SHIFT)
#define ESAI_xSMB_xS(v) (((v) >> ESAI_xSMA_xS_WIDTH) & ESAI_xSMA_xS_MASK)
/* Port C Direction Register -- REG_ESAI_PRRC 0xF8 */
#define ESAI_PRRC_PDC_SHIFT 0
#define ESAI_PRRC_PDC_WIDTH 12
#define ESAI_PRRC_PDC_MASK (((1 << ESAI_PRRC_PDC_WIDTH) - 1) << ESAI_PRRC_PDC_SHIFT)
#define ESAI_PRRC_PDC(v) ((v) & ESAI_PRRC_PDC_MASK)
/* Port C Control Register -- REG_ESAI_PCRC 0xFC */
#define ESAI_PCRC_PC_SHIFT 0
#define ESAI_PCRC_PC_WIDTH 12
#define ESAI_PCRC_PC_MASK (((1 << ESAI_PCRC_PC_WIDTH) - 1) << ESAI_PCRC_PC_SHIFT)
#define ESAI_PCRC_PC(v) ((v) & ESAI_PCRC_PC_MASK)
#define ESAI_GPIO 0xfff
/* ESAI clock source */
#define ESAI_HCKT_FSYS 0
#define ESAI_HCKT_EXTAL 1
#define ESAI_HCKR_FSYS 2
#define ESAI_HCKR_EXTAL 3
/* ESAI clock divider */
#define ESAI_TX_DIV_PSR 0
#define ESAI_TX_DIV_PM 1
#define ESAI_TX_DIV_FP 2
#define ESAI_RX_DIV_PSR 3
#define ESAI_RX_DIV_PM 4
#define ESAI_RX_DIV_FP 5
#endif /* _FSL_ESAI_DAI_H */