MIPS Kprobes: Support branch instructions probing
This patch provides support for kprobes on branch instructions. The branch instruction at the probed address is actually emulated and not executed out-of-line like other normal instructions. Instead the delay-slot instruction is copied and single stepped out of line. At the time of probe hit, the original branch instruction is evaluated and the target cp0_epc is computed similar to compute_retrun_epc(). It is also checked if the delay slot instruction can be skipped, which is true if there is a NOP in delay slot or branch is taken in case of branch likely instructions. Once the delay slot instruction is single stepped the normal execution resume with the cp0_epc updated the earlier computed cp0_epc as per the branch instructions. Signed-off-by: Maneesh Soni <manesoni@cisco.com> Signed-off-by: Victor Kamensky <kamensky@cisco.com> Cc: David Daney <david.daney@cavium.com> Cc: ananth@in.ibm.com Cc: linux-kernel@vger.kernel.org Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/2914/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
This commit is contained in:
parent
d8d4e3ae0b
commit
6457a396bb
2 changed files with 117 additions and 33 deletions
|
@ -74,6 +74,8 @@ struct prev_kprobe {
|
|||
: MAX_JPROBES_STACK_SIZE)
|
||||
|
||||
|
||||
#define SKIP_DELAYSLOT 0x0001
|
||||
|
||||
/* per-cpu kprobe control block */
|
||||
struct kprobe_ctlblk {
|
||||
unsigned long kprobe_status;
|
||||
|
@ -82,6 +84,9 @@ struct kprobe_ctlblk {
|
|||
unsigned long kprobe_saved_epc;
|
||||
unsigned long jprobe_saved_sp;
|
||||
struct pt_regs jprobe_saved_regs;
|
||||
/* Per-thread fields, used while emulating branches */
|
||||
unsigned long flags;
|
||||
unsigned long target_epc;
|
||||
u8 jprobes_stack[MAX_JPROBES_STACK_SIZE];
|
||||
struct prev_kprobe prev_kprobe;
|
||||
};
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
#include <linux/slab.h>
|
||||
|
||||
#include <asm/ptrace.h>
|
||||
#include <asm/branch.h>
|
||||
#include <asm/break.h>
|
||||
#include <asm/inst.h>
|
||||
|
||||
|
@ -152,13 +153,6 @@ int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|||
goto out;
|
||||
}
|
||||
|
||||
if (insn_has_delayslot(insn)) {
|
||||
pr_notice("Kprobes for branch and jump instructions are not"
|
||||
"supported\n");
|
||||
ret = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if ((probe_kernel_read(&prev_insn, p->addr - 1,
|
||||
sizeof(mips_instruction)) == 0) &&
|
||||
insn_has_delayslot(prev_insn)) {
|
||||
|
@ -178,9 +172,20 @@ int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|||
* In the kprobe->ainsn.insn[] array we store the original
|
||||
* instruction at index zero and a break trap instruction at
|
||||
* index one.
|
||||
*
|
||||
* On MIPS arch if the instruction at probed address is a
|
||||
* branch instruction, we need to execute the instruction at
|
||||
* Branch Delayslot (BD) at the time of probe hit. As MIPS also
|
||||
* doesn't have single stepping support, the BD instruction can
|
||||
* not be executed in-line and it would be executed on SSOL slot
|
||||
* using a normal breakpoint instruction in the next slot.
|
||||
* So, read the instruction and save it for later execution.
|
||||
*/
|
||||
if (insn_has_delayslot(insn))
|
||||
memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
|
||||
else
|
||||
memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
|
||||
|
||||
memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
|
||||
p->ainsn.insn[1] = breakpoint2_insn;
|
||||
p->opcode = *p->addr;
|
||||
|
||||
|
@ -231,16 +236,96 @@ static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|||
kcb->kprobe_saved_epc = regs->cp0_epc;
|
||||
}
|
||||
|
||||
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
|
||||
/**
|
||||
* evaluate_branch_instrucion -
|
||||
*
|
||||
* Evaluate the branch instruction at probed address during probe hit. The
|
||||
* result of evaluation would be the updated epc. The insturction in delayslot
|
||||
* would actually be single stepped using a normal breakpoint) on SSOL slot.
|
||||
*
|
||||
* The result is also saved in the kprobe control block for later use,
|
||||
* in case we need to execute the delayslot instruction. The latter will be
|
||||
* false for NOP instruction in dealyslot and the branch-likely instructions
|
||||
* when the branch is taken. And for those cases we set a flag as
|
||||
* SKIP_DELAYSLOT in the kprobe control block
|
||||
*/
|
||||
static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
|
||||
struct kprobe_ctlblk *kcb)
|
||||
{
|
||||
union mips_instruction insn = p->opcode;
|
||||
long epc;
|
||||
int ret = 0;
|
||||
|
||||
epc = regs->cp0_epc;
|
||||
if (epc & 3)
|
||||
goto unaligned;
|
||||
|
||||
if (p->ainsn.insn->word == 0)
|
||||
kcb->flags |= SKIP_DELAYSLOT;
|
||||
else
|
||||
kcb->flags &= ~SKIP_DELAYSLOT;
|
||||
|
||||
ret = __compute_return_epc_for_insn(regs, insn);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
if (ret == BRANCH_LIKELY_TAKEN)
|
||||
kcb->flags |= SKIP_DELAYSLOT;
|
||||
|
||||
kcb->target_epc = regs->cp0_epc;
|
||||
|
||||
return 0;
|
||||
|
||||
unaligned:
|
||||
pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
|
||||
force_sig(SIGBUS, current);
|
||||
return -EFAULT;
|
||||
|
||||
}
|
||||
|
||||
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
|
||||
struct kprobe_ctlblk *kcb)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
regs->cp0_status &= ~ST0_IE;
|
||||
|
||||
/* single step inline if the instruction is a break */
|
||||
if (p->opcode.word == breakpoint_insn.word ||
|
||||
p->opcode.word == breakpoint2_insn.word)
|
||||
regs->cp0_epc = (unsigned long)p->addr;
|
||||
else
|
||||
regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
|
||||
else if (insn_has_delayslot(p->opcode)) {
|
||||
ret = evaluate_branch_instruction(p, regs, kcb);
|
||||
if (ret < 0) {
|
||||
pr_notice("Kprobes: Error in evaluating branch\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
|
||||
}
|
||||
|
||||
/*
|
||||
* Called after single-stepping. p->addr is the address of the
|
||||
* instruction whose first byte has been replaced by the "break 0"
|
||||
* instruction. To avoid the SMP problems that can occur when we
|
||||
* temporarily put back the original opcode to single-step, we
|
||||
* single-stepped a copy of the instruction. The address of this
|
||||
* copy is p->ainsn.insn.
|
||||
*
|
||||
* This function prepares to return from the post-single-step
|
||||
* breakpoint trap. In case of branch instructions, the target
|
||||
* epc to be restored.
|
||||
*/
|
||||
static void __kprobes resume_execution(struct kprobe *p,
|
||||
struct pt_regs *regs,
|
||||
struct kprobe_ctlblk *kcb)
|
||||
{
|
||||
if (insn_has_delayslot(p->opcode))
|
||||
regs->cp0_epc = kcb->target_epc;
|
||||
else {
|
||||
unsigned long orig_epc = kcb->kprobe_saved_epc;
|
||||
regs->cp0_epc = orig_epc + 4;
|
||||
}
|
||||
}
|
||||
|
||||
static int __kprobes kprobe_handler(struct pt_regs *regs)
|
||||
|
@ -279,8 +364,13 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|||
save_previous_kprobe(kcb);
|
||||
set_current_kprobe(p, regs, kcb);
|
||||
kprobes_inc_nmissed_count(p);
|
||||
prepare_singlestep(p, regs);
|
||||
prepare_singlestep(p, regs, kcb);
|
||||
kcb->kprobe_status = KPROBE_REENTER;
|
||||
if (kcb->flags & SKIP_DELAYSLOT) {
|
||||
resume_execution(p, regs, kcb);
|
||||
restore_previous_kprobe(kcb);
|
||||
preempt_enable_no_resched();
|
||||
}
|
||||
return 1;
|
||||
} else {
|
||||
if (addr->word != breakpoint_insn.word) {
|
||||
|
@ -324,8 +414,16 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|||
}
|
||||
|
||||
ss_probe:
|
||||
prepare_singlestep(p, regs);
|
||||
kcb->kprobe_status = KPROBE_HIT_SS;
|
||||
prepare_singlestep(p, regs, kcb);
|
||||
if (kcb->flags & SKIP_DELAYSLOT) {
|
||||
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||||
if (p->post_handler)
|
||||
p->post_handler(p, regs, 0);
|
||||
resume_execution(p, regs, kcb);
|
||||
preempt_enable_no_resched();
|
||||
} else
|
||||
kcb->kprobe_status = KPROBE_HIT_SS;
|
||||
|
||||
return 1;
|
||||
|
||||
no_kprobe:
|
||||
|
@ -334,25 +432,6 @@ no_kprobe:
|
|||
|
||||
}
|
||||
|
||||
/*
|
||||
* Called after single-stepping. p->addr is the address of the
|
||||
* instruction whose first byte has been replaced by the "break 0"
|
||||
* instruction. To avoid the SMP problems that can occur when we
|
||||
* temporarily put back the original opcode to single-step, we
|
||||
* single-stepped a copy of the instruction. The address of this
|
||||
* copy is p->ainsn.insn.
|
||||
*
|
||||
* This function prepares to return from the post-single-step
|
||||
* breakpoint trap.
|
||||
*/
|
||||
static void __kprobes resume_execution(struct kprobe *p,
|
||||
struct pt_regs *regs,
|
||||
struct kprobe_ctlblk *kcb)
|
||||
{
|
||||
unsigned long orig_epc = kcb->kprobe_saved_epc;
|
||||
regs->cp0_epc = orig_epc + 4;
|
||||
}
|
||||
|
||||
static inline int post_kprobe_handler(struct pt_regs *regs)
|
||||
{
|
||||
struct kprobe *cur = kprobe_running();
|
||||
|
|
Loading…
Reference in a new issue