[netdrvr] sfc: Add TSO support
The SFC4000 controller does not have hardware support for TSO, and the core GSO code incurs a high cost in allocating and freeing skbs. This TSO implementation uses lightweight packet header structures and is substantially faster. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
This commit is contained in:
parent
48cfb14f8b
commit
b9b39b625c
4 changed files with 708 additions and 1 deletions
|
@ -1873,6 +1873,7 @@ static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
|
|||
tx_queue->queue = i;
|
||||
tx_queue->buffer = NULL;
|
||||
tx_queue->channel = &efx->channel[0]; /* for safety */
|
||||
tx_queue->tso_headers_free = NULL;
|
||||
}
|
||||
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
|
||||
rx_queue = &efx->rx_queue[i];
|
||||
|
@ -2071,7 +2072,8 @@ static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
|
|||
net_dev = alloc_etherdev(sizeof(*efx));
|
||||
if (!net_dev)
|
||||
return -ENOMEM;
|
||||
net_dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
|
||||
net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
|
||||
NETIF_F_HIGHDMA | NETIF_F_TSO);
|
||||
if (lro)
|
||||
net_dev->features |= NETIF_F_LRO;
|
||||
efx = net_dev->priv;
|
||||
|
|
|
@ -272,6 +272,22 @@ static void efx_ethtool_get_stats(struct net_device *net_dev,
|
|||
}
|
||||
}
|
||||
|
||||
static int efx_ethtool_set_tso(struct net_device *net_dev, u32 enable)
|
||||
{
|
||||
int rc;
|
||||
|
||||
/* Our TSO requires TX checksumming, so force TX checksumming
|
||||
* on when TSO is enabled.
|
||||
*/
|
||||
if (enable) {
|
||||
rc = efx_ethtool_set_tx_csum(net_dev, 1);
|
||||
if (rc)
|
||||
return rc;
|
||||
}
|
||||
|
||||
return ethtool_op_set_tso(net_dev, enable);
|
||||
}
|
||||
|
||||
static int efx_ethtool_set_tx_csum(struct net_device *net_dev, u32 enable)
|
||||
{
|
||||
struct efx_nic *efx = net_dev->priv;
|
||||
|
@ -283,6 +299,15 @@ static int efx_ethtool_set_tx_csum(struct net_device *net_dev, u32 enable)
|
|||
|
||||
efx_flush_queues(efx);
|
||||
|
||||
/* Our TSO requires TX checksumming, so disable TSO when
|
||||
* checksumming is disabled
|
||||
*/
|
||||
if (!enable) {
|
||||
rc = efx_ethtool_set_tso(net_dev, 0);
|
||||
if (rc)
|
||||
return rc;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -451,6 +476,8 @@ struct ethtool_ops efx_ethtool_ops = {
|
|||
.set_tx_csum = efx_ethtool_set_tx_csum,
|
||||
.get_sg = ethtool_op_get_sg,
|
||||
.set_sg = ethtool_op_set_sg,
|
||||
.get_tso = ethtool_op_get_tso,
|
||||
.set_tso = efx_ethtool_set_tso,
|
||||
.get_flags = ethtool_op_get_flags,
|
||||
.set_flags = ethtool_op_set_flags,
|
||||
.get_strings = efx_ethtool_get_strings,
|
||||
|
|
|
@ -134,6 +134,8 @@ struct efx_special_buffer {
|
|||
* Set only on the final fragment of a packet; %NULL for all other
|
||||
* fragments. When this fragment completes, then we can free this
|
||||
* skb.
|
||||
* @tsoh: The associated TSO header structure, or %NULL if this
|
||||
* buffer is not a TSO header.
|
||||
* @dma_addr: DMA address of the fragment.
|
||||
* @len: Length of this fragment.
|
||||
* This field is zero when the queue slot is empty.
|
||||
|
@ -144,6 +146,7 @@ struct efx_special_buffer {
|
|||
*/
|
||||
struct efx_tx_buffer {
|
||||
const struct sk_buff *skb;
|
||||
struct efx_tso_header *tsoh;
|
||||
dma_addr_t dma_addr;
|
||||
unsigned short len;
|
||||
unsigned char continuation;
|
||||
|
@ -187,6 +190,13 @@ struct efx_tx_buffer {
|
|||
* variable indicates that the queue is full. This is to
|
||||
* avoid cache-line ping-pong between the xmit path and the
|
||||
* completion path.
|
||||
* @tso_headers_free: A list of TSO headers allocated for this TX queue
|
||||
* that are not in use, and so available for new TSO sends. The list
|
||||
* is protected by the TX queue lock.
|
||||
* @tso_bursts: Number of times TSO xmit invoked by kernel
|
||||
* @tso_long_headers: Number of packets with headers too long for standard
|
||||
* blocks
|
||||
* @tso_packets: Number of packets via the TSO xmit path
|
||||
*/
|
||||
struct efx_tx_queue {
|
||||
/* Members which don't change on the fast path */
|
||||
|
@ -206,6 +216,10 @@ struct efx_tx_queue {
|
|||
unsigned int insert_count ____cacheline_aligned_in_smp;
|
||||
unsigned int write_count;
|
||||
unsigned int old_read_count;
|
||||
struct efx_tso_header *tso_headers_free;
|
||||
unsigned int tso_bursts;
|
||||
unsigned int tso_long_headers;
|
||||
unsigned int tso_packets;
|
||||
};
|
||||
|
||||
/**
|
||||
|
|
|
@ -82,6 +82,46 @@ static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* struct efx_tso_header - a DMA mapped buffer for packet headers
|
||||
* @next: Linked list of free ones.
|
||||
* The list is protected by the TX queue lock.
|
||||
* @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
|
||||
* @dma_addr: The DMA address of the header below.
|
||||
*
|
||||
* This controls the memory used for a TSO header. Use TSOH_DATA()
|
||||
* to find the packet header data. Use TSOH_SIZE() to calculate the
|
||||
* total size required for a given packet header length. TSO headers
|
||||
* in the free list are exactly %TSOH_STD_SIZE bytes in size.
|
||||
*/
|
||||
struct efx_tso_header {
|
||||
union {
|
||||
struct efx_tso_header *next;
|
||||
size_t unmap_len;
|
||||
};
|
||||
dma_addr_t dma_addr;
|
||||
};
|
||||
|
||||
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
||||
const struct sk_buff *skb);
|
||||
static void efx_fini_tso(struct efx_tx_queue *tx_queue);
|
||||
static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tso_header *tsoh);
|
||||
|
||||
static inline void efx_tsoh_free(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tx_buffer *buffer)
|
||||
{
|
||||
if (buffer->tsoh) {
|
||||
if (likely(!buffer->tsoh->unmap_len)) {
|
||||
buffer->tsoh->next = tx_queue->tso_headers_free;
|
||||
tx_queue->tso_headers_free = buffer->tsoh;
|
||||
} else {
|
||||
efx_tsoh_heap_free(tx_queue, buffer->tsoh);
|
||||
}
|
||||
buffer->tsoh = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Add a socket buffer to a TX queue
|
||||
|
@ -114,6 +154,9 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue,
|
|||
|
||||
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
|
||||
|
||||
if (skb_shinfo((struct sk_buff *)skb)->gso_size)
|
||||
return efx_enqueue_skb_tso(tx_queue, skb);
|
||||
|
||||
/* Get size of the initial fragment */
|
||||
len = skb_headlen(skb);
|
||||
|
||||
|
@ -166,6 +209,8 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue,
|
|||
insert_ptr = (tx_queue->insert_count &
|
||||
efx->type->txd_ring_mask);
|
||||
buffer = &tx_queue->buffer[insert_ptr];
|
||||
efx_tsoh_free(tx_queue, buffer);
|
||||
EFX_BUG_ON_PARANOID(buffer->tsoh);
|
||||
EFX_BUG_ON_PARANOID(buffer->skb);
|
||||
EFX_BUG_ON_PARANOID(buffer->len);
|
||||
EFX_BUG_ON_PARANOID(buffer->continuation != 1);
|
||||
|
@ -432,6 +477,9 @@ void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
|
|||
|
||||
efx_release_tx_buffers(tx_queue);
|
||||
|
||||
/* Free up TSO header cache */
|
||||
efx_fini_tso(tx_queue);
|
||||
|
||||
/* Release queue's stop on port, if any */
|
||||
if (tx_queue->stopped) {
|
||||
tx_queue->stopped = 0;
|
||||
|
@ -450,3 +498,619 @@ void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
|
|||
}
|
||||
|
||||
|
||||
/* Efx TCP segmentation acceleration.
|
||||
*
|
||||
* Why? Because by doing it here in the driver we can go significantly
|
||||
* faster than the GSO.
|
||||
*
|
||||
* Requires TX checksum offload support.
|
||||
*/
|
||||
|
||||
/* Number of bytes inserted at the start of a TSO header buffer,
|
||||
* similar to NET_IP_ALIGN.
|
||||
*/
|
||||
#if defined(__i386__) || defined(__x86_64__)
|
||||
#define TSOH_OFFSET 0
|
||||
#else
|
||||
#define TSOH_OFFSET NET_IP_ALIGN
|
||||
#endif
|
||||
|
||||
#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
|
||||
|
||||
/* Total size of struct efx_tso_header, buffer and padding */
|
||||
#define TSOH_SIZE(hdr_len) \
|
||||
(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
|
||||
|
||||
/* Size of blocks on free list. Larger blocks must be allocated from
|
||||
* the heap.
|
||||
*/
|
||||
#define TSOH_STD_SIZE 128
|
||||
|
||||
#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
|
||||
#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
|
||||
#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
|
||||
#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
|
||||
|
||||
/**
|
||||
* struct tso_state - TSO state for an SKB
|
||||
* @remaining_len: Bytes of data we've yet to segment
|
||||
* @seqnum: Current sequence number
|
||||
* @packet_space: Remaining space in current packet
|
||||
* @ifc: Input fragment cursor.
|
||||
* Where we are in the current fragment of the incoming SKB. These
|
||||
* values get updated in place when we split a fragment over
|
||||
* multiple packets.
|
||||
* @p: Parameters.
|
||||
* These values are set once at the start of the TSO send and do
|
||||
* not get changed as the routine progresses.
|
||||
*
|
||||
* The state used during segmentation. It is put into this data structure
|
||||
* just to make it easy to pass into inline functions.
|
||||
*/
|
||||
struct tso_state {
|
||||
unsigned remaining_len;
|
||||
unsigned seqnum;
|
||||
unsigned packet_space;
|
||||
|
||||
struct {
|
||||
/* DMA address of current position */
|
||||
dma_addr_t dma_addr;
|
||||
/* Remaining length */
|
||||
unsigned int len;
|
||||
/* DMA address and length of the whole fragment */
|
||||
unsigned int unmap_len;
|
||||
dma_addr_t unmap_addr;
|
||||
struct page *page;
|
||||
unsigned page_off;
|
||||
} ifc;
|
||||
|
||||
struct {
|
||||
/* The number of bytes of header */
|
||||
unsigned int header_length;
|
||||
|
||||
/* The number of bytes to put in each outgoing segment. */
|
||||
int full_packet_size;
|
||||
|
||||
/* Current IPv4 ID, host endian. */
|
||||
unsigned ipv4_id;
|
||||
} p;
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Verify that our various assumptions about sk_buffs and the conditions
|
||||
* under which TSO will be attempted hold true.
|
||||
*/
|
||||
static inline void efx_tso_check_safe(const struct sk_buff *skb)
|
||||
{
|
||||
EFX_BUG_ON_PARANOID(skb->protocol != htons(ETH_P_IP));
|
||||
EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
|
||||
skb->protocol);
|
||||
EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
|
||||
EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
|
||||
+ (tcp_hdr(skb)->doff << 2u)) >
|
||||
skb_headlen(skb));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Allocate a page worth of efx_tso_header structures, and string them
|
||||
* into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
|
||||
*/
|
||||
static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
|
||||
struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
|
||||
struct efx_tso_header *tsoh;
|
||||
dma_addr_t dma_addr;
|
||||
u8 *base_kva, *kva;
|
||||
|
||||
base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
|
||||
if (base_kva == NULL) {
|
||||
EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
|
||||
" headers\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/* pci_alloc_consistent() allocates pages. */
|
||||
EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
|
||||
|
||||
for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
|
||||
tsoh = (struct efx_tso_header *)kva;
|
||||
tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
|
||||
tsoh->next = tx_queue->tso_headers_free;
|
||||
tx_queue->tso_headers_free = tsoh;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* Free up a TSO header, and all others in the same page. */
|
||||
static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tso_header *tsoh,
|
||||
struct pci_dev *pci_dev)
|
||||
{
|
||||
struct efx_tso_header **p;
|
||||
unsigned long base_kva;
|
||||
dma_addr_t base_dma;
|
||||
|
||||
base_kva = (unsigned long)tsoh & PAGE_MASK;
|
||||
base_dma = tsoh->dma_addr & PAGE_MASK;
|
||||
|
||||
p = &tx_queue->tso_headers_free;
|
||||
while (*p != NULL)
|
||||
if (((unsigned long)*p & PAGE_MASK) == base_kva)
|
||||
*p = (*p)->next;
|
||||
else
|
||||
p = &(*p)->next;
|
||||
|
||||
pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
|
||||
}
|
||||
|
||||
static struct efx_tso_header *
|
||||
efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
|
||||
{
|
||||
struct efx_tso_header *tsoh;
|
||||
|
||||
tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
|
||||
if (unlikely(!tsoh))
|
||||
return NULL;
|
||||
|
||||
tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
|
||||
TSOH_BUFFER(tsoh), header_len,
|
||||
PCI_DMA_TODEVICE);
|
||||
if (unlikely(pci_dma_mapping_error(tsoh->dma_addr))) {
|
||||
kfree(tsoh);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
tsoh->unmap_len = header_len;
|
||||
return tsoh;
|
||||
}
|
||||
|
||||
static void
|
||||
efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
|
||||
{
|
||||
pci_unmap_single(tx_queue->efx->pci_dev,
|
||||
tsoh->dma_addr, tsoh->unmap_len,
|
||||
PCI_DMA_TODEVICE);
|
||||
kfree(tsoh);
|
||||
}
|
||||
|
||||
/**
|
||||
* efx_tx_queue_insert - push descriptors onto the TX queue
|
||||
* @tx_queue: Efx TX queue
|
||||
* @dma_addr: DMA address of fragment
|
||||
* @len: Length of fragment
|
||||
* @skb: Only non-null for end of last segment
|
||||
* @end_of_packet: True if last fragment in a packet
|
||||
* @unmap_addr: DMA address of fragment for unmapping
|
||||
* @unmap_len: Only set this in last segment of a fragment
|
||||
*
|
||||
* Push descriptors onto the TX queue. Return 0 on success or 1 if
|
||||
* @tx_queue full.
|
||||
*/
|
||||
static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
|
||||
dma_addr_t dma_addr, unsigned len,
|
||||
const struct sk_buff *skb, int end_of_packet,
|
||||
dma_addr_t unmap_addr, unsigned unmap_len)
|
||||
{
|
||||
struct efx_tx_buffer *buffer;
|
||||
struct efx_nic *efx = tx_queue->efx;
|
||||
unsigned dma_len, fill_level, insert_ptr, misalign;
|
||||
int q_space;
|
||||
|
||||
EFX_BUG_ON_PARANOID(len <= 0);
|
||||
|
||||
fill_level = tx_queue->insert_count - tx_queue->old_read_count;
|
||||
/* -1 as there is no way to represent all descriptors used */
|
||||
q_space = efx->type->txd_ring_mask - 1 - fill_level;
|
||||
|
||||
while (1) {
|
||||
if (unlikely(q_space-- <= 0)) {
|
||||
/* It might be that completions have happened
|
||||
* since the xmit path last checked. Update
|
||||
* the xmit path's copy of read_count.
|
||||
*/
|
||||
++tx_queue->stopped;
|
||||
/* This memory barrier protects the change of
|
||||
* stopped from the access of read_count. */
|
||||
smp_mb();
|
||||
tx_queue->old_read_count =
|
||||
*(volatile unsigned *)&tx_queue->read_count;
|
||||
fill_level = (tx_queue->insert_count
|
||||
- tx_queue->old_read_count);
|
||||
q_space = efx->type->txd_ring_mask - 1 - fill_level;
|
||||
if (unlikely(q_space-- <= 0))
|
||||
return 1;
|
||||
smp_mb();
|
||||
--tx_queue->stopped;
|
||||
}
|
||||
|
||||
insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
|
||||
buffer = &tx_queue->buffer[insert_ptr];
|
||||
++tx_queue->insert_count;
|
||||
|
||||
EFX_BUG_ON_PARANOID(tx_queue->insert_count -
|
||||
tx_queue->read_count >
|
||||
efx->type->txd_ring_mask);
|
||||
|
||||
efx_tsoh_free(tx_queue, buffer);
|
||||
EFX_BUG_ON_PARANOID(buffer->len);
|
||||
EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
||||
EFX_BUG_ON_PARANOID(buffer->skb);
|
||||
EFX_BUG_ON_PARANOID(buffer->continuation != 1);
|
||||
EFX_BUG_ON_PARANOID(buffer->tsoh);
|
||||
|
||||
buffer->dma_addr = dma_addr;
|
||||
|
||||
/* Ensure we do not cross a boundary unsupported by H/W */
|
||||
dma_len = (~dma_addr & efx->type->tx_dma_mask) + 1;
|
||||
|
||||
misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
|
||||
if (misalign && dma_len + misalign > 512)
|
||||
dma_len = 512 - misalign;
|
||||
|
||||
/* If there is enough space to send then do so */
|
||||
if (dma_len >= len)
|
||||
break;
|
||||
|
||||
buffer->len = dma_len; /* Don't set the other members */
|
||||
dma_addr += dma_len;
|
||||
len -= dma_len;
|
||||
}
|
||||
|
||||
EFX_BUG_ON_PARANOID(!len);
|
||||
buffer->len = len;
|
||||
buffer->skb = skb;
|
||||
buffer->continuation = !end_of_packet;
|
||||
buffer->unmap_addr = unmap_addr;
|
||||
buffer->unmap_len = unmap_len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Put a TSO header into the TX queue.
|
||||
*
|
||||
* This is special-cased because we know that it is small enough to fit in
|
||||
* a single fragment, and we know it doesn't cross a page boundary. It
|
||||
* also allows us to not worry about end-of-packet etc.
|
||||
*/
|
||||
static inline void efx_tso_put_header(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tso_header *tsoh, unsigned len)
|
||||
{
|
||||
struct efx_tx_buffer *buffer;
|
||||
|
||||
buffer = &tx_queue->buffer[tx_queue->insert_count &
|
||||
tx_queue->efx->type->txd_ring_mask];
|
||||
efx_tsoh_free(tx_queue, buffer);
|
||||
EFX_BUG_ON_PARANOID(buffer->len);
|
||||
EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
||||
EFX_BUG_ON_PARANOID(buffer->skb);
|
||||
EFX_BUG_ON_PARANOID(buffer->continuation != 1);
|
||||
EFX_BUG_ON_PARANOID(buffer->tsoh);
|
||||
buffer->len = len;
|
||||
buffer->dma_addr = tsoh->dma_addr;
|
||||
buffer->tsoh = tsoh;
|
||||
|
||||
++tx_queue->insert_count;
|
||||
}
|
||||
|
||||
|
||||
/* Remove descriptors put into a tx_queue. */
|
||||
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
struct efx_tx_buffer *buffer;
|
||||
|
||||
/* Work backwards until we hit the original insert pointer value */
|
||||
while (tx_queue->insert_count != tx_queue->write_count) {
|
||||
--tx_queue->insert_count;
|
||||
buffer = &tx_queue->buffer[tx_queue->insert_count &
|
||||
tx_queue->efx->type->txd_ring_mask];
|
||||
efx_tsoh_free(tx_queue, buffer);
|
||||
EFX_BUG_ON_PARANOID(buffer->skb);
|
||||
buffer->len = 0;
|
||||
buffer->continuation = 1;
|
||||
if (buffer->unmap_len) {
|
||||
pci_unmap_page(tx_queue->efx->pci_dev,
|
||||
buffer->unmap_addr,
|
||||
buffer->unmap_len, PCI_DMA_TODEVICE);
|
||||
buffer->unmap_len = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Parse the SKB header and initialise state. */
|
||||
static inline void tso_start(struct tso_state *st, const struct sk_buff *skb)
|
||||
{
|
||||
/* All ethernet/IP/TCP headers combined size is TCP header size
|
||||
* plus offset of TCP header relative to start of packet.
|
||||
*/
|
||||
st->p.header_length = ((tcp_hdr(skb)->doff << 2u)
|
||||
+ PTR_DIFF(tcp_hdr(skb), skb->data));
|
||||
st->p.full_packet_size = (st->p.header_length
|
||||
+ skb_shinfo(skb)->gso_size);
|
||||
|
||||
st->p.ipv4_id = ntohs(ip_hdr(skb)->id);
|
||||
st->seqnum = ntohl(tcp_hdr(skb)->seq);
|
||||
|
||||
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
|
||||
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
|
||||
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
|
||||
|
||||
st->packet_space = st->p.full_packet_size;
|
||||
st->remaining_len = skb->len - st->p.header_length;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* tso_get_fragment - record fragment details and map for DMA
|
||||
* @st: TSO state
|
||||
* @efx: Efx NIC
|
||||
* @data: Pointer to fragment data
|
||||
* @len: Length of fragment
|
||||
*
|
||||
* Record fragment details and map for DMA. Return 0 on success, or
|
||||
* -%ENOMEM if DMA mapping fails.
|
||||
*/
|
||||
static inline int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
|
||||
int len, struct page *page, int page_off)
|
||||
{
|
||||
|
||||
st->ifc.unmap_addr = pci_map_page(efx->pci_dev, page, page_off,
|
||||
len, PCI_DMA_TODEVICE);
|
||||
if (likely(!pci_dma_mapping_error(st->ifc.unmap_addr))) {
|
||||
st->ifc.unmap_len = len;
|
||||
st->ifc.len = len;
|
||||
st->ifc.dma_addr = st->ifc.unmap_addr;
|
||||
st->ifc.page = page;
|
||||
st->ifc.page_off = page_off;
|
||||
return 0;
|
||||
}
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* tso_fill_packet_with_fragment - form descriptors for the current fragment
|
||||
* @tx_queue: Efx TX queue
|
||||
* @skb: Socket buffer
|
||||
* @st: TSO state
|
||||
*
|
||||
* Form descriptors for the current fragment, until we reach the end
|
||||
* of fragment or end-of-packet. Return 0 on success, 1 if not enough
|
||||
* space in @tx_queue.
|
||||
*/
|
||||
static inline int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
|
||||
const struct sk_buff *skb,
|
||||
struct tso_state *st)
|
||||
{
|
||||
|
||||
int n, end_of_packet, rc;
|
||||
|
||||
if (st->ifc.len == 0)
|
||||
return 0;
|
||||
if (st->packet_space == 0)
|
||||
return 0;
|
||||
|
||||
EFX_BUG_ON_PARANOID(st->ifc.len <= 0);
|
||||
EFX_BUG_ON_PARANOID(st->packet_space <= 0);
|
||||
|
||||
n = min(st->ifc.len, st->packet_space);
|
||||
|
||||
st->packet_space -= n;
|
||||
st->remaining_len -= n;
|
||||
st->ifc.len -= n;
|
||||
st->ifc.page_off += n;
|
||||
end_of_packet = st->remaining_len == 0 || st->packet_space == 0;
|
||||
|
||||
rc = efx_tx_queue_insert(tx_queue, st->ifc.dma_addr, n,
|
||||
st->remaining_len ? NULL : skb,
|
||||
end_of_packet, st->ifc.unmap_addr,
|
||||
st->ifc.len ? 0 : st->ifc.unmap_len);
|
||||
|
||||
st->ifc.dma_addr += n;
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* tso_start_new_packet - generate a new header and prepare for the new packet
|
||||
* @tx_queue: Efx TX queue
|
||||
* @skb: Socket buffer
|
||||
* @st: TSO state
|
||||
*
|
||||
* Generate a new header and prepare for the new packet. Return 0 on
|
||||
* success, or -1 if failed to alloc header.
|
||||
*/
|
||||
static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
||||
const struct sk_buff *skb,
|
||||
struct tso_state *st)
|
||||
{
|
||||
struct efx_tso_header *tsoh;
|
||||
struct iphdr *tsoh_iph;
|
||||
struct tcphdr *tsoh_th;
|
||||
unsigned ip_length;
|
||||
u8 *header;
|
||||
|
||||
/* Allocate a DMA-mapped header buffer. */
|
||||
if (likely(TSOH_SIZE(st->p.header_length) <= TSOH_STD_SIZE)) {
|
||||
if (tx_queue->tso_headers_free == NULL)
|
||||
if (efx_tsoh_block_alloc(tx_queue))
|
||||
return -1;
|
||||
EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
|
||||
tsoh = tx_queue->tso_headers_free;
|
||||
tx_queue->tso_headers_free = tsoh->next;
|
||||
tsoh->unmap_len = 0;
|
||||
} else {
|
||||
tx_queue->tso_long_headers++;
|
||||
tsoh = efx_tsoh_heap_alloc(tx_queue, st->p.header_length);
|
||||
if (unlikely(!tsoh))
|
||||
return -1;
|
||||
}
|
||||
|
||||
header = TSOH_BUFFER(tsoh);
|
||||
tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
|
||||
tsoh_iph = (struct iphdr *)(header + SKB_IPV4_OFF(skb));
|
||||
|
||||
/* Copy and update the headers. */
|
||||
memcpy(header, skb->data, st->p.header_length);
|
||||
|
||||
tsoh_th->seq = htonl(st->seqnum);
|
||||
st->seqnum += skb_shinfo(skb)->gso_size;
|
||||
if (st->remaining_len > skb_shinfo(skb)->gso_size) {
|
||||
/* This packet will not finish the TSO burst. */
|
||||
ip_length = st->p.full_packet_size - ETH_HDR_LEN(skb);
|
||||
tsoh_th->fin = 0;
|
||||
tsoh_th->psh = 0;
|
||||
} else {
|
||||
/* This packet will be the last in the TSO burst. */
|
||||
ip_length = (st->p.header_length - ETH_HDR_LEN(skb)
|
||||
+ st->remaining_len);
|
||||
tsoh_th->fin = tcp_hdr(skb)->fin;
|
||||
tsoh_th->psh = tcp_hdr(skb)->psh;
|
||||
}
|
||||
tsoh_iph->tot_len = htons(ip_length);
|
||||
|
||||
/* Linux leaves suitable gaps in the IP ID space for us to fill. */
|
||||
tsoh_iph->id = htons(st->p.ipv4_id);
|
||||
st->p.ipv4_id++;
|
||||
|
||||
st->packet_space = skb_shinfo(skb)->gso_size;
|
||||
++tx_queue->tso_packets;
|
||||
|
||||
/* Form a descriptor for this header. */
|
||||
efx_tso_put_header(tx_queue, tsoh, st->p.header_length);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
|
||||
* @tx_queue: Efx TX queue
|
||||
* @skb: Socket buffer
|
||||
*
|
||||
* Context: You must hold netif_tx_lock() to call this function.
|
||||
*
|
||||
* Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
|
||||
* @skb was not enqueued. In all cases @skb is consumed. Return
|
||||
* %NETDEV_TX_OK or %NETDEV_TX_BUSY.
|
||||
*/
|
||||
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
||||
const struct sk_buff *skb)
|
||||
{
|
||||
int frag_i, rc, rc2 = NETDEV_TX_OK;
|
||||
struct tso_state state;
|
||||
skb_frag_t *f;
|
||||
|
||||
/* Verify TSO is safe - these checks should never fail. */
|
||||
efx_tso_check_safe(skb);
|
||||
|
||||
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
|
||||
|
||||
tso_start(&state, skb);
|
||||
|
||||
/* Assume that skb header area contains exactly the headers, and
|
||||
* all payload is in the frag list.
|
||||
*/
|
||||
if (skb_headlen(skb) == state.p.header_length) {
|
||||
/* Grab the first payload fragment. */
|
||||
EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
|
||||
frag_i = 0;
|
||||
f = &skb_shinfo(skb)->frags[frag_i];
|
||||
rc = tso_get_fragment(&state, tx_queue->efx,
|
||||
f->size, f->page, f->page_offset);
|
||||
if (rc)
|
||||
goto mem_err;
|
||||
} else {
|
||||
/* It may look like this code fragment assumes that the
|
||||
* skb->data portion does not cross a page boundary, but
|
||||
* that is not the case. It is guaranteed to be direct
|
||||
* mapped memory, and therefore is physically contiguous,
|
||||
* and so DMA will work fine. kmap_atomic() on this region
|
||||
* will just return the direct mapping, so that will work
|
||||
* too.
|
||||
*/
|
||||
int page_off = (unsigned long)skb->data & (PAGE_SIZE - 1);
|
||||
int hl = state.p.header_length;
|
||||
rc = tso_get_fragment(&state, tx_queue->efx,
|
||||
skb_headlen(skb) - hl,
|
||||
virt_to_page(skb->data), page_off + hl);
|
||||
if (rc)
|
||||
goto mem_err;
|
||||
frag_i = -1;
|
||||
}
|
||||
|
||||
if (tso_start_new_packet(tx_queue, skb, &state) < 0)
|
||||
goto mem_err;
|
||||
|
||||
while (1) {
|
||||
rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
|
||||
if (unlikely(rc))
|
||||
goto stop;
|
||||
|
||||
/* Move onto the next fragment? */
|
||||
if (state.ifc.len == 0) {
|
||||
if (++frag_i >= skb_shinfo(skb)->nr_frags)
|
||||
/* End of payload reached. */
|
||||
break;
|
||||
f = &skb_shinfo(skb)->frags[frag_i];
|
||||
rc = tso_get_fragment(&state, tx_queue->efx,
|
||||
f->size, f->page, f->page_offset);
|
||||
if (rc)
|
||||
goto mem_err;
|
||||
}
|
||||
|
||||
/* Start at new packet? */
|
||||
if (state.packet_space == 0 &&
|
||||
tso_start_new_packet(tx_queue, skb, &state) < 0)
|
||||
goto mem_err;
|
||||
}
|
||||
|
||||
/* Pass off to hardware */
|
||||
falcon_push_buffers(tx_queue);
|
||||
|
||||
tx_queue->tso_bursts++;
|
||||
return NETDEV_TX_OK;
|
||||
|
||||
mem_err:
|
||||
EFX_ERR(tx_queue->efx, "Out of memory for TSO headers, or PCI mapping"
|
||||
" error\n");
|
||||
dev_kfree_skb_any((struct sk_buff *)skb);
|
||||
goto unwind;
|
||||
|
||||
stop:
|
||||
rc2 = NETDEV_TX_BUSY;
|
||||
|
||||
/* Stop the queue if it wasn't stopped before. */
|
||||
if (tx_queue->stopped == 1)
|
||||
efx_stop_queue(tx_queue->efx);
|
||||
|
||||
unwind:
|
||||
efx_enqueue_unwind(tx_queue);
|
||||
return rc2;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Free up all TSO datastructures associated with tx_queue. This
|
||||
* routine should be called only once the tx_queue is both empty and
|
||||
* will no longer be used.
|
||||
*/
|
||||
static void efx_fini_tso(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
unsigned i;
|
||||
|
||||
if (tx_queue->buffer)
|
||||
for (i = 0; i <= tx_queue->efx->type->txd_ring_mask; ++i)
|
||||
efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
|
||||
|
||||
while (tx_queue->tso_headers_free != NULL)
|
||||
efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
|
||||
tx_queue->efx->pci_dev);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue