Merge branch 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux

Pull SLAB update from Pekka Enberg:
 "Nothing terribly exciting here apart from Christoph's kmalloc
  unification patches that brings sl[aou]b implementations closer to
  each other"

* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
  slab: Use correct GFP_DMA constant
  slub: remove verify_mem_not_deleted()
  mm/sl[aou]b: Move kmallocXXX functions to common code
  mm, slab_common: add 'unlikely' to size check of kmalloc_slab()
  mm/slub.c: beautify code for removing redundancy 'break' statement.
  slub: Remove unnecessary page NULL check
  slub: don't use cpu partial pages on UP
  mm/slub: beautify code for 80 column limitation and tab alignment
  mm/slub: remove 'per_cpu' which is useless variable
This commit is contained in:
Linus Torvalds 2013-09-15 07:15:06 -04:00
commit bff157b3ad
8 changed files with 216 additions and 371 deletions

View file

@ -4,6 +4,8 @@
* (C) SGI 2006, Christoph Lameter
* Cleaned up and restructured to ease the addition of alternative
* implementations of SLAB allocators.
* (C) Linux Foundation 2008-2013
* Unified interface for all slab allocators
*/
#ifndef _LINUX_SLAB_H
@ -94,6 +96,7 @@
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
(unsigned long)ZERO_SIZE_PTR)
#include <linux/kmemleak.h>
struct mem_cgroup;
/*
@ -289,6 +292,57 @@ static __always_inline int kmalloc_index(size_t size)
}
#endif /* !CONFIG_SLOB */
void *__kmalloc(size_t size, gfp_t flags);
void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node);
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
#else
static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
return __kmalloc(size, flags);
}
static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
{
return kmem_cache_alloc(s, flags);
}
#endif
#ifdef CONFIG_TRACING
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
#ifdef CONFIG_NUMA
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
gfp_t gfpflags,
int node, size_t size);
#else
static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
gfp_t gfpflags,
int node, size_t size)
{
return kmem_cache_alloc_trace(s, gfpflags, size);
}
#endif /* CONFIG_NUMA */
#else /* CONFIG_TRACING */
static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
gfp_t flags, size_t size)
{
return kmem_cache_alloc(s, flags);
}
static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
gfp_t gfpflags,
int node, size_t size)
{
return kmem_cache_alloc_node(s, gfpflags, node);
}
#endif /* CONFIG_TRACING */
#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif
@ -297,10 +351,61 @@ static __always_inline int kmalloc_index(size_t size)
#include <linux/slub_def.h>
#endif
#ifdef CONFIG_SLOB
#include <linux/slob_def.h>
static __always_inline void *
kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
void *ret;
flags |= (__GFP_COMP | __GFP_KMEMCG);
ret = (void *) __get_free_pages(flags, order);
kmemleak_alloc(ret, size, 1, flags);
return ret;
}
#ifdef CONFIG_TRACING
extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
#else
static __always_inline void *
kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
return kmalloc_order(size, flags, order);
}
#endif
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
{
unsigned int order = get_order(size);
return kmalloc_order_trace(size, flags, order);
}
/**
* kmalloc - allocate memory
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate (see kcalloc).
*
* kmalloc is the normal method of allocating memory
* for objects smaller than page size in the kernel.
*/
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
if (__builtin_constant_p(size)) {
if (size > KMALLOC_MAX_CACHE_SIZE)
return kmalloc_large(size, flags);
#ifndef CONFIG_SLOB
if (!(flags & GFP_DMA)) {
int index = kmalloc_index(size);
if (!index)
return ZERO_SIZE_PTR;
return kmem_cache_alloc_trace(kmalloc_caches[index],
flags, size);
}
#endif
}
return __kmalloc(size, flags);
}
/*
* Determine size used for the nth kmalloc cache.
* return size or 0 if a kmalloc cache for that
@ -321,6 +426,23 @@ static __always_inline int kmalloc_size(int n)
return 0;
}
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
#ifndef CONFIG_SLOB
if (__builtin_constant_p(size) &&
size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
int i = kmalloc_index(size);
if (!i)
return ZERO_SIZE_PTR;
return kmem_cache_alloc_node_trace(kmalloc_caches[i],
flags, node, size);
}
#endif
return __kmalloc_node(size, flags, node);
}
/*
* Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
* Intended for arches that get misalignment faults even for 64 bit integer
@ -451,36 +573,6 @@ static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
return kmalloc_array(n, size, flags | __GFP_ZERO);
}
#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
/**
* kmalloc_node - allocate memory from a specific node
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate (see kmalloc).
* @node: node to allocate from.
*
* kmalloc() for non-local nodes, used to allocate from a specific node
* if available. Equivalent to kmalloc() in the non-NUMA single-node
* case.
*/
static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
return kmalloc(size, flags);
}
static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
return __kmalloc(size, flags);
}
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
gfp_t flags, int node)
{
return kmem_cache_alloc(cachep, flags);
}
#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
/*
* kmalloc_track_caller is a special version of kmalloc that records the
* calling function of the routine calling it for slab leak tracking instead

View file

@ -3,20 +3,6 @@
/*
* Definitions unique to the original Linux SLAB allocator.
*
* What we provide here is a way to optimize the frequent kmalloc
* calls in the kernel by selecting the appropriate general cache
* if kmalloc was called with a size that can be established at
* compile time.
*/
#include <linux/init.h>
#include <linux/compiler.h>
/*
* struct kmem_cache
*
* manages a cache.
*/
struct kmem_cache {
@ -102,96 +88,4 @@ struct kmem_cache {
*/
};
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
void *__kmalloc(size_t size, gfp_t flags);
#ifdef CONFIG_TRACING
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
#else
static __always_inline void *
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
{
return kmem_cache_alloc(cachep, flags);
}
#endif
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
struct kmem_cache *cachep;
void *ret;
if (__builtin_constant_p(size)) {
int i;
if (!size)
return ZERO_SIZE_PTR;
if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE))
return NULL;
i = kmalloc_index(size);
#ifdef CONFIG_ZONE_DMA
if (flags & GFP_DMA)
cachep = kmalloc_dma_caches[i];
else
#endif
cachep = kmalloc_caches[i];
ret = kmem_cache_alloc_trace(cachep, flags, size);
return ret;
}
return __kmalloc(size, flags);
}
#ifdef CONFIG_NUMA
extern void *__kmalloc_node(size_t size, gfp_t flags, int node);
extern void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
#ifdef CONFIG_TRACING
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
gfp_t flags,
int nodeid,
size_t size);
#else
static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
gfp_t flags,
int nodeid,
size_t size)
{
return kmem_cache_alloc_node(cachep, flags, nodeid);
}
#endif
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
struct kmem_cache *cachep;
if (__builtin_constant_p(size)) {
int i;
if (!size)
return ZERO_SIZE_PTR;
if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE))
return NULL;
i = kmalloc_index(size);
#ifdef CONFIG_ZONE_DMA
if (flags & GFP_DMA)
cachep = kmalloc_dma_caches[i];
else
#endif
cachep = kmalloc_caches[i];
return kmem_cache_alloc_node_trace(cachep, flags, node, size);
}
return __kmalloc_node(size, flags, node);
}
#endif /* CONFIG_NUMA */
#endif /* _LINUX_SLAB_DEF_H */

View file

@ -1,31 +0,0 @@
#ifndef __LINUX_SLOB_DEF_H
#define __LINUX_SLOB_DEF_H
#include <linux/numa.h>
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
static __always_inline void *kmem_cache_alloc(struct kmem_cache *cachep,
gfp_t flags)
{
return kmem_cache_alloc_node(cachep, flags, NUMA_NO_NODE);
}
void *__kmalloc_node(size_t size, gfp_t flags, int node);
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
return __kmalloc_node(size, flags, node);
}
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
return __kmalloc_node(size, flags, NUMA_NO_NODE);
}
static __always_inline void *__kmalloc(size_t size, gfp_t flags)
{
return kmalloc(size, flags);
}
#endif /* __LINUX_SLOB_DEF_H */

View file

@ -6,14 +6,8 @@
*
* (C) 2007 SGI, Christoph Lameter
*/
#include <linux/types.h>
#include <linux/gfp.h>
#include <linux/bug.h>
#include <linux/workqueue.h>
#include <linux/kobject.h>
#include <linux/kmemleak.h>
enum stat_item {
ALLOC_FASTPATH, /* Allocation from cpu slab */
ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
@ -104,108 +98,4 @@ struct kmem_cache {
struct kmem_cache_node *node[MAX_NUMNODES];
};
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
void *__kmalloc(size_t size, gfp_t flags);
static __always_inline void *
kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
void *ret;
flags |= (__GFP_COMP | __GFP_KMEMCG);
ret = (void *) __get_free_pages(flags, order);
kmemleak_alloc(ret, size, 1, flags);
return ret;
}
/**
* Calling this on allocated memory will check that the memory
* is expected to be in use, and print warnings if not.
*/
#ifdef CONFIG_SLUB_DEBUG
extern bool verify_mem_not_deleted(const void *x);
#else
static inline bool verify_mem_not_deleted(const void *x)
{
return true;
}
#endif
#ifdef CONFIG_TRACING
extern void *
kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
#else
static __always_inline void *
kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
return kmem_cache_alloc(s, gfpflags);
}
static __always_inline void *
kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
return kmalloc_order(size, flags, order);
}
#endif
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
{
unsigned int order = get_order(size);
return kmalloc_order_trace(size, flags, order);
}
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
if (__builtin_constant_p(size)) {
if (size > KMALLOC_MAX_CACHE_SIZE)
return kmalloc_large(size, flags);
if (!(flags & GFP_DMA)) {
int index = kmalloc_index(size);
if (!index)
return ZERO_SIZE_PTR;
return kmem_cache_alloc_trace(kmalloc_caches[index],
flags, size);
}
}
return __kmalloc(size, flags);
}
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node);
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
#ifdef CONFIG_TRACING
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
gfp_t gfpflags,
int node, size_t size);
#else
static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
gfp_t gfpflags,
int node, size_t size)
{
return kmem_cache_alloc_node(s, gfpflags, node);
}
#endif
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
if (__builtin_constant_p(size) &&
size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
int index = kmalloc_index(size);
if (!index)
return ZERO_SIZE_PTR;
return kmem_cache_alloc_node_trace(kmalloc_caches[index],
flags, node, size);
}
return __kmalloc_node(size, flags, node);
}
#endif
#endif /* _LINUX_SLUB_DEF_H */

View file

@ -1602,7 +1602,7 @@ endchoice
config SLUB_CPU_PARTIAL
default y
depends on SLUB
depends on SLUB && SMP
bool "SLUB per cpu partial cache"
help
Per cpu partial caches accellerate objects allocation and freeing

View file

@ -19,6 +19,7 @@
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <linux/memcontrol.h>
#include <trace/events/kmem.h>
#include "slab.h"
@ -373,7 +374,7 @@ struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
int index;
if (size > KMALLOC_MAX_SIZE) {
if (unlikely(size > KMALLOC_MAX_SIZE)) {
WARN_ON_ONCE(!(flags & __GFP_NOWARN));
return NULL;
}
@ -495,6 +496,15 @@ void __init create_kmalloc_caches(unsigned long flags)
}
#endif /* !CONFIG_SLOB */
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
void *ret = kmalloc_order(size, flags, order);
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
#ifdef CONFIG_SLABINFO

View file

@ -462,11 +462,11 @@ __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
return ret;
}
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
void *__kmalloc(size_t size, gfp_t gfp)
{
return __do_kmalloc_node(size, gfp, node, _RET_IP_);
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);
EXPORT_SYMBOL(__kmalloc);
#ifdef CONFIG_TRACING
void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
@ -534,7 +534,7 @@ int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
return 0;
}
void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;
@ -560,7 +560,27 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
return b;
}
EXPORT_SYMBOL(slob_alloc_node);
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
}
EXPORT_SYMBOL(kmem_cache_alloc);
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
return __do_kmalloc_node(size, gfp, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
{
return slob_alloc_node(cachep, gfp, node);
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif
static void __kmem_cache_free(void *b, int size)
{

142
mm/slub.c
View file

@ -373,7 +373,8 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
#endif
{
slab_lock(page);
if (page->freelist == freelist_old && page->counters == counters_old) {
if (page->freelist == freelist_old &&
page->counters == counters_old) {
page->freelist = freelist_new;
page->counters = counters_new;
slab_unlock(page);
@ -411,7 +412,8 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
local_irq_save(flags);
slab_lock(page);
if (page->freelist == freelist_old && page->counters == counters_old) {
if (page->freelist == freelist_old &&
page->counters == counters_old) {
page->freelist = freelist_new;
page->counters = counters_new;
slab_unlock(page);
@ -553,8 +555,9 @@ static void print_tracking(struct kmem_cache *s, void *object)
static void print_page_info(struct page *page)
{
printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
page, page->objects, page->inuse, page->freelist, page->flags);
printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
page, page->objects, page->inuse, page->freelist, page->flags);
}
@ -629,7 +632,8 @@ static void object_err(struct kmem_cache *s, struct page *page,
print_trailer(s, page, object);
}
static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
static void slab_err(struct kmem_cache *s, struct page *page,
const char *fmt, ...)
{
va_list args;
char buf[100];
@ -788,7 +792,8 @@ static int check_object(struct kmem_cache *s, struct page *page,
} else {
if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
check_bytes_and_report(s, page, p, "Alignment padding",
endobject, POISON_INUSE, s->inuse - s->object_size);
endobject, POISON_INUSE,
s->inuse - s->object_size);
}
}
@ -873,7 +878,6 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
object_err(s, page, object,
"Freechain corrupt");
set_freepointer(s, object, NULL);
break;
} else {
slab_err(s, page, "Freepointer corrupt");
page->freelist = NULL;
@ -918,7 +922,8 @@ static void trace(struct kmem_cache *s, struct page *page, void *object,
page->freelist);
if (!alloc)
print_section("Object ", (void *)object, s->object_size);
print_section("Object ", (void *)object,
s->object_size);
dump_stack();
}
@ -937,7 +942,8 @@ static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
return should_failslab(s->object_size, flags, s->flags);
}
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
static inline void slab_post_alloc_hook(struct kmem_cache *s,
gfp_t flags, void *object)
{
flags &= gfp_allowed_mask;
kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
@ -1039,7 +1045,8 @@ static void setup_object_debug(struct kmem_cache *s, struct page *page,
init_tracking(s, object);
}
static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
static noinline int alloc_debug_processing(struct kmem_cache *s,
struct page *page,
void *object, unsigned long addr)
{
if (!check_slab(s, page))
@ -1743,7 +1750,8 @@ static void init_kmem_cache_cpus(struct kmem_cache *s)
/*
* Remove the cpu slab
*/
static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
static void deactivate_slab(struct kmem_cache *s, struct page *page,
void *freelist)
{
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
@ -1999,7 +2007,8 @@ static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
page->pobjects = pobjects;
page->next = oldpage;
} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
!= oldpage);
#endif
}
@ -2169,8 +2178,8 @@ static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
}
/*
* Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
* or deactivate the page.
* Check the page->freelist of a page and either transfer the freelist to the
* per cpu freelist or deactivate the page.
*
* The page is still frozen if the return value is not NULL.
*
@ -2314,7 +2323,8 @@ new_slab:
goto load_freelist;
/* Only entered in the debug case */
if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
if (kmem_cache_debug(s) &&
!alloc_debug_processing(s, page, freelist, addr))
goto new_slab; /* Slab failed checks. Next slab needed */
deactivate_slab(s, page, get_freepointer(s, freelist));
@ -2372,7 +2382,7 @@ redo:
object = c->freelist;
page = c->page;
if (unlikely(!object || !page || !node_match(page, node)))
if (unlikely(!object || !node_match(page, node)))
object = __slab_alloc(s, gfpflags, node, addr, c);
else {
@ -2382,13 +2392,15 @@ redo:
* The cmpxchg will only match if there was no additional
* operation and if we are on the right processor.
*
* The cmpxchg does the following atomically (without lock semantics!)
* The cmpxchg does the following atomically (without lock
* semantics!)
* 1. Relocate first pointer to the current per cpu area.
* 2. Verify that tid and freelist have not been changed
* 3. If they were not changed replace tid and freelist
*
* Since this is without lock semantics the protection is only against
* code executing on this cpu *not* from access by other cpus.
* Since this is without lock semantics the protection is only
* against code executing on this cpu *not* from access by
* other cpus.
*/
if (unlikely(!this_cpu_cmpxchg_double(
s->cpu_slab->freelist, s->cpu_slab->tid,
@ -2420,7 +2432,8 @@ void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
void *ret = slab_alloc(s, gfpflags, _RET_IP_);
trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
s->size, gfpflags);
return ret;
}
@ -2434,14 +2447,6 @@ void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
void *ret = kmalloc_order(size, flags, order);
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
#ifdef CONFIG_NUMA
@ -2512,8 +2517,10 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
if (kmem_cache_has_cpu_partial(s) && !prior)
/*
* Slab was on no list before and will be partially empty
* We can defer the list move and instead freeze it.
* Slab was on no list before and will be
* partially empty
* We can defer the list move and instead
* freeze it.
*/
new.frozen = 1;
@ -3071,8 +3078,8 @@ static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
* A) The number of objects from per cpu partial slabs dumped to the
* per node list when we reach the limit.
* B) The number of objects in cpu partial slabs to extract from the
* per node list when we run out of per cpu objects. We only fetch 50%
* to keep some capacity around for frees.
* per node list when we run out of per cpu objects. We only fetch
* 50% to keep some capacity around for frees.
*/
if (!kmem_cache_has_cpu_partial(s))
s->cpu_partial = 0;
@ -3099,8 +3106,8 @@ error:
if (flags & SLAB_PANIC)
panic("Cannot create slab %s size=%lu realsize=%u "
"order=%u offset=%u flags=%lx\n",
s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
s->offset, flags);
s->name, (unsigned long)s->size, s->size,
oo_order(s->oo), s->offset, flags);
return -EINVAL;
}
@ -3316,42 +3323,6 @@ size_t ksize(const void *object)
}
EXPORT_SYMBOL(ksize);
#ifdef CONFIG_SLUB_DEBUG
bool verify_mem_not_deleted(const void *x)
{
struct page *page;
void *object = (void *)x;
unsigned long flags;
bool rv;
if (unlikely(ZERO_OR_NULL_PTR(x)))
return false;
local_irq_save(flags);
page = virt_to_head_page(x);
if (unlikely(!PageSlab(page))) {
/* maybe it was from stack? */
rv = true;
goto out_unlock;
}
slab_lock(page);
if (on_freelist(page->slab_cache, page, object)) {
object_err(page->slab_cache, page, object, "Object is on free-list");
rv = false;
} else {
rv = true;
}
slab_unlock(page);
out_unlock:
local_irq_restore(flags);
return rv;
}
EXPORT_SYMBOL(verify_mem_not_deleted);
#endif
void kfree(const void *x)
{
struct page *page;
@ -4162,15 +4133,17 @@ static int list_locations(struct kmem_cache *s, char *buf,
!cpumask_empty(to_cpumask(l->cpus)) &&
len < PAGE_SIZE - 60) {
len += sprintf(buf + len, " cpus=");
len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
len += cpulist_scnprintf(buf + len,
PAGE_SIZE - len - 50,
to_cpumask(l->cpus));
}
if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
len < PAGE_SIZE - 60) {
len += sprintf(buf + len, " nodes=");
len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
l->nodes);
len += nodelist_scnprintf(buf + len,
PAGE_SIZE - len - 50,
l->nodes);
}
len += sprintf(buf + len, "\n");
@ -4268,18 +4241,17 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
int node;
int x;
unsigned long *nodes;
unsigned long *per_cpu;
nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
if (!nodes)
return -ENOMEM;
per_cpu = nodes + nr_node_ids;
if (flags & SO_CPU) {
int cpu;
for_each_possible_cpu(cpu) {
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
cpu);
int node;
struct page *page;
@ -4304,8 +4276,6 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
total += x;
nodes[node] += x;
}
per_cpu[node]++;
}
}
@ -4315,12 +4285,11 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
if (flags & SO_TOTAL)
x = atomic_long_read(&n->total_objects);
else if (flags & SO_OBJECTS)
x = atomic_long_read(&n->total_objects) -
count_partial(n, count_free);
if (flags & SO_TOTAL)
x = atomic_long_read(&n->total_objects);
else if (flags & SO_OBJECTS)
x = atomic_long_read(&n->total_objects) -
count_partial(n, count_free);
else
x = atomic_long_read(&n->nr_slabs);
total += x;
@ -5136,7 +5105,8 @@ static char *create_unique_id(struct kmem_cache *s)
#ifdef CONFIG_MEMCG_KMEM
if (!is_root_cache(s))
p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
p += sprintf(p, "-%08d",
memcg_cache_id(s->memcg_params->memcg));
#endif
BUG_ON(p > name + ID_STR_LENGTH - 1);