Staging: MTD: Micron SPINAND Driver support

This patch adds support for Micron SPINAND via MTD.

Signed-off-by: Mona Anonuevo <manonuevo@micron.com>
Signed-off-by: Kamlakant Patel <kamlakant.patel@broadcom.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Kamlakant Patel 2013-10-01 15:03:58 +05:30 committed by Greg Kroah-Hartman
parent 77e73e8c90
commit d974ce4f3b
7 changed files with 1102 additions and 0 deletions

View file

@ -136,6 +136,8 @@ source "drivers/staging/goldfish/Kconfig"
source "drivers/staging/netlogic/Kconfig"
source "drivers/staging/mt29f_spinand/Kconfig"
source "drivers/staging/dwc2/Kconfig"
source "drivers/staging/lustre/Kconfig"

View file

@ -66,3 +66,4 @@ obj-$(CONFIG_USB_BTMTK) += btmtk_usb/
obj-$(CONFIG_XILLYBUS) += xillybus/
obj-$(CONFIG_DGNC) += dgnc/
obj-$(CONFIG_DGAP) += dgap/
obj-$(CONFIG_MTD_SPINAND_MT29F) += mt29f_spinand/

View file

@ -0,0 +1,16 @@
config MTD_SPINAND_MT29F
tristate "SPINAND Device Support for Micron"
depends on MTD_NAND && SPI
help
This enables support for accessing Micron SPI NAND flash
devices.
If you have Micron SPI NAND chip say yes.
If unsure, say no here.
config MTD_SPINAND_ONDIEECC
bool "Use SPINAND internal ECC"
depends on MTD_SPINAND_MT29F
help
Internel ECC.
Enables Hardware ECC support for Micron SPI NAND.

View file

@ -0,0 +1 @@
obj-$(CONFIG_MTD_SPINAND_MT29F) += mt29f_spinand.o

View file

@ -0,0 +1,13 @@
TODO:
- Tested on XLP platform, needs to be tested on other platforms.
- Checkpatch.pl cleanups
- Sparce fixes.
- Clean up coding style to meet kernel standard.
Please send patches
To:
Kamlakant Patel <kamlakant.patel@broadcom.com>
Cc:
Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Mona Anonuevo <manonuevo@micron.com>
linux-mtd@lists.infradead.org

View file

@ -0,0 +1,962 @@
/*
* Copyright (c) 2003-2013 Broadcom Corporation
*
* Copyright (c) 2009-2010 Micron Technology, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand.h>
#include <linux/spi/spi.h>
#include "mt29f_spinand.h"
#define BUFSIZE (10 * 64 * 2048)
#define CACHE_BUF 2112
/*
* OOB area specification layout: Total 32 available free bytes.
*/
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
static int enable_hw_ecc;
static int enable_read_hw_ecc;
static inline struct spinand_state *mtd_to_state(struct mtd_info *mtd)
{
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
struct spinand_info *info = (struct spinand_info *)chip->priv;
struct spinand_state *state = (struct spinand_state *)info->priv;
return state;
}
static struct nand_ecclayout spinand_oob_64 = {
.eccbytes = 24,
.eccpos = {
1, 2, 3, 4, 5, 6,
17, 18, 19, 20, 21, 22,
33, 34, 35, 36, 37, 38,
49, 50, 51, 52, 53, 54, },
.oobavail = 32,
.oobfree = {
{.offset = 8,
.length = 8},
{.offset = 24,
.length = 8},
{.offset = 40,
.length = 8},
{.offset = 56,
.length = 8},
}
};
#endif
/*
* spinand_cmd - to process a command to send to the SPI Nand
* Description:
* Set up the command buffer to send to the SPI controller.
* The command buffer has to initialized to 0.
*/
static int spinand_cmd(struct spi_device *spi, struct spinand_cmd *cmd)
{
struct spi_message message;
struct spi_transfer x[4];
u8 dummy = 0xff;
spi_message_init(&message);
memset(x, 0, sizeof(x));
x[0].len = 1;
x[0].tx_buf = &cmd->cmd;
spi_message_add_tail(&x[0], &message);
if (cmd->n_addr) {
x[1].len = cmd->n_addr;
x[1].tx_buf = cmd->addr;
spi_message_add_tail(&x[1], &message);
}
if (cmd->n_dummy) {
x[2].len = cmd->n_dummy;
x[2].tx_buf = &dummy;
spi_message_add_tail(&x[2], &message);
}
if (cmd->n_tx) {
x[3].len = cmd->n_tx;
x[3].tx_buf = cmd->tx_buf;
spi_message_add_tail(&x[3], &message);
}
if (cmd->n_rx) {
x[3].len = cmd->n_rx;
x[3].rx_buf = cmd->rx_buf;
spi_message_add_tail(&x[3], &message);
}
return spi_sync(spi, &message);
}
/*
* spinand_read_id- Read SPI Nand ID
* Description:
* Read ID: read two ID bytes from the SPI Nand device
*/
static int spinand_read_id(struct spi_device *spi_nand, u8 *id)
{
int retval;
u8 nand_id[3];
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_READ_ID;
cmd.n_rx = 3;
cmd.rx_buf = &nand_id[0];
retval = spinand_cmd(spi_nand, &cmd);
if (retval < 0) {
dev_err(&spi_nand->dev, "error %d reading id\n", retval);
return retval;
}
id[0] = nand_id[1];
id[1] = nand_id[2];
return retval;
}
/*
* spinand_read_status- send command 0xf to the SPI Nand status register
* Description:
* After read, write, or erase, the Nand device is expected to set the
* busy status.
* This function is to allow reading the status of the command: read,
* write, and erase.
* Once the status turns to be ready, the other status bits also are
* valid status bits.
*/
static int spinand_read_status(struct spi_device *spi_nand, uint8_t *status)
{
struct spinand_cmd cmd = {0};
int ret;
cmd.cmd = CMD_READ_REG;
cmd.n_addr = 1;
cmd.addr[0] = REG_STATUS;
cmd.n_rx = 1;
cmd.rx_buf = status;
ret = spinand_cmd(spi_nand, &cmd);
if (ret < 0)
dev_err(&spi_nand->dev, "err: %d read status register\n", ret);
return ret;
}
#define MAX_WAIT_JIFFIES (40 * HZ)
static int wait_till_ready(struct spi_device *spi_nand)
{
unsigned long deadline;
int retval;
u8 stat = 0;
deadline = jiffies + MAX_WAIT_JIFFIES;
do {
retval = spinand_read_status(spi_nand, &stat);
if (retval < 0)
return -1;
else if (!(stat & 0x1))
break;
cond_resched();
} while (!time_after_eq(jiffies, deadline));
if ((stat & 0x1) == 0)
return 0;
return -1;
}
/**
* spinand_get_otp- send command 0xf to read the SPI Nand OTP register
* Description:
* There is one bit( bit 0x10 ) to set or to clear the internal ECC.
* Enable chip internal ECC, set the bit to 1
* Disable chip internal ECC, clear the bit to 0
*/
static int spinand_get_otp(struct spi_device *spi_nand, u8 *otp)
{
struct spinand_cmd cmd = {0};
int retval;
cmd.cmd = CMD_READ_REG;
cmd.n_addr = 1;
cmd.addr[0] = REG_OTP;
cmd.n_rx = 1;
cmd.rx_buf = otp;
retval = spinand_cmd(spi_nand, &cmd);
if (retval < 0)
dev_err(&spi_nand->dev, "error %d get otp\n", retval);
return retval;
}
/**
* spinand_set_otp- send command 0x1f to write the SPI Nand OTP register
* Description:
* There is one bit( bit 0x10 ) to set or to clear the internal ECC.
* Enable chip internal ECC, set the bit to 1
* Disable chip internal ECC, clear the bit to 0
*/
static int spinand_set_otp(struct spi_device *spi_nand, u8 *otp)
{
int retval;
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_WRITE_REG,
cmd.n_addr = 1,
cmd.addr[0] = REG_OTP,
cmd.n_tx = 1,
cmd.tx_buf = otp,
retval = spinand_cmd(spi_nand, &cmd);
if (retval < 0)
dev_err(&spi_nand->dev, "error %d set otp\n", retval);
return retval;
}
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
/**
* spinand_enable_ecc- send command 0x1f to write the SPI Nand OTP register
* Description:
* There is one bit( bit 0x10 ) to set or to clear the internal ECC.
* Enable chip internal ECC, set the bit to 1
* Disable chip internal ECC, clear the bit to 0
*/
static int spinand_enable_ecc(struct spi_device *spi_nand)
{
int retval;
u8 otp = 0;
retval = spinand_get_otp(spi_nand, &otp);
if (retval < 0)
return retval;
if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK) {
return 0;
} else {
otp |= OTP_ECC_MASK;
retval = spinand_set_otp(spi_nand, &otp);
if (retval < 0)
return retval;
return spinand_get_otp(spi_nand, &otp);
}
}
#endif
static int spinand_disable_ecc(struct spi_device *spi_nand)
{
int retval;
u8 otp = 0;
retval = spinand_get_otp(spi_nand, &otp);
if (retval < 0)
return retval;
if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK) {
otp &= ~OTP_ECC_MASK;
retval = spinand_set_otp(spi_nand, &otp);
if (retval < 0)
return retval;
return spinand_get_otp(spi_nand, &otp);
} else
return 0;
}
/**
* spinand_write_enable- send command 0x06 to enable write or erase the
* Nand cells
* Description:
* Before write and erase the Nand cells, the write enable has to be set.
* After the write or erase, the write enable bit is automatically
* cleared (status register bit 2)
* Set the bit 2 of the status register has the same effect
*/
static int spinand_write_enable(struct spi_device *spi_nand)
{
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_WR_ENABLE;
return spinand_cmd(spi_nand, &cmd);
}
static int spinand_read_page_to_cache(struct spi_device *spi_nand, u16 page_id)
{
struct spinand_cmd cmd = {0};
u16 row;
row = page_id;
cmd.cmd = CMD_READ;
cmd.n_addr = 3;
cmd.addr[1] = (u8)((row & 0xff00) >> 8);
cmd.addr[2] = (u8)(row & 0x00ff);
return spinand_cmd(spi_nand, &cmd);
}
/*
* spinand_read_from_cache- send command 0x03 to read out the data from the
* cache register(2112 bytes max)
* Description:
* The read can specify 1 to 2112 bytes of data read at the corresponding
* locations.
* No tRd delay.
*/
static int spinand_read_from_cache(struct spi_device *spi_nand, u16 page_id,
u16 byte_id, u16 len, u8 *rbuf)
{
struct spinand_cmd cmd = {0};
u16 column;
column = byte_id;
cmd.cmd = CMD_READ_RDM;
cmd.n_addr = 3;
cmd.addr[0] = (u8)((column & 0xff00) >> 8);
cmd.addr[0] |= (u8)(((page_id >> 6) & 0x1) << 4);
cmd.addr[1] = (u8)(column & 0x00ff);
cmd.addr[2] = (u8)(0xff);
cmd.n_dummy = 0;
cmd.n_rx = len;
cmd.rx_buf = rbuf;
return spinand_cmd(spi_nand, &cmd);
}
/*
* spinand_read_page-to read a page with:
* @page_id: the physical page number
* @offset: the location from 0 to 2111
* @len: number of bytes to read
* @rbuf: read buffer to hold @len bytes
*
* Description:
* The read includes two commands to the Nand: 0x13 and 0x03 commands
* Poll to read status to wait for tRD time.
*/
static int spinand_read_page(struct spi_device *spi_nand, u16 page_id,
u16 offset, u16 len, u8 *rbuf)
{
int ret;
u8 status = 0;
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
if (enable_read_hw_ecc) {
if (spinand_enable_ecc(spi_nand) < 0)
dev_err(&spi_nand->dev, "enable HW ECC failed!");
}
#endif
ret = spinand_read_page_to_cache(spi_nand, page_id);
if (ret < 0)
return ret;
if (wait_till_ready(spi_nand))
dev_err(&spi_nand->dev, "WAIT timedout!!!\n");
while (1) {
ret = spinand_read_status(spi_nand, &status);
if (ret < 0) {
dev_err(&spi_nand->dev,
"err %d read status register\n", ret);
return ret;
}
if ((status & STATUS_OIP_MASK) == STATUS_READY) {
if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
dev_err(&spi_nand->dev, "ecc error, page=%d\n",
page_id);
return 0;
}
break;
}
}
ret = spinand_read_from_cache(spi_nand, page_id, offset, len, rbuf);
if (ret < 0) {
dev_err(&spi_nand->dev, "read from cache failed!!\n");
return ret;
}
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
if (enable_read_hw_ecc) {
ret = spinand_disable_ecc(spi_nand);
if (ret < 0) {
dev_err(&spi_nand->dev, "disable ecc failed!!\n");
return ret;
}
enable_read_hw_ecc = 0;
}
#endif
return ret;
}
/*
* spinand_program_data_to_cache--to write a page to cache with:
* @byte_id: the location to write to the cache
* @len: number of bytes to write
* @rbuf: read buffer to hold @len bytes
*
* Description:
* The write command used here is 0x84--indicating that the cache is
* not cleared first.
* Since it is writing the data to cache, there is no tPROG time.
*/
static int spinand_program_data_to_cache(struct spi_device *spi_nand,
u16 page_id, u16 byte_id, u16 len, u8 *wbuf)
{
struct spinand_cmd cmd = {0};
u16 column;
column = byte_id;
cmd.cmd = CMD_PROG_PAGE_CLRCACHE;
cmd.n_addr = 2;
cmd.addr[0] = (u8)((column & 0xff00) >> 8);
cmd.addr[0] |= (u8)(((page_id >> 6) & 0x1) << 4);
cmd.addr[1] = (u8)(column & 0x00ff);
cmd.n_tx = len;
cmd.tx_buf = wbuf;
return spinand_cmd(spi_nand, &cmd);
}
/**
* spinand_program_execute--to write a page from cache to the Nand array with
* @page_id: the physical page location to write the page.
*
* Description:
* The write command used here is 0x10--indicating the cache is writing to
* the Nand array.
* Need to wait for tPROG time to finish the transaction.
*/
static int spinand_program_execute(struct spi_device *spi_nand, u16 page_id)
{
struct spinand_cmd cmd = {0};
u16 row;
row = page_id;
cmd.cmd = CMD_PROG_PAGE_EXC;
cmd.n_addr = 3;
cmd.addr[1] = (u8)((row & 0xff00) >> 8);
cmd.addr[2] = (u8)(row & 0x00ff);
return spinand_cmd(spi_nand, &cmd);
}
/**
* spinand_program_page--to write a page with:
* @page_id: the physical page location to write the page.
* @offset: the location from the cache starting from 0 to 2111
* @len: the number of bytes to write
* @wbuf: the buffer to hold the number of bytes
*
* Description:
* The commands used here are 0x06, 0x84, and 0x10--indicating that
* the write enable is first sent, the write cache command, and the
* write execute command.
* Poll to wait for the tPROG time to finish the transaction.
*/
static int spinand_program_page(struct spi_device *spi_nand,
u16 page_id, u16 offset, u16 len, u8 *buf)
{
int retval;
u8 status = 0;
uint8_t *wbuf;
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
unsigned int i, j;
enable_read_hw_ecc = 0;
wbuf = devm_kzalloc(&spi_nand->dev, CACHE_BUF, GFP_KERNEL);
spinand_read_page(spi_nand, page_id, 0, CACHE_BUF, wbuf);
for (i = offset, j = 0; i < len; i++, j++)
wbuf[i] &= buf[j];
if (enable_hw_ecc) {
retval = spinand_enable_ecc(spi_nand);
if (retval < 0) {
dev_err(&spi_nand->dev, "enable ecc failed!!\n");
return retval;
}
}
#else
wbuf = buf;
#endif
retval = spinand_write_enable(spi_nand);
if (retval < 0) {
dev_err(&spi_nand->dev, "write enable failed!!\n");
return retval;
}
if (wait_till_ready(spi_nand))
dev_err(&spi_nand->dev, "wait timedout!!!\n");
retval = spinand_program_data_to_cache(spi_nand, page_id,
offset, len, wbuf);
if (retval < 0)
return retval;
retval = spinand_program_execute(spi_nand, page_id);
if (retval < 0)
return retval;
while (1) {
retval = spinand_read_status(spi_nand, &status);
if (retval < 0) {
dev_err(&spi_nand->dev,
"error %d reading status register\n",
retval);
return retval;
}
if ((status & STATUS_OIP_MASK) == STATUS_READY) {
if ((status & STATUS_P_FAIL_MASK) == STATUS_P_FAIL) {
dev_err(&spi_nand->dev,
"program error, page %d\n", page_id);
return -1;
} else
break;
}
}
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
if (enable_hw_ecc) {
retval = spinand_disable_ecc(spi_nand);
if (retval < 0) {
dev_err(&spi_nand->dev, "disable ecc failed!!\n");
return retval;
}
enable_hw_ecc = 0;
}
#endif
return 0;
}
/**
* spinand_erase_block_erase--to erase a page with:
* @block_id: the physical block location to erase.
*
* Description:
* The command used here is 0xd8--indicating an erase command to erase
* one block--64 pages
* Need to wait for tERS.
*/
static int spinand_erase_block_erase(struct spi_device *spi_nand, u16 block_id)
{
struct spinand_cmd cmd = {0};
u16 row;
row = block_id;
cmd.cmd = CMD_ERASE_BLK;
cmd.n_addr = 3;
cmd.addr[1] = (u8)((row & 0xff00) >> 8);
cmd.addr[2] = (u8)(row & 0x00ff);
return spinand_cmd(spi_nand, &cmd);
}
/**
* spinand_erase_block--to erase a page with:
* @block_id: the physical block location to erase.
*
* Description:
* The commands used here are 0x06 and 0xd8--indicating an erase
* command to erase one block--64 pages
* It will first to enable the write enable bit (0x06 command),
* and then send the 0xd8 erase command
* Poll to wait for the tERS time to complete the tranaction.
*/
static int spinand_erase_block(struct spi_device *spi_nand, u16 block_id)
{
int retval;
u8 status = 0;
retval = spinand_write_enable(spi_nand);
if (wait_till_ready(spi_nand))
dev_err(&spi_nand->dev, "wait timedout!!!\n");
retval = spinand_erase_block_erase(spi_nand, block_id);
while (1) {
retval = spinand_read_status(spi_nand, &status);
if (retval < 0) {
dev_err(&spi_nand->dev,
"error %d reading status register\n",
(int) retval);
return retval;
}
if ((status & STATUS_OIP_MASK) == STATUS_READY) {
if ((status & STATUS_E_FAIL_MASK) == STATUS_E_FAIL) {
dev_err(&spi_nand->dev,
"erase error, block %d\n", block_id);
return -1;
} else
break;
}
}
return 0;
}
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
static int spinand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf, int oob_required)
{
const uint8_t *p = buf;
int eccsize = chip->ecc.size;
int eccsteps = chip->ecc.steps;
enable_hw_ecc = 1;
chip->write_buf(mtd, p, eccsize * eccsteps);
return 0;
}
static int spinand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
u8 retval, status;
uint8_t *p = buf;
int eccsize = chip->ecc.size;
int eccsteps = chip->ecc.steps;
struct spinand_info *info = (struct spinand_info *)chip->priv;
enable_read_hw_ecc = 1;
chip->read_buf(mtd, p, eccsize * eccsteps);
if (oob_required)
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
while (1) {
retval = spinand_read_status(info->spi, &status);
if ((status & STATUS_OIP_MASK) == STATUS_READY) {
if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
pr_info("spinand: ECC error\n");
mtd->ecc_stats.failed++;
} else if ((status & STATUS_ECC_MASK) ==
STATUS_ECC_1BIT_CORRECTED)
mtd->ecc_stats.corrected++;
break;
}
}
return 0;
}
#endif
static void spinand_select_chip(struct mtd_info *mtd, int dev)
{
}
static uint8_t spinand_read_byte(struct mtd_info *mtd)
{
struct spinand_state *state = mtd_to_state(mtd);
u8 data;
data = state->buf[state->buf_ptr];
state->buf_ptr++;
return data;
}
static int spinand_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
struct spinand_info *info = (struct spinand_info *)chip->priv;
unsigned long timeo = jiffies;
int retval, state = chip->state;
u8 status;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
while (time_before(jiffies, timeo)) {
retval = spinand_read_status(info->spi, &status);
if ((status & STATUS_OIP_MASK) == STATUS_READY)
return 0;
cond_resched();
}
return 0;
}
static void spinand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct spinand_state *state = mtd_to_state(mtd);
memcpy(state->buf + state->buf_ptr, buf, len);
state->buf_ptr += len;
}
static void spinand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct spinand_state *state = mtd_to_state(mtd);
memcpy(buf, state->buf + state->buf_ptr, len);
state->buf_ptr += len;
}
/*
* spinand_reset- send RESET command "0xff" to the Nand device.
*/
static void spinand_reset(struct spi_device *spi_nand)
{
struct spinand_cmd cmd = {0};
cmd.cmd = CMD_RESET;
if (spinand_cmd(spi_nand, &cmd) < 0)
pr_info("spinand reset failed!\n");
/* elapse 1ms before issuing any other command */
udelay(1000);
if (wait_till_ready(spi_nand))
dev_err(&spi_nand->dev, "wait timedout!\n");
}
static void spinand_cmdfunc(struct mtd_info *mtd, unsigned int command,
int column, int page)
{
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
struct spinand_info *info = (struct spinand_info *)chip->priv;
struct spinand_state *state = (struct spinand_state *)info->priv;
switch (command) {
/*
* READ0 - read in first 0x800 bytes
*/
case NAND_CMD_READ1:
case NAND_CMD_READ0:
state->buf_ptr = 0;
spinand_read_page(info->spi, page, 0x0, 0x840, state->buf);
break;
/* READOOB reads only the OOB because no ECC is performed. */
case NAND_CMD_READOOB:
state->buf_ptr = 0;
spinand_read_page(info->spi, page, 0x800, 0x40, state->buf);
break;
case NAND_CMD_RNDOUT:
state->buf_ptr = column;
break;
case NAND_CMD_READID:
state->buf_ptr = 0;
spinand_read_id(info->spi, (u8 *)state->buf);
break;
case NAND_CMD_PARAM:
state->buf_ptr = 0;
break;
/* ERASE1 stores the block and page address */
case NAND_CMD_ERASE1:
spinand_erase_block(info->spi, page);
break;
/* ERASE2 uses the block and page address from ERASE1 */
case NAND_CMD_ERASE2:
break;
/* SEQIN sets up the addr buffer and all registers except the length */
case NAND_CMD_SEQIN:
state->col = column;
state->row = page;
state->buf_ptr = 0;
break;
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
case NAND_CMD_PAGEPROG:
spinand_program_page(info->spi, state->row, state->col,
state->buf_ptr, state->buf);
break;
case NAND_CMD_STATUS:
spinand_get_otp(info->spi, state->buf);
if (!(state->buf[0] & 0x80))
state->buf[0] = 0x80;
state->buf_ptr = 0;
break;
/* RESET command */
case NAND_CMD_RESET:
if (wait_till_ready(info->spi))
dev_err(&info->spi->dev, "WAIT timedout!!!\n");
/* a minimum of 250us must elapse before issuing RESET cmd*/
udelay(250);
spinand_reset(info->spi);
break;
default:
dev_err(&mtd->dev, "Unknown CMD: 0x%x\n", command);
}
}
/**
* spinand_lock_block- send write register 0x1f command to the Nand device
*
* Description:
* After power up, all the Nand blocks are locked. This function allows
* one to unlock the blocks, and so it can be written or erased.
*/
static int spinand_lock_block(struct spi_device *spi_nand, u8 lock)
{
struct spinand_cmd cmd = {0};
int ret;
u8 otp = 0;
ret = spinand_get_otp(spi_nand, &otp);
cmd.cmd = CMD_WRITE_REG;
cmd.n_addr = 1;
cmd.addr[0] = REG_BLOCK_LOCK;
cmd.n_tx = 1;
cmd.tx_buf = &lock;
ret = spinand_cmd(spi_nand, &cmd);
if (ret < 0)
dev_err(&spi_nand->dev, "error %d lock block\n", ret);
return ret;
}
/*
* spinand_probe - [spinand Interface]
* @spi_nand: registered device driver.
*
* Description:
* To set up the device driver parameters to make the device available.
*/
static int spinand_probe(struct spi_device *spi_nand)
{
struct mtd_info *mtd;
struct nand_chip *chip;
struct spinand_info *info;
struct spinand_state *state;
struct mtd_part_parser_data ppdata;
info = devm_kzalloc(&spi_nand->dev, sizeof(struct spinand_info),
GFP_KERNEL);
if (!info)
return -ENOMEM;
info->spi = spi_nand;
spinand_lock_block(spi_nand, BL_ALL_UNLOCKED);
state = devm_kzalloc(&spi_nand->dev, sizeof(struct spinand_state),
GFP_KERNEL);
if (!state)
return -ENOMEM;
info->priv = state;
state->buf_ptr = 0;
state->buf = devm_kzalloc(&spi_nand->dev, BUFSIZE, GFP_KERNEL);
if (!state->buf)
return -ENOMEM;
chip = devm_kzalloc(&spi_nand->dev, sizeof(struct nand_chip),
GFP_KERNEL);
if (!chip)
return -ENOMEM;
#ifdef CONFIG_MTD_SPINAND_ONDIEECC
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = 0x200;
chip->ecc.bytes = 0x6;
chip->ecc.steps = 0x4;
chip->ecc.strength = 1;
chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
chip->ecc.layout = &spinand_oob_64;
chip->ecc.read_page = spinand_read_page_hwecc;
chip->ecc.write_page = spinand_write_page_hwecc;
#else
chip->ecc.mode = NAND_ECC_SOFT;
if (spinand_disable_ecc(spi_nand) < 0)
pr_info("%s: disable ecc failed!\n", __func__);
#endif
chip->priv = info;
chip->read_buf = spinand_read_buf;
chip->write_buf = spinand_write_buf;
chip->read_byte = spinand_read_byte;
chip->cmdfunc = spinand_cmdfunc;
chip->waitfunc = spinand_wait;
chip->options |= NAND_CACHEPRG;
chip->select_chip = spinand_select_chip;
mtd = devm_kzalloc(&spi_nand->dev, sizeof(struct mtd_info), GFP_KERNEL);
if (!mtd)
return -ENOMEM;
dev_set_drvdata(&spi_nand->dev, mtd);
mtd->priv = chip;
mtd->name = dev_name(&spi_nand->dev);
mtd->owner = THIS_MODULE;
mtd->oobsize = 64;
if (nand_scan(mtd, 1))
return -ENXIO;
ppdata.of_node = spi_nand->dev.of_node;
return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
}
/*
* spinand_remove: Remove the device driver
* @spi: the spi device.
*
* Description:
* To remove the device driver parameters and free up allocated memories.
*/
static int spinand_remove(struct spi_device *spi)
{
mtd_device_unregister(dev_get_drvdata(&spi->dev));
return 0;
}
static const struct of_device_id spinand_dt[] = {
{ .compatible = "spinand,mt29f", },
};
/*
* Device name structure description
*/
static struct spi_driver spinand_driver = {
.driver = {
.name = "mt29f",
.bus = &spi_bus_type,
.owner = THIS_MODULE,
.of_match_table = spinand_dt,
},
.probe = spinand_probe,
.remove = spinand_remove,
};
/*
* Device driver registration
*/
static int __init spinand_init(void)
{
return spi_register_driver(&spinand_driver);
}
/*
* unregister Device driver.
*/
static void __exit spinand_exit(void)
{
spi_unregister_driver(&spinand_driver);
}
module_init(spinand_init);
module_exit(spinand_exit);
MODULE_DESCRIPTION("SPI NAND driver for Micron");
MODULE_AUTHOR("Henry Pan <hspan@micron.com>, Kamlakant Patel <kamlakant.patel@broadcom.com>");
MODULE_LICENSE("GPL v2");

View file

@ -0,0 +1,107 @@
/*-
* Copyright 2013 Broadcom Corporation
*
* Copyright (c) 2009-2010 Micron Technology, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Henry Pan <hspan@micron.com>
*
* based on nand.h
*/
#ifndef __LINUX_MTD_SPI_NAND_H
#define __LINUX_MTD_SPI_NAND_H
#include <linux/wait.h>
#include <linux/spinlock.h>
#include <linux/mtd/mtd.h>
/* cmd */
#define CMD_READ 0x13
#define CMD_READ_RDM 0x03
#define CMD_PROG_PAGE_CLRCACHE 0x02
#define CMD_PROG_PAGE 0x84
#define CMD_PROG_PAGE_EXC 0x10
#define CMD_ERASE_BLK 0xd8
#define CMD_WR_ENABLE 0x06
#define CMD_WR_DISABLE 0x04
#define CMD_READ_ID 0x9f
#define CMD_RESET 0xff
#define CMD_READ_REG 0x0f
#define CMD_WRITE_REG 0x1f
/* feature/ status reg */
#define REG_BLOCK_LOCK 0xa0
#define REG_OTP 0xb0
#define REG_STATUS 0xc0/* timing */
/* status */
#define STATUS_OIP_MASK 0x01
#define STATUS_READY (0 << 0)
#define STATUS_BUSY (1 << 0)
#define STATUS_E_FAIL_MASK 0x04
#define STATUS_E_FAIL (1 << 2)
#define STATUS_P_FAIL_MASK 0x08
#define STATUS_P_FAIL (1 << 3)
#define STATUS_ECC_MASK 0x30
#define STATUS_ECC_1BIT_CORRECTED (1 << 4)
#define STATUS_ECC_ERROR (2 << 4)
#define STATUS_ECC_RESERVED (3 << 4)
/*ECC enable defines*/
#define OTP_ECC_MASK 0x10
#define OTP_ECC_OFF 0
#define OTP_ECC_ON 1
#define ECC_DISABLED
#define ECC_IN_NAND
#define ECC_SOFT
/* block lock */
#define BL_ALL_LOCKED 0x38
#define BL_1_2_LOCKED 0x30
#define BL_1_4_LOCKED 0x28
#define BL_1_8_LOCKED 0x20
#define BL_1_16_LOCKED 0x18
#define BL_1_32_LOCKED 0x10
#define BL_1_64_LOCKED 0x08
#define BL_ALL_UNLOCKED 0
struct spinand_info {
struct nand_ecclayout *ecclayout;
struct spi_device *spi;
void *priv;
};
struct spinand_state {
uint32_t col;
uint32_t row;
int buf_ptr;
u8 *buf;
};
struct spinand_cmd {
u8 cmd;
u32 n_addr; /* Number of address */
u8 addr[3]; /* Reg Offset */
u32 n_dummy; /* Dummy use */
u32 n_tx; /* Number of tx bytes */
u8 *tx_buf; /* Tx buf */
u32 n_rx; /* Number of rx bytes */
u8 *rx_buf; /* Rx buf */
};
extern int spinand_mtd(struct mtd_info *mtd);
extern void spinand_mtd_release(struct mtd_info *mtd);
#endif /* __LINUX_MTD_SPI_NAND_H */