crypto: arm/sha256 - Add optimized SHA-256/224

Add Andy Polyakov's optimized assembly and NEON implementations for
SHA-256/224.

The sha256-armv4.pl script for generating the assembly code is from
OpenSSL commit 51f8d095562f36cdaa6893597b5c609e943b0565.

Compared to sha256-generic these implementations have the following
tcrypt speed improvements on Motorola Nexus 6 (Snapdragon 805):

  bs    b/u      sha256-neon  sha256-asm
  16    16       x1.32        x1.19
  64    16       x1.27        x1.15
  64    64       x1.36        x1.20
  256   16       x1.22        x1.11
  256   64       x1.36        x1.19
  256   256      x1.59        x1.23
  1024  16       x1.21        x1.10
  1024  256      x1.65        x1.23
  1024  1024     x1.76        x1.25
  2048  16       x1.21        x1.10
  2048  256      x1.66        x1.23
  2048  1024     x1.78        x1.25
  2048  2048     x1.79        x1.25
  4096  16       x1.20        x1.09
  4096  256      x1.66        x1.23
  4096  1024     x1.79        x1.26
  4096  4096     x1.82        x1.26
  8192  16       x1.20        x1.09
  8192  256      x1.67        x1.23
  8192  1024     x1.80        x1.26
  8192  4096     x1.85        x1.28
  8192  8192     x1.85        x1.27

Where bs refers to block size and b/u to bytes per update.

Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Cc: Andy Polyakov <appro@openssl.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Sami Tolvanen 2015-04-03 18:03:40 +08:00 committed by Herbert Xu
parent 87b1675634
commit f2f770d74a
8 changed files with 3981 additions and 3 deletions

View file

@ -46,6 +46,13 @@ config CRYPTO_SHA2_ARM_CE
SHA-256 secure hash standard (DFIPS 180-2) implemented
using special ARMv8 Crypto Extensions.
config CRYPTO_SHA256_ARM
tristate "SHA-224/256 digest algorithm (ARM-asm and NEON)"
select CRYPTO_HASH
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using optimized ARM assembler and NEON, when available.
config CRYPTO_SHA512_ARM_NEON
tristate "SHA384 and SHA512 digest algorithm (ARM NEON)"
depends on KERNEL_MODE_NEON

View file

@ -7,6 +7,7 @@ obj-$(CONFIG_CRYPTO_AES_ARM_BS) += aes-arm-bs.o
obj-$(CONFIG_CRYPTO_AES_ARM_CE) += aes-arm-ce.o
obj-$(CONFIG_CRYPTO_SHA1_ARM) += sha1-arm.o
obj-$(CONFIG_CRYPTO_SHA1_ARM_NEON) += sha1-arm-neon.o
obj-$(CONFIG_CRYPTO_SHA256_ARM) += sha256-arm.o
obj-$(CONFIG_CRYPTO_SHA512_ARM_NEON) += sha512-arm-neon.o
obj-$(CONFIG_CRYPTO_SHA1_ARM_CE) += sha1-arm-ce.o
obj-$(CONFIG_CRYPTO_SHA2_ARM_CE) += sha2-arm-ce.o
@ -16,6 +17,8 @@ aes-arm-y := aes-armv4.o aes_glue.o
aes-arm-bs-y := aesbs-core.o aesbs-glue.o
sha1-arm-y := sha1-armv4-large.o sha1_glue.o
sha1-arm-neon-y := sha1-armv7-neon.o sha1_neon_glue.o
sha256-arm-neon-$(CONFIG_KERNEL_MODE_NEON) := sha256_neon_glue.o
sha256-arm-y := sha256-core.o sha256_glue.o $(sha256-arm-neon-y)
sha512-arm-neon-y := sha512-armv7-neon.o sha512_neon_glue.o
sha1-arm-ce-y := sha1-ce-core.o sha1-ce-glue.o
sha2-arm-ce-y := sha2-ce-core.o sha2-ce-glue.o
@ -28,4 +31,7 @@ quiet_cmd_perl = PERL $@
$(src)/aesbs-core.S_shipped: $(src)/bsaes-armv7.pl
$(call cmd,perl)
.PRECIOUS: $(obj)/aesbs-core.S
$(src)/sha256-core.S_shipped: $(src)/sha256-armv4.pl
$(call cmd,perl)
.PRECIOUS: $(obj)/aesbs-core.S $(obj)/sha256-core.S

View file

@ -163,7 +163,7 @@ static struct shash_alg algs[] = { {
.base = {
.cra_name = "sha224",
.cra_driver_name = "sha224-ce",
.cra_priority = 200,
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
@ -180,7 +180,7 @@ static struct shash_alg algs[] = { {
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-ce",
.cra_priority = 200,
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,

View file

@ -0,0 +1,716 @@
#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
#
# Permission to use under GPL terms is granted.
# ====================================================================
# SHA256 block procedure for ARMv4. May 2007.
# Performance is ~2x better than gcc 3.4 generated code and in "abso-
# lute" terms is ~2250 cycles per 64-byte block or ~35 cycles per
# byte [on single-issue Xscale PXA250 core].
# July 2010.
#
# Rescheduling for dual-issue pipeline resulted in 22% improvement on
# Cortex A8 core and ~20 cycles per processed byte.
# February 2011.
#
# Profiler-assisted and platform-specific optimization resulted in 16%
# improvement on Cortex A8 core and ~15.4 cycles per processed byte.
# September 2013.
#
# Add NEON implementation. On Cortex A8 it was measured to process one
# byte in 12.5 cycles or 23% faster than integer-only code. Snapdragon
# S4 does it in 12.5 cycles too, but it's 50% faster than integer-only
# code (meaning that latter performs sub-optimally, nothing was done
# about it).
# May 2014.
#
# Add ARMv8 code path performing at 2.0 cpb on Apple A7.
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
$ctx="r0"; $t0="r0";
$inp="r1"; $t4="r1";
$len="r2"; $t1="r2";
$T1="r3"; $t3="r3";
$A="r4";
$B="r5";
$C="r6";
$D="r7";
$E="r8";
$F="r9";
$G="r10";
$H="r11";
@V=($A,$B,$C,$D,$E,$F,$G,$H);
$t2="r12";
$Ktbl="r14";
@Sigma0=( 2,13,22);
@Sigma1=( 6,11,25);
@sigma0=( 7,18, 3);
@sigma1=(17,19,10);
sub BODY_00_15 {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<___ if ($i<16);
#if __ARM_ARCH__>=7
@ ldr $t1,[$inp],#4 @ $i
# if $i==15
str $inp,[sp,#17*4] @ make room for $t4
# endif
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
# ifndef __ARMEB__
rev $t1,$t1
# endif
#else
@ ldrb $t1,[$inp,#3] @ $i
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
ldrb $t2,[$inp,#2]
ldrb $t0,[$inp,#1]
orr $t1,$t1,$t2,lsl#8
ldrb $t2,[$inp],#4
orr $t1,$t1,$t0,lsl#16
# if $i==15
str $inp,[sp,#17*4] @ make room for $t4
# endif
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`
orr $t1,$t1,$t2,lsl#24
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
#endif
___
$code.=<<___;
ldr $t2,[$Ktbl],#4 @ *K256++
add $h,$h,$t1 @ h+=X[i]
str $t1,[sp,#`$i%16`*4]
eor $t1,$f,$g
add $h,$h,$t0,ror#$Sigma1[0] @ h+=Sigma1(e)
and $t1,$t1,$e
add $h,$h,$t2 @ h+=K256[i]
eor $t1,$t1,$g @ Ch(e,f,g)
eor $t0,$a,$a,ror#`$Sigma0[1]-$Sigma0[0]`
add $h,$h,$t1 @ h+=Ch(e,f,g)
#if $i==31
and $t2,$t2,#0xff
cmp $t2,#0xf2 @ done?
#endif
#if $i<15
# if __ARM_ARCH__>=7
ldr $t1,[$inp],#4 @ prefetch
# else
ldrb $t1,[$inp,#3]
# endif
eor $t2,$a,$b @ a^b, b^c in next round
#else
ldr $t1,[sp,#`($i+2)%16`*4] @ from future BODY_16_xx
eor $t2,$a,$b @ a^b, b^c in next round
ldr $t4,[sp,#`($i+15)%16`*4] @ from future BODY_16_xx
#endif
eor $t0,$t0,$a,ror#`$Sigma0[2]-$Sigma0[0]` @ Sigma0(a)
and $t3,$t3,$t2 @ (b^c)&=(a^b)
add $d,$d,$h @ d+=h
eor $t3,$t3,$b @ Maj(a,b,c)
add $h,$h,$t0,ror#$Sigma0[0] @ h+=Sigma0(a)
@ add $h,$h,$t3 @ h+=Maj(a,b,c)
___
($t2,$t3)=($t3,$t2);
}
sub BODY_16_XX {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<___;
@ ldr $t1,[sp,#`($i+1)%16`*4] @ $i
@ ldr $t4,[sp,#`($i+14)%16`*4]
mov $t0,$t1,ror#$sigma0[0]
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
mov $t2,$t4,ror#$sigma1[0]
eor $t0,$t0,$t1,ror#$sigma0[1]
eor $t2,$t2,$t4,ror#$sigma1[1]
eor $t0,$t0,$t1,lsr#$sigma0[2] @ sigma0(X[i+1])
ldr $t1,[sp,#`($i+0)%16`*4]
eor $t2,$t2,$t4,lsr#$sigma1[2] @ sigma1(X[i+14])
ldr $t4,[sp,#`($i+9)%16`*4]
add $t2,$t2,$t0
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]` @ from BODY_00_15
add $t1,$t1,$t2
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
add $t1,$t1,$t4 @ X[i]
___
&BODY_00_15(@_);
}
$code=<<___;
#ifndef __KERNEL__
# include "arm_arch.h"
#else
# define __ARM_ARCH__ __LINUX_ARM_ARCH__
# define __ARM_MAX_ARCH__ 7
#endif
.text
#if __ARM_ARCH__<7
.code 32
#else
.syntax unified
# ifdef __thumb2__
# define adrl adr
.thumb
# else
.code 32
# endif
#endif
.type K256,%object
.align 5
K256:
.word 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.word 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
.word 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
.word 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
.word 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
.word 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
.word 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
.word 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
.word 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
.word 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
.word 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
.word 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
.word 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
.word 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
.word 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
.word 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
.size K256,.-K256
.word 0 @ terminator
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
.LOPENSSL_armcap:
.word OPENSSL_armcap_P-sha256_block_data_order
#endif
.align 5
.global sha256_block_data_order
.type sha256_block_data_order,%function
sha256_block_data_order:
#if __ARM_ARCH__<7
sub r3,pc,#8 @ sha256_block_data_order
#else
adr r3,sha256_block_data_order
#endif
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
ldr r12,.LOPENSSL_armcap
ldr r12,[r3,r12] @ OPENSSL_armcap_P
tst r12,#ARMV8_SHA256
bne .LARMv8
tst r12,#ARMV7_NEON
bne .LNEON
#endif
add $len,$inp,$len,lsl#6 @ len to point at the end of inp
stmdb sp!,{$ctx,$inp,$len,r4-r11,lr}
ldmia $ctx,{$A,$B,$C,$D,$E,$F,$G,$H}
sub $Ktbl,r3,#256+32 @ K256
sub sp,sp,#16*4 @ alloca(X[16])
.Loop:
# if __ARM_ARCH__>=7
ldr $t1,[$inp],#4
# else
ldrb $t1,[$inp,#3]
# endif
eor $t3,$B,$C @ magic
eor $t2,$t2,$t2
___
for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
$code.=".Lrounds_16_xx:\n";
for (;$i<32;$i++) { &BODY_16_XX($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
#if __ARM_ARCH__>=7
ite eq @ Thumb2 thing, sanity check in ARM
#endif
ldreq $t3,[sp,#16*4] @ pull ctx
bne .Lrounds_16_xx
add $A,$A,$t2 @ h+=Maj(a,b,c) from the past
ldr $t0,[$t3,#0]
ldr $t1,[$t3,#4]
ldr $t2,[$t3,#8]
add $A,$A,$t0
ldr $t0,[$t3,#12]
add $B,$B,$t1
ldr $t1,[$t3,#16]
add $C,$C,$t2
ldr $t2,[$t3,#20]
add $D,$D,$t0
ldr $t0,[$t3,#24]
add $E,$E,$t1
ldr $t1,[$t3,#28]
add $F,$F,$t2
ldr $inp,[sp,#17*4] @ pull inp
ldr $t2,[sp,#18*4] @ pull inp+len
add $G,$G,$t0
add $H,$H,$t1
stmia $t3,{$A,$B,$C,$D,$E,$F,$G,$H}
cmp $inp,$t2
sub $Ktbl,$Ktbl,#256 @ rewind Ktbl
bne .Loop
add sp,sp,#`16+3`*4 @ destroy frame
#if __ARM_ARCH__>=5
ldmia sp!,{r4-r11,pc}
#else
ldmia sp!,{r4-r11,lr}
tst lr,#1
moveq pc,lr @ be binary compatible with V4, yet
bx lr @ interoperable with Thumb ISA:-)
#endif
.size sha256_block_data_order,.-sha256_block_data_order
___
######################################################################
# NEON stuff
#
{{{
my @X=map("q$_",(0..3));
my ($T0,$T1,$T2,$T3,$T4,$T5)=("q8","q9","q10","q11","d24","d25");
my $Xfer=$t4;
my $j=0;
sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; }
sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; }
sub AUTOLOAD() # thunk [simplified] x86-style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
my $arg = pop;
$arg = "#$arg" if ($arg*1 eq $arg);
$code .= "\t$opcode\t".join(',',@_,$arg)."\n";
}
sub Xupdate()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e,$f,$g,$h);
&vext_8 ($T0,@X[0],@X[1],4); # X[1..4]
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vext_8 ($T1,@X[2],@X[3],4); # X[9..12]
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T2,$T0,$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += X[9..12]
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T1,$T0,$sigma0[2]);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T2,$T0,32-$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T3,$T0,$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T1,$T1,$T2);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T3,$T0,32-$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T1,$T1,$T3); # sigma0(X[1..4])
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T5,&Dhi(@X[3]),$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4); # sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (&Dlo(@X[0]),&Dlo(@X[0]),$T5);# X[0..1] += sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T5,&Dlo(@X[0]),$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&vld1_32 ("{$T0}","[$Ktbl,:128]!");
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4); # sigma1(X[16..17])
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (&Dhi(@X[0]),&Dhi(@X[0]),$T5);# X[2..3] += sigma1(X[16..17])
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 ($T0,$T0,@X[0]);
while($#insns>=2) { eval(shift(@insns)); }
&vst1_32 ("{$T0}","[$Xfer,:128]!");
eval(shift(@insns));
eval(shift(@insns));
push(@X,shift(@X)); # "rotate" X[]
}
sub Xpreload()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e,$f,$g,$h);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vld1_32 ("{$T0}","[$Ktbl,:128]!");
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vrev32_8 (@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 ($T0,$T0,@X[0]);
foreach (@insns) { eval; } # remaining instructions
&vst1_32 ("{$T0}","[$Xfer,:128]!");
push(@X,shift(@X)); # "rotate" X[]
}
sub body_00_15 () {
(
'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
'&add ($h,$h,$t1)', # h+=X[i]+K[i]
'&eor ($t1,$f,$g)',
'&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
'&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
'&and ($t1,$t1,$e)',
'&eor ($t2,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
'&eor ($t0,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
'&eor ($t1,$t1,$g)', # Ch(e,f,g)
'&add ($h,$h,$t2,"ror#$Sigma1[0]")', # h+=Sigma1(e)
'&eor ($t2,$a,$b)', # a^b, b^c in next round
'&eor ($t0,$t0,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
'&add ($h,$h,$t1)', # h+=Ch(e,f,g)
'&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
'&ldr ($t1,"[$Ktbl]") if ($j==15);'.
'&ldr ($t1,"[sp,#64]") if ($j==31)',
'&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
'&add ($d,$d,$h)', # d+=h
'&add ($h,$h,$t0,"ror#$Sigma0[0]");'. # h+=Sigma0(a)
'&eor ($t3,$t3,$b)', # Maj(a,b,c)
'$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
)
}
$code.=<<___;
#if __ARM_MAX_ARCH__>=7
.arch armv7-a
.fpu neon
.global sha256_block_data_order_neon
.type sha256_block_data_order_neon,%function
.align 4
sha256_block_data_order_neon:
.LNEON:
stmdb sp!,{r4-r12,lr}
sub $H,sp,#16*4+16
adrl $Ktbl,K256
bic $H,$H,#15 @ align for 128-bit stores
mov $t2,sp
mov sp,$H @ alloca
add $len,$inp,$len,lsl#6 @ len to point at the end of inp
vld1.8 {@X[0]},[$inp]!
vld1.8 {@X[1]},[$inp]!
vld1.8 {@X[2]},[$inp]!
vld1.8 {@X[3]},[$inp]!
vld1.32 {$T0},[$Ktbl,:128]!
vld1.32 {$T1},[$Ktbl,:128]!
vld1.32 {$T2},[$Ktbl,:128]!
vld1.32 {$T3},[$Ktbl,:128]!
vrev32.8 @X[0],@X[0] @ yes, even on
str $ctx,[sp,#64]
vrev32.8 @X[1],@X[1] @ big-endian
str $inp,[sp,#68]
mov $Xfer,sp
vrev32.8 @X[2],@X[2]
str $len,[sp,#72]
vrev32.8 @X[3],@X[3]
str $t2,[sp,#76] @ save original sp
vadd.i32 $T0,$T0,@X[0]
vadd.i32 $T1,$T1,@X[1]
vst1.32 {$T0},[$Xfer,:128]!
vadd.i32 $T2,$T2,@X[2]
vst1.32 {$T1},[$Xfer,:128]!
vadd.i32 $T3,$T3,@X[3]
vst1.32 {$T2},[$Xfer,:128]!
vst1.32 {$T3},[$Xfer,:128]!
ldmia $ctx,{$A-$H}
sub $Xfer,$Xfer,#64
ldr $t1,[sp,#0]
eor $t2,$t2,$t2
eor $t3,$B,$C
b .L_00_48
.align 4
.L_00_48:
___
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
$code.=<<___;
teq $t1,#0 @ check for K256 terminator
ldr $t1,[sp,#0]
sub $Xfer,$Xfer,#64
bne .L_00_48
ldr $inp,[sp,#68]
ldr $t0,[sp,#72]
sub $Ktbl,$Ktbl,#256 @ rewind $Ktbl
teq $inp,$t0
it eq
subeq $inp,$inp,#64 @ avoid SEGV
vld1.8 {@X[0]},[$inp]! @ load next input block
vld1.8 {@X[1]},[$inp]!
vld1.8 {@X[2]},[$inp]!
vld1.8 {@X[3]},[$inp]!
it ne
strne $inp,[sp,#68]
mov $Xfer,sp
___
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
$code.=<<___;
ldr $t0,[$t1,#0]
add $A,$A,$t2 @ h+=Maj(a,b,c) from the past
ldr $t2,[$t1,#4]
ldr $t3,[$t1,#8]
ldr $t4,[$t1,#12]
add $A,$A,$t0 @ accumulate
ldr $t0,[$t1,#16]
add $B,$B,$t2
ldr $t2,[$t1,#20]
add $C,$C,$t3
ldr $t3,[$t1,#24]
add $D,$D,$t4
ldr $t4,[$t1,#28]
add $E,$E,$t0
str $A,[$t1],#4
add $F,$F,$t2
str $B,[$t1],#4
add $G,$G,$t3
str $C,[$t1],#4
add $H,$H,$t4
str $D,[$t1],#4
stmia $t1,{$E-$H}
ittte ne
movne $Xfer,sp
ldrne $t1,[sp,#0]
eorne $t2,$t2,$t2
ldreq sp,[sp,#76] @ restore original sp
itt ne
eorne $t3,$B,$C
bne .L_00_48
ldmia sp!,{r4-r12,pc}
.size sha256_block_data_order_neon,.-sha256_block_data_order_neon
#endif
___
}}}
######################################################################
# ARMv8 stuff
#
{{{
my ($ABCD,$EFGH,$abcd)=map("q$_",(0..2));
my @MSG=map("q$_",(8..11));
my ($W0,$W1,$ABCD_SAVE,$EFGH_SAVE)=map("q$_",(12..15));
my $Ktbl="r3";
$code.=<<___;
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
# ifdef __thumb2__
# define INST(a,b,c,d) .byte c,d|0xc,a,b
# else
# define INST(a,b,c,d) .byte a,b,c,d
# endif
.type sha256_block_data_order_armv8,%function
.align 5
sha256_block_data_order_armv8:
.LARMv8:
vld1.32 {$ABCD,$EFGH},[$ctx]
# ifdef __thumb2__
adr $Ktbl,.LARMv8
sub $Ktbl,$Ktbl,#.LARMv8-K256
# else
adrl $Ktbl,K256
# endif
add $len,$inp,$len,lsl#6 @ len to point at the end of inp
.Loop_v8:
vld1.8 {@MSG[0]-@MSG[1]},[$inp]!
vld1.8 {@MSG[2]-@MSG[3]},[$inp]!
vld1.32 {$W0},[$Ktbl]!
vrev32.8 @MSG[0],@MSG[0]
vrev32.8 @MSG[1],@MSG[1]
vrev32.8 @MSG[2],@MSG[2]
vrev32.8 @MSG[3],@MSG[3]
vmov $ABCD_SAVE,$ABCD @ offload
vmov $EFGH_SAVE,$EFGH
teq $inp,$len
___
for($i=0;$i<12;$i++) {
$code.=<<___;
vld1.32 {$W1},[$Ktbl]!
vadd.i32 $W0,$W0,@MSG[0]
sha256su0 @MSG[0],@MSG[1]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
sha256su1 @MSG[0],@MSG[2],@MSG[3]
___
($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
}
$code.=<<___;
vld1.32 {$W1},[$Ktbl]!
vadd.i32 $W0,$W0,@MSG[0]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
vld1.32 {$W0},[$Ktbl]!
vadd.i32 $W1,$W1,@MSG[1]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W1
sha256h2 $EFGH,$abcd,$W1
vld1.32 {$W1},[$Ktbl]
vadd.i32 $W0,$W0,@MSG[2]
sub $Ktbl,$Ktbl,#256-16 @ rewind
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
vadd.i32 $W1,$W1,@MSG[3]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W1
sha256h2 $EFGH,$abcd,$W1
vadd.i32 $ABCD,$ABCD,$ABCD_SAVE
vadd.i32 $EFGH,$EFGH,$EFGH_SAVE
it ne
bne .Loop_v8
vst1.32 {$ABCD,$EFGH},[$ctx]
ret @ bx lr
.size sha256_block_data_order_armv8,.-sha256_block_data_order_armv8
#endif
___
}}}
$code.=<<___;
.asciz "SHA256 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align 2
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
.comm OPENSSL_armcap_P,4,4
#endif
___
open SELF,$0;
while(<SELF>) {
next if (/^#!/);
last if (!s/^#/@/ and !/^$/);
print;
}
close SELF;
{ my %opcode = (
"sha256h" => 0xf3000c40, "sha256h2" => 0xf3100c40,
"sha256su0" => 0xf3ba03c0, "sha256su1" => 0xf3200c40 );
sub unsha256 {
my ($mnemonic,$arg)=@_;
if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) {
my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19)
|(($2&7)<<17)|(($2&8)<<4)
|(($3&7)<<1) |(($3&8)<<2);
# since ARMv7 instructions are always encoded little-endian.
# correct solution is to use .inst directive, but older
# assemblers don't implement it:-(
sprintf "INST(0x%02x,0x%02x,0x%02x,0x%02x)\t@ %s %s",
$word&0xff,($word>>8)&0xff,
($word>>16)&0xff,($word>>24)&0xff,
$mnemonic,$arg;
}
}
}
foreach (split($/,$code)) {
s/\`([^\`]*)\`/eval $1/geo;
s/\b(sha256\w+)\s+(q.*)/unsha256($1,$2)/geo;
s/\bret\b/bx lr/go or
s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4
print $_,"\n";
}
close STDOUT; # enforce flush

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,246 @@
/*
* Glue code for the SHA256 Secure Hash Algorithm assembly implementation
* using optimized ARM assembler and NEON instructions.
*
* Copyright © 2015 Google Inc.
*
* This file is based on sha256_ssse3_glue.c:
* Copyright (C) 2013 Intel Corporation
* Author: Tim Chen <tim.c.chen@linux.intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/internal/hash.h>
#include <linux/crypto.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <linux/string.h>
#include <crypto/sha.h>
#include <asm/byteorder.h>
#include <asm/simd.h>
#include <asm/neon.h>
#include "sha256_glue.h"
asmlinkage void sha256_block_data_order(u32 *digest, const void *data,
unsigned int num_blks);
int sha256_init(struct shash_desc *desc)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
sctx->state[0] = SHA256_H0;
sctx->state[1] = SHA256_H1;
sctx->state[2] = SHA256_H2;
sctx->state[3] = SHA256_H3;
sctx->state[4] = SHA256_H4;
sctx->state[5] = SHA256_H5;
sctx->state[6] = SHA256_H6;
sctx->state[7] = SHA256_H7;
sctx->count = 0;
return 0;
}
int sha224_init(struct shash_desc *desc)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
sctx->state[0] = SHA224_H0;
sctx->state[1] = SHA224_H1;
sctx->state[2] = SHA224_H2;
sctx->state[3] = SHA224_H3;
sctx->state[4] = SHA224_H4;
sctx->state[5] = SHA224_H5;
sctx->state[6] = SHA224_H6;
sctx->state[7] = SHA224_H7;
sctx->count = 0;
return 0;
}
int __sha256_update(struct shash_desc *desc, const u8 *data, unsigned int len,
unsigned int partial)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int done = 0;
sctx->count += len;
if (partial) {
done = SHA256_BLOCK_SIZE - partial;
memcpy(sctx->buf + partial, data, done);
sha256_block_data_order(sctx->state, sctx->buf, 1);
}
if (len - done >= SHA256_BLOCK_SIZE) {
const unsigned int rounds = (len - done) / SHA256_BLOCK_SIZE;
sha256_block_data_order(sctx->state, data + done, rounds);
done += rounds * SHA256_BLOCK_SIZE;
}
memcpy(sctx->buf, data + done, len - done);
return 0;
}
int sha256_update(struct shash_desc *desc, const u8 *data, unsigned int len)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
/* Handle the fast case right here */
if (partial + len < SHA256_BLOCK_SIZE) {
sctx->count += len;
memcpy(sctx->buf + partial, data, len);
return 0;
}
return __sha256_update(desc, data, len, partial);
}
/* Add padding and return the message digest. */
static int sha256_final(struct shash_desc *desc, u8 *out)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int i, index, padlen;
__be32 *dst = (__be32 *)out;
__be64 bits;
static const u8 padding[SHA256_BLOCK_SIZE] = { 0x80, };
/* save number of bits */
bits = cpu_to_be64(sctx->count << 3);
/* Pad out to 56 mod 64 and append length */
index = sctx->count % SHA256_BLOCK_SIZE;
padlen = (index < 56) ? (56 - index) : ((SHA256_BLOCK_SIZE+56)-index);
/* We need to fill a whole block for __sha256_update */
if (padlen <= 56) {
sctx->count += padlen;
memcpy(sctx->buf + index, padding, padlen);
} else {
__sha256_update(desc, padding, padlen, index);
}
__sha256_update(desc, (const u8 *)&bits, sizeof(bits), 56);
/* Store state in digest */
for (i = 0; i < 8; i++)
dst[i] = cpu_to_be32(sctx->state[i]);
/* Wipe context */
memset(sctx, 0, sizeof(*sctx));
return 0;
}
static int sha224_final(struct shash_desc *desc, u8 *out)
{
u8 D[SHA256_DIGEST_SIZE];
sha256_final(desc, D);
memcpy(out, D, SHA224_DIGEST_SIZE);
memzero_explicit(D, SHA256_DIGEST_SIZE);
return 0;
}
int sha256_export(struct shash_desc *desc, void *out)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, sizeof(*sctx));
return 0;
}
int sha256_import(struct shash_desc *desc, const void *in)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, sizeof(*sctx));
return 0;
}
static struct shash_alg algs[] = { {
.digestsize = SHA256_DIGEST_SIZE,
.init = sha256_init,
.update = sha256_update,
.final = sha256_final,
.export = sha256_export,
.import = sha256_import,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-asm",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
}, {
.digestsize = SHA224_DIGEST_SIZE,
.init = sha224_init,
.update = sha256_update,
.final = sha224_final,
.export = sha256_export,
.import = sha256_import,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha224",
.cra_driver_name = "sha224-asm",
.cra_priority = 150,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
} };
static int __init sha256_mod_init(void)
{
int res = crypto_register_shashes(algs, ARRAY_SIZE(algs));
if (res < 0)
return res;
if (IS_ENABLED(CONFIG_KERNEL_MODE_NEON) && cpu_has_neon()) {
res = crypto_register_shashes(sha256_neon_algs,
ARRAY_SIZE(sha256_neon_algs));
if (res < 0)
crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
}
return res;
}
static void __exit sha256_mod_fini(void)
{
crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
if (IS_ENABLED(CONFIG_KERNEL_MODE_NEON) && cpu_has_neon())
crypto_unregister_shashes(sha256_neon_algs,
ARRAY_SIZE(sha256_neon_algs));
}
module_init(sha256_mod_init);
module_exit(sha256_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA256 Secure Hash Algorithm (ARM), including NEON");
MODULE_ALIAS_CRYPTO("sha256");

View file

@ -0,0 +1,23 @@
#ifndef _CRYPTO_SHA256_GLUE_H
#define _CRYPTO_SHA256_GLUE_H
#include <linux/crypto.h>
#include <crypto/sha.h>
extern struct shash_alg sha256_neon_algs[2];
extern int sha256_init(struct shash_desc *desc);
extern int sha224_init(struct shash_desc *desc);
extern int __sha256_update(struct shash_desc *desc, const u8 *data,
unsigned int len, unsigned int partial);
extern int sha256_update(struct shash_desc *desc, const u8 *data,
unsigned int len);
extern int sha256_export(struct shash_desc *desc, void *out);
extern int sha256_import(struct shash_desc *desc, const void *in);
#endif /* _CRYPTO_SHA256_GLUE_H */

View file

@ -0,0 +1,172 @@
/*
* Glue code for the SHA256 Secure Hash Algorithm assembly implementation
* using NEON instructions.
*
* Copyright © 2015 Google Inc.
*
* This file is based on sha512_neon_glue.c:
* Copyright © 2014 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/internal/hash.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <linux/string.h>
#include <crypto/sha.h>
#include <asm/byteorder.h>
#include <asm/simd.h>
#include <asm/neon.h>
#include "sha256_glue.h"
asmlinkage void sha256_block_data_order_neon(u32 *digest, const void *data,
unsigned int num_blks);
static int __sha256_neon_update(struct shash_desc *desc, const u8 *data,
unsigned int len, unsigned int partial)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int done = 0;
sctx->count += len;
if (partial) {
done = SHA256_BLOCK_SIZE - partial;
memcpy(sctx->buf + partial, data, done);
sha256_block_data_order_neon(sctx->state, sctx->buf, 1);
}
if (len - done >= SHA256_BLOCK_SIZE) {
const unsigned int rounds = (len - done) / SHA256_BLOCK_SIZE;
sha256_block_data_order_neon(sctx->state, data + done, rounds);
done += rounds * SHA256_BLOCK_SIZE;
}
memcpy(sctx->buf, data + done, len - done);
return 0;
}
static int sha256_neon_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
int res;
/* Handle the fast case right here */
if (partial + len < SHA256_BLOCK_SIZE) {
sctx->count += len;
memcpy(sctx->buf + partial, data, len);
return 0;
}
if (!may_use_simd()) {
res = __sha256_update(desc, data, len, partial);
} else {
kernel_neon_begin();
res = __sha256_neon_update(desc, data, len, partial);
kernel_neon_end();
}
return res;
}
/* Add padding and return the message digest. */
static int sha256_neon_final(struct shash_desc *desc, u8 *out)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int i, index, padlen;
__be32 *dst = (__be32 *)out;
__be64 bits;
static const u8 padding[SHA256_BLOCK_SIZE] = { 0x80, };
/* save number of bits */
bits = cpu_to_be64(sctx->count << 3);
/* Pad out to 56 mod 64 and append length */
index = sctx->count % SHA256_BLOCK_SIZE;
padlen = (index < 56) ? (56 - index) : ((SHA256_BLOCK_SIZE+56)-index);
if (!may_use_simd()) {
sha256_update(desc, padding, padlen);
sha256_update(desc, (const u8 *)&bits, sizeof(bits));
} else {
kernel_neon_begin();
/* We need to fill a whole block for __sha256_neon_update() */
if (padlen <= 56) {
sctx->count += padlen;
memcpy(sctx->buf + index, padding, padlen);
} else {
__sha256_neon_update(desc, padding, padlen, index);
}
__sha256_neon_update(desc, (const u8 *)&bits,
sizeof(bits), 56);
kernel_neon_end();
}
/* Store state in digest */
for (i = 0; i < 8; i++)
dst[i] = cpu_to_be32(sctx->state[i]);
/* Wipe context */
memzero_explicit(sctx, sizeof(*sctx));
return 0;
}
static int sha224_neon_final(struct shash_desc *desc, u8 *out)
{
u8 D[SHA256_DIGEST_SIZE];
sha256_neon_final(desc, D);
memcpy(out, D, SHA224_DIGEST_SIZE);
memzero_explicit(D, SHA256_DIGEST_SIZE);
return 0;
}
struct shash_alg sha256_neon_algs[] = { {
.digestsize = SHA256_DIGEST_SIZE,
.init = sha256_init,
.update = sha256_neon_update,
.final = sha256_neon_final,
.export = sha256_export,
.import = sha256_import,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-neon",
.cra_priority = 250,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
}, {
.digestsize = SHA224_DIGEST_SIZE,
.init = sha224_init,
.update = sha256_neon_update,
.final = sha224_neon_final,
.export = sha256_export,
.import = sha256_import,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha224",
.cra_driver_name = "sha224-neon",
.cra_priority = 250,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
} };