Commit graph

127 commits

Author SHA1 Message Date
Christoffer Dall
10f92c4c53 KVM: arm/arm64: vgic: Add debugfs vgic-state file
Add a file to debugfs to read the in-kernel state of the vgic.  We don't
do any locking of the entire VGIC state while traversing all the IRQs,
so if the VM is running the user/developer may not see a quiesced state,
but should take care to pause the VM using facilities in user space for
that purpose.

We also don't support LPIs yet, but they can be added easily if needed.

Reviewed-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-01-25 13:50:03 +01:00
Christoffer Dall
8694e4da66 KVM: arm/arm64: Remove struct vgic_irq pending field
One of the goals behind the VGIC redesign was to get rid of cached or
intermediate state in the data structures, but we decided to allow
ourselves to precompute the pending value of an IRQ based on the line
level and pending latch state.  However, this has now become difficult
to base proper GICv3 save/restore on, because there is a potential to
modify the pending state without knowing if an interrupt is edge or
level configured.

See the following post and related message for more background:
https://lists.cs.columbia.edu/pipermail/kvmarm/2017-January/023195.html

This commit gets rid of the precomputed pending field in favor of a
function that calculates the value when needed, irq_is_pending().

The soft_pending field is renamed to pending_latch to represent that
this latch is the equivalent hardware latch which gets manipulated by
the input signal for edge-triggered interrupts and when writing to the
SPENDR/CPENDR registers.

After this commit save/restore code should be able to simply restore the
pending_latch state, line_level state, and config state in any order and
get the desired result.

Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2017-01-25 13:26:13 +01:00
Jintack Lim
488f94d721 KVM: arm64: Access CNTHCTL_EL2 bit fields correctly on VHE systems
Current KVM world switch code is unintentionally setting wrong bits to
CNTHCTL_EL2 when E2H == 1, which may allow guest OS to access physical
timer.  Bit positions of CNTHCTL_EL2 are changing depending on
HCR_EL2.E2H bit.  EL1PCEN and EL1PCTEN are 1st and 0th bits when E2H is
not set, but they are 11th and 10th bits respectively when E2H is set.

In fact, on VHE we only need to set those bits once, not for every world
switch. This is because the host kernel runs in EL2 with HCR_EL2.TGE ==
1, which makes those bits have no effect for the host kernel execution.
So we just set those bits once for guests, and that's it.

Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-01-13 11:19:25 +00:00
Thomas Gleixner
a5a1d1c291 clocksource: Use a plain u64 instead of cycle_t
There is no point in having an extra type for extra confusion. u64 is
unambiguous.

Conversion was done with the following coccinelle script:

@rem@
@@
-typedef u64 cycle_t;

@fix@
typedef cycle_t;
@@
-cycle_t
+u64

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
2016-12-25 11:04:12 +01:00
Vladimir Murzin
acda5430be ARM: KVM: Support vgic-v3
This patch allows to build and use vgic-v3 in 32-bit mode.

Unfortunately, it can not be split in several steps without extra
stubs to keep patches independent and bisectable.  For instance,
virt/kvm/arm/vgic/vgic-v3.c uses function from vgic-v3-sr.c, handling
access to GICv3 cpu interface from the guest requires vgic_v3.vgic_sre
to be already defined.

It is how support has been done:

* handle SGI requests from the guest

* report configured SRE on access to GICv3 cpu interface from the guest

* required vgic-v3 macros are provided via uapi.h

* static keys are used to select GIC backend

* to make vgic-v3 build KVM_ARM_VGIC_V3 guard is removed along with
  the static inlines

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-22 13:22:21 +02:00
Vladimir Murzin
5a7a8426b2 arm64: KVM: Use static keys for selecting the GIC backend
Currently GIC backend is selected via alternative framework and this
is fine. We are going to introduce vgic-v3 to 32-bit world and there
we don't have patching framework in hand, so we can either check
support for GICv3 every time we need to choose which backend to use or
try to optimise it by using static keys. The later looks quite
promising because we can share logic involved in selecting GIC backend
between architectures if both uses static keys.

This patch moves arm64 from alternative to static keys framework for
selecting GIC backend. For that we embed static key into vgic_global
and enable the key during vgic initialisation based on what has
already been exposed by the host GIC driver.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-22 13:21:35 +02:00
Marc Zyngier
bf8feb3964 arm64: KVM: vgic-v2: Add GICV access from HYP
Now that we have the necessary infrastructure to handle MMIO accesses
in HYP, perform the GICV access on behalf of the guest. This requires
checking that the access is strictly 32bit, properly aligned, and
falls within the expected range.

When all condition are satisfied, we perform the access and tell
the rest of the HYP code that the instruction has been correctly
emulated.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-08 12:53:00 +02:00
Marc Zyngier
fb5ee369cc arm64: KVM: vgic-v2: Add the GICV emulation infrastructure
In order to efficiently perform the GICV access on behalf of the
guest, we need to be able to avoid going back all the way to
the host kernel.

For this, we introduce a new hook in the world switch code,
conveniently placed just after populating the fault info.
At that point, we only have saved/restored the GP registers,
and we can quickly perform all the required checks (data abort,
translation fault, valid faulting syndrome, not an external
abort, not a PTW).

Coming back from the emulation code, we need to skip the emulated
instruction. This involves an additional bit of save/restore in
order to be able to access the guest's PC (and possibly CPSR if
this is a 32bit guest).

At this stage, no emulation code is provided.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-09-08 12:53:00 +02:00
Paolo Bonzini
6f49b2f341 KVM/ARM Changes for v4.8 - Take 2
Includes GSI routing support to go along with the new VGIC and a small fix that
 has been cooking in -next for a while.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJXoydqAAoJEEtpOizt6ddyM3oH/1A4VeG/J9q4fBPXqY2tVWXs
 c3P7UgNcrEgUNs/F9ykQY/lb31deecUzaBt1OyTf+RlsNbihq3dQdYcBhxtUODw/
 Faok582ya3UFgLW+IRHcID0EbkVOpIzMhOStYsnU/Dz7HG1JL9HdPzwkid7iu9LT
 fI6yrrBnJFjdWAAQ4BkcEKBENRsY8NTs7jX5vnFA92MkUBby7BmariPDD3FtrB+f
 Ob9B7CxM30pNqsN7OA/QvFOHMJHxf3s1TBKwmPHe5TLIfSzV1YxcEGiMc0lWqF4v
 BT8ZeMGCtjDw94tND1DskfQQRPaMqPmGuRTrAW/IuE2n92bFtbqIqs7Cbw0fzLE=
 =Vm6Q
 -----END PGP SIGNATURE-----

Merge tag 'kvm-arm-for-4.8-take2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/ARM Changes for v4.8 - Take 2

Includes GSI routing support to go along with the new VGIC and a small fix that
has been cooking in -next for a while.
2016-08-04 13:59:56 +02:00
Linus Torvalds
221bb8a46e - ARM: GICv3 ITS emulation and various fixes. Removal of the old
VGIC implementation.
 
 - s390: support for trapping software breakpoints, nested virtualization
 (vSIE), the STHYI opcode, initial extensions for CPU model support.
 
 - MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
 preliminary to this and the upcoming support for hardware virtualization
 extensions.
 
 - x86: support for execute-only mappings in nested EPT; reduced vmexit
 latency for TSC deadline timer (by about 30%) on Intel hosts; support for
 more than 255 vCPUs.
 
 - PPC: bugfixes.
 
 The ugly bit is the conflicts.  A couple of them are simple conflicts due
 to 4.7 fixes, but most of them are with other trees. There was definitely
 too much reliance on Acked-by here.  Some conflicts are for KVM patches
 where _I_ gave my Acked-by, but the worst are for this pull request's
 patches that touch files outside arch/*/kvm.  KVM submaintainers should
 probably learn to synchronize better with arch maintainers, with the
 latter providing topic branches whenever possible instead of Acked-by.
 This is what we do with arch/x86.  And I should learn to refuse pull
 requests when linux-next sends scary signals, even if that means that
 submaintainers have to rebase their branches.
 
 Anyhow, here's the list:
 
 - arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
 by the nvdimm tree.  This tree adds handle_preemption_timer and
 EXIT_REASON_PREEMPTION_TIMER at the same place.  In general all mentions
 of pcommit have to go.
 
 There is also a conflict between a stable fix and this patch, where the
 stable fix removed the vmx_create_pml_buffer function and its call.
 
 - virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
 This tree adds kvm_io_bus_get_dev at the same place.
 
 - virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
 file was completely removed for 4.8.
 
 - include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
 this is a change that should have gone in through the irqchip tree and
 pulled by kvm-arm.  I think I would have rejected this kvm-arm pull
 request.  The KVM version is the right one, except that it lacks
 GITS_BASER_PAGES_SHIFT.
 
 - arch/powerpc: what a mess.  For the idle_book3s.S conflict, the KVM
 tree is the right one; everything else is trivial.  In this case I am
 not quite sure what went wrong.  The commit that is causing the mess
 (fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
 path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
 and arch/powerpc/kvm/.  It's large, but at 396 insertions/5 deletions
 I guessed that it wasn't really possible to split it and that the 5
 deletions wouldn't conflict.  That wasn't the case.
 
 - arch/s390: also messy.  First is hypfs_diag.c where the KVM tree
 moved some code and the s390 tree patched it.  You have to reapply the
 relevant part of commits 6c22c98637, plus all of e030c1125e, to
 arch/s390/kernel/diag.c.  Or pick the linux-next conflict
 resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
 Second, there is a conflict in gmap.c between a stable fix and 4.8.
 The KVM version here is the correct one.
 
 I have pushed my resolution at refs/heads/merge-20160802 (commit
 3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
 SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
 U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
 x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
 qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
 69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
 =42ti
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:

 - ARM: GICv3 ITS emulation and various fixes.  Removal of the
   old VGIC implementation.

 - s390: support for trapping software breakpoints, nested
   virtualization (vSIE), the STHYI opcode, initial extensions
   for CPU model support.

 - MIPS: support for MIPS64 hosts (32-bit guests only) and lots
   of cleanups, preliminary to this and the upcoming support for
   hardware virtualization extensions.

 - x86: support for execute-only mappings in nested EPT; reduced
   vmexit latency for TSC deadline timer (by about 30%) on Intel
   hosts; support for more than 255 vCPUs.

 - PPC: bugfixes.

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
  KVM: PPC: Introduce KVM_CAP_PPC_HTM
  MIPS: Select HAVE_KVM for MIPS64_R{2,6}
  MIPS: KVM: Reset CP0_PageMask during host TLB flush
  MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
  MIPS: KVM: Sign extend MFC0/RDHWR results
  MIPS: KVM: Fix 64-bit big endian dynamic translation
  MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
  MIPS: KVM: Use 64-bit CP0_EBase when appropriate
  MIPS: KVM: Set CP0_Status.KX on MIPS64
  MIPS: KVM: Make entry code MIPS64 friendly
  MIPS: KVM: Use kmap instead of CKSEG0ADDR()
  MIPS: KVM: Use virt_to_phys() to get commpage PFN
  MIPS: Fix definition of KSEGX() for 64-bit
  KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
  kvm: x86: nVMX: maintain internal copy of current VMCS
  KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
  KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
  KVM: arm64: vgic-its: Simplify MAPI error handling
  KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
  KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
  ...
2016-08-02 16:11:27 -04:00
Eric Auger
180ae7b118 KVM: arm/arm64: Enable irqchip routing
This patch adds compilation and link against irqchip.

Main motivation behind using irqchip code is to enable MSI
routing code. In the future irqchip routing may also be useful
when targeting multiple irqchips.

Routing standard callbacks now are implemented in vgic-irqfd:
- kvm_set_routing_entry
- kvm_set_irq
- kvm_set_msi

They only are supported with new_vgic code.

Both HAVE_KVM_IRQCHIP and HAVE_KVM_IRQ_ROUTING are defined.
KVM_CAP_IRQ_ROUTING is advertised and KVM_SET_GSI_ROUTING is allowed.

So from now on IRQCHIP routing is enabled and a routing table entry
must exist for irqfd injection to succeed for a given SPI. This patch
builds a default flat irqchip routing table (gsi=irqchip.pin) covering
all the VGIC SPI indexes. This routing table is overwritten by the
first first user-space call to KVM_SET_GSI_ROUTING ioctl.

MSI routing setup is not yet allowed.

Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-22 18:52:01 +01:00
Marc Zyngier
bb7176449f KVM: arm64: vgic-its: Add pointer to corresponding kvm_device
Going from the ITS structure to the corresponding KVM structure
would be quite handy at times. The kvm_device pointer that is
passed at create time is quite convenient for this, so let's
keep a copy of it in the vgic_its structure.

This will be put to a good use in subsequent patches.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18 18:15:18 +01:00
Andre Przywara
0e4e82f154 KVM: arm64: vgic-its: Enable ITS emulation as a virtual MSI controller
Now that all ITS emulation functionality is in place, we advertise
MSI functionality to userland and also the ITS device to the guest - if
userland has configured that.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18 18:14:38 +01:00
Andre Przywara
3802411d01 KVM: arm64: vgic-its: Connect LPIs to the VGIC emulation
LPIs are dynamically created (mapped) at guest runtime and their
actual number can be quite high, but is mostly assigned using a very
sparse allocation scheme. So arrays are not an ideal data structure
to hold the information.
We use a spin-lock protected linked list to hold all mapped LPIs,
represented by their struct vgic_irq. This lock is grouped between the
ap_list_lock and the vgic_irq lock in our locking order.
Also we store a pointer to that struct vgic_irq in our struct its_itte,
so we can easily access it.
Eventually we call our new vgic_get_lpi() from vgic_get_irq(), so
the VGIC code gets transparently access to LPIs.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18 18:14:36 +01:00
Andre Przywara
424c33830f KVM: arm64: vgic-its: Implement basic ITS register handlers
Add emulation for some basic MMIO registers used in the ITS emulation.
This includes:
- GITS_{CTLR,TYPER,IIDR}
- ID registers
- GITS_{CBASER,CREADR,CWRITER}
  (which implement the ITS command buffer handling)
- GITS_BASER<n>

Most of the handlers are pretty straight forward, only the CWRITER
handler is a bit more involved by taking the new its_cmd mutex and
then iterating over the command buffer.
The registers holding base addresses and attributes are sanitised before
storing them.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18 18:14:36 +01:00
Andre Przywara
1085fdc68c KVM: arm64: vgic-its: Introduce new KVM ITS device
Introduce a new KVM device that represents an ARM Interrupt Translation
Service (ITS) controller. Since there can be multiple of this per guest,
we can't piggy back on the existing GICv3 distributor device, but create
a new type of KVM device.
On the KVM_CREATE_DEVICE ioctl we allocate and initialize the ITS data
structure and store the pointer in the kvm_device data.
Upon an explicit init ioctl from userland (after having setup the MMIO
address) we register the handlers with the kvm_io_bus framework.
Any reference to an ITS thus has to go via this interface.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18 18:14:35 +01:00
Andre Przywara
59c5ab4098 KVM: arm64: vgic-its: Introduce ITS emulation file with MMIO framework
The ARM GICv3 ITS emulation code goes into a separate file, but needs
to be connected to the GICv3 emulation, of which it is an option.
The ITS MMIO handlers require the respective ITS pointer to be passed in,
so we amend the existing VGIC MMIO framework to let it cope with that.
Also we introduce the basic ITS data structure and initialize it, but
don't return any success yet, as we are not yet ready for the show.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18 18:14:35 +01:00
Andre Przywara
0aa1de5731 KVM: arm64: vgic: Handle ITS related GICv3 redistributor registers
In the GICv3 redistributor there are the PENDBASER and PROPBASER
registers which we did not emulate so far, as they only make sense
when having an ITS. In preparation for that emulate those MMIO
accesses by storing the 64-bit data written into it into a variable
which we later read in the ITS emulation.
We also sanitise the registers, making sure RES0 regions are respected
and checking for valid memory attributes.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18 18:14:35 +01:00
Andre Przywara
5dd4b924e3 KVM: arm/arm64: vgic: Add refcounting for IRQs
In the moment our struct vgic_irq's are statically allocated at guest
creation time. So getting a pointer to an IRQ structure is trivial and
safe. LPIs are more dynamic, they can be mapped and unmapped at any time
during the guest's _runtime_.
In preparation for supporting LPIs we introduce reference counting for
those structures using the kernel's kref infrastructure.
Since private IRQs and SPIs are statically allocated, we avoid actually
refcounting them, since they would never be released anyway.
But we take provisions to increase the refcount when an IRQ gets onto a
VCPU list and decrease it when it gets removed. Also this introduces
vgic_put_irq(), which wraps kref_put and hides the release function from
the callers.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18 18:10:48 +01:00
Andre Przywara
8f6cdc1c2e KVM: arm/arm64: vgic: Move redistributor kvm_io_devices
Logically a GICv3 redistributor is assigned to a (v)CPU, so we should
aim to keep redistributor related variables out of our struct vgic_dist.

Let's start by replacing the redistributor related kvm_io_device array
with two members in our existing struct vgic_cpu, which are naturally
per-VCPU and thus don't require any allocation / freeing.
So apart from the better fit with the redistributor design this saves
some code as well.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18 18:09:40 +01:00
Marc Zyngier
50926d82fa KVM: arm/arm64: The GIC is dead, long live the GIC
I don't think any single piece of the KVM/ARM code ever generated
as much hatred as the GIC emulation.

It was written by someone who had zero experience in modeling
hardware (me), was riddled with design flaws, should have been
scrapped and rewritten from scratch long before having a remote
chance of reaching mainline, and yet we supported it for a good
three years. No need to mention the names of those who suffered,
the git log is singing their praises.

Thankfully, we now have a much more maintainable implementation,
and we can safely put the grumpy old GIC to rest.

Fellow hackers, please raise your glass in memory of the GIC:

	The GIC is dead, long live the GIC!

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-07-03 23:09:37 +02:00
Sudeep Holla
0efce9da12 arm64: KVM: fix build with CONFIG_ARM_PMU disabled
When CONFIG_ARM_PMU is disabled, we get the following build error:

arch/arm64/kvm/sys_regs.c: In function 'pmu_counter_idx_valid':
arch/arm64/kvm/sys_regs.c:564:27: error: 'ARMV8_PMU_CYCLE_IDX' undeclared (first use in this function)
  if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
                           ^
arch/arm64/kvm/sys_regs.c:564:27: note: each undeclared identifier is reported only once for each function it appears in
arch/arm64/kvm/sys_regs.c: In function 'access_pmu_evcntr':
arch/arm64/kvm/sys_regs.c:592:10: error: 'ARMV8_PMU_CYCLE_IDX' undeclared (first use in this function)
    idx = ARMV8_PMU_CYCLE_IDX;
          ^
arch/arm64/kvm/sys_regs.c: In function 'access_pmu_evtyper':
arch/arm64/kvm/sys_regs.c:638:14: error: 'ARMV8_PMU_CYCLE_IDX' undeclared (first use in this function)
   if (idx == ARMV8_PMU_CYCLE_IDX)
              ^
arch/arm64/kvm/hyp/switch.c:86:15: error: 'ARMV8_PMU_USERENR_MASK' undeclared (first use in this function)
  write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);

This patch fixes the build with CONFIG_ARM_PMU disabled.

Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-06-27 12:55:51 +02:00
Andre Przywara
568e8c901e KVM: arm/arm64: vgic-new: implement mapped IRQ handling
We now store the mapped hardware IRQ number in our struct, so we
don't need the irq_phys_map for the new VGIC.
Implement the hardware IRQ mapping on top of the reworked arch
timer interface.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:40:09 +02:00
Eric Auger
b0442ee227 KVM: arm/arm64: vgic-new: vgic_init: implement map_resources
map_resources is the last initialization step. It is executed on
first VCPU run. At that stage the code checks that userspace has provided
the base addresses for the relevant VGIC regions, which depend on the
type of VGIC that is exposed to the guest.  Also we check if the two
regions overlap.
If the checks succeeded, we register the respective register frames with
the kvm_io_bus framework.

If we emulate a GICv2, the function also forces vgic_init execution if
it has not been executed yet. Also we map the virtual GIC CPU interface
onto the guest's CPU interface.

Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:40:07 +02:00
Eric Auger
ad275b8bb1 KVM: arm/arm64: vgic-new: vgic_init: implement vgic_init
This patch allocates and initializes the data structures used
to model the vgic distributor and virtual cpu interfaces. At that
stage the number of IRQs and number of virtual CPUs is frozen.

Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:40:06 +02:00
Eric Auger
5e6431da8f KVM: arm/arm64: vgic-new: vgic_init: implement vgic_create
This patch implements the vgic_creation function which is
called on CREATE_IRQCHIP VM IOCTL (v2 only) or KVM_CREATE_DEVICE

Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:40:06 +02:00
Eric Auger
9097773245 KVM: arm/arm64: vgic-new: vgic_init: implement kvm_vgic_hyp_init
Implements kvm_vgic_hyp_init and vgic_probe function.
This uses the new firmware independent VGIC probing to support both ACPI
and DT based systems (code from Marc Zyngier).

The vgic_global struct is enriched with new fields populated
by those functions.

Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:40:05 +02:00
Eric Auger
e2c1f9abff KVM: arm/arm64: vgic-new: vgic_kvm_device: implement kvm_vgic_addr
kvm_vgic_addr is used by the userspace to set the base address of
the following register regions, as seen by the guest:
- distributor(v2 and v3),
- re-distributors (v3),
- CPU interface (v2).

Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:40:01 +02:00
Andre Przywara
621ecd8d21 KVM: arm/arm64: vgic-new: Add GICv3 SGI system register trap handler
In contrast to GICv2 SGIs in a GICv3 implementation are not triggered
by a MMIO write, but with a system register write. KVM knows about
that register already, we just need to implement the handler and wire
it up to the core KVM/ARM code.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:39:59 +02:00
Marc Zyngier
4493b1c486 KVM: arm/arm64: vgic-new: Add MMIO handling framework
Add an MMIO handling framework to the VGIC emulation:
Each register is described by its offset, size (or number of bits per
IRQ, if applicable) and the read/write handler functions. We provide
initialization macros to describe each GIC register later easily.

Separate dispatch functions for read and write accesses are connected
to the kvm_io_bus framework and binary-search for the responsible
register handler based on the offset address within the region.
We convert the incoming data (referenced by a pointer) to the host's
endianess and use pass-by-value to hand the data over to the actual
handler functions.

The register handler prototype and the endianess conversion are
courtesy of Christoffer Dall.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:39:49 +02:00
Eric Auger
90eee56c5f KVM: arm/arm64: vgic-new: Implement kvm_vgic_vcpu_pending_irq
Tell KVM whether a particular VCPU has an IRQ that needs handling
in the guest. This is used to decide whether a VCPU is runnable.

Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2016-05-20 15:39:49 +02:00
Marc Zyngier
0919e84c0f KVM: arm/arm64: vgic-new: Add IRQ sync/flush framework
Implement the framework for syncing IRQs between our emulation and
the list registers, which represent the guest's view of IRQs.
This is done in kvm_vgic_flush_hwstate and kvm_vgic_sync_hwstate,
which gets called on guest entry and exit.
The code talking to the actual GICv2/v3 hardware is added in the
following patches.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:39:47 +02:00
Christoffer Dall
81eeb95ddb KVM: arm/arm64: vgic-new: Implement virtual IRQ injection
Provide a vgic_queue_irq_unlock() function which decides whether a
given IRQ needs to be queued to a VCPU's ap_list.
This should be called whenever an IRQ becomes pending or enabled,
either as a result of userspace injection, from in-kernel emulated
devices like the architected timer or from MMIO accesses to the
distributor emulation.
Also provides the necessary functions to allow userland to inject an
IRQ to a guest.
Since this is the first code that starts using our locking mechanism, we
add some (hopefully) clear documentation of our locking strategy and
requirements along with this patch.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
2016-05-20 15:39:46 +02:00
Christoffer Dall
b18b57787f KVM: arm/arm64: vgic-new: Add data structure definitions
Add a new header file for the new and improved GIC implementation.
The big change is that we now have a struct vgic_irq per IRQ instead
of spreading all the information over various bitmaps.

We include this new header conditionally from within the old header
file for the time being to avoid touching all the users.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
2016-05-20 15:39:45 +02:00
Andre Przywara
2defaff48a KVM: arm/arm64: pmu: abstract access to number of SPIs
Currently the PMU uses a member of the struct vgic_dist directly,
which not only breaks abstraction, but will fail with the new VGIC.
Abstract this access in the VGIC header file and refactor the validity
check in the PMU code.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
2016-05-20 15:39:43 +02:00
Christoffer Dall
2db4c104fa KVM: arm/arm64: Get rid of vgic_cpu->nr_lr
The number of list registers is a property of the underlying system, not
of emulated VGIC CPU interface.

As we are about to move this variable to global state in the new vgic
for clarity, move it from the legacy implementation as well to make the
merge of the new code easier.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
2016-05-20 15:39:41 +02:00
Christoffer Dall
41a54482c0 KVM: arm/arm64: Move timer IRQ map to latest possible time
We are about to modify the VGIC to allocate all data structures
dynamically and store mapped IRQ information on a per-IRQ struct, which
is indeed allocated dynamically at init time.

Therefore, we cannot record the mapped IRQ info from the timer at timer
reset time like it's done now, because VCPU reset happens before timer
init.

A possible later time to do this is on the first run of a per VCPU, it
just requires us to move the enable state to be a per-VCPU state and do
the lookup of the physical IRQ number when we are about to run the VCPU.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
2016-05-20 15:39:41 +02:00
Andre Przywara
c8eb3f6b9b KVM: arm/arm64: vgic: Remove irq_phys_map from interface
Now that the virtual arch timer does not care about the irq_phys_map
anymore, let's rework kvm_vgic_map_phys_irq() to return an error
value instead. Any reference to that mapping can later be done by
passing the correct combination of VCPU and virtual IRQ number.
This makes the irq_phys_map handling completely private to the
VGIC code.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:39:40 +02:00
Andre Przywara
a7e33ad9b2 KVM: arm/arm64: arch_timer: Remove irq_phys_map
Now that the interface between the arch timer and the VGIC does not
require passing the irq_phys_map entry pointer anymore, let's remove
it from the virtual arch timer and use the virtual IRQ number instead
directly.
The remaining pointer returned by kvm_vgic_map_phys_irq() will be
removed in the following patch.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:39:39 +02:00
Christoffer Dall
b452cb5207 KVM: arm/arm64: Remove the IRQ field from struct irq_phys_map
The communication of a Linux IRQ number from outside the VGIC to the
vgic was a leftover from the day when the vgic code cared about how a
particular device injects virtual interrupts mapped to a physical
interrupt.

We can safely remove this notion, leaving all physical IRQ handling to
be done in the device driver (the arch timer in this case), which makes
room for a saner API for the new VGIC.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
2016-05-20 15:39:39 +02:00
Andre Przywara
63306c28ac KVM: arm/arm64: vgic: avoid map in kvm_vgic_unmap_phys_irq()
kvm_vgic_unmap_phys_irq() only needs the virtual IRQ number, so let's
just pass that between the arch timer and the VGIC to get rid of
the irq_phys_map pointer.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:39:38 +02:00
Andre Przywara
e262f41936 KVM: arm/arm64: vgic: avoid map in kvm_vgic_map_is_active()
For getting the active state of a mapped IRQ, we actually only need
the virtual IRQ number, not the pointer to the mapping entry.
Pass the virtual IRQ number from the arch timer to the VGIC directly.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:39:38 +02:00
Andre Przywara
4f551a3d96 KVM: arm/arm64: vgic: avoid map in kvm_vgic_inject_mapped_irq()
When we want to inject a hardware mapped IRQ into a guest, we actually
only need the virtual IRQ number from the irq_phys_map.
So let's pass this number directly from the arch timer to the VGIC
to avoid using the map as a parameter.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:39:37 +02:00
Julien Grall
503a62862e KVM: arm/arm64: vgic: Rely on the GIC driver to parse the firmware tables
Currently, the firmware tables are parsed 2 times: once in the GIC
drivers, the other time when initializing the vGIC. It means code
duplication and make more tedious to add the support for another
firmware table (like ACPI).

Use the recently introduced helper gic_get_kvm_info() to get
information about the virtual GIC.

With this change, the virtual GIC becomes agnostic to the firmware
table and KVM will be able to initialize the vGIC on ACPI.

Signed-off-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-03 12:54:21 +02:00
Marc Zyngier
1b8e83c04e arm64: KVM: vgic-v3: Avoid accessing ICH registers
Just like on GICv2, we're a bit hammer-happy with GICv3, and access
them more often than we should.

Adopt a policy similar to what we do for GICv2, only save/restoring
the minimal set of registers. As we don't access the registers
linearly anymore (we may skip some), the convoluted accessors become
slightly simpler, and we can drop the ugly indexing macro that
tended to confuse the reviewers.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-03-09 04:24:04 +00:00
Marc Zyngier
59f00ff9af KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers
GICv2 registers are *slow*. As in "terrifyingly slow". Which is bad.
But we're equaly bad, as we make a point in accessing them even if
we don't have any interrupt in flight.

A good solution is to first find out if we have anything useful to
write into the GIC, and if we don't, to simply not do it. This
involves tracking which LRs actually have something valid there.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-03-09 04:22:20 +00:00
Marc Zyngier
9b4a300443 KVM: arm/arm64: timer: Add active state caching
Programming the active state in the (re)distributor can be an
expensive operation so it makes some sense to try and reduce
the number of accesses as much as possible. So far, we
program the active state on each VM entry, but there is some
opportunity to do less.

An obvious solution is to cache the active state in memory,
and only program it in the HW when conditions change. But
because the HW can also change things under our feet (the active
state can transition from 1 to 0 when the guest does an EOI),
some precautions have to be taken, which amount to only caching
an "inactive" state, and always programing it otherwise.

With this in place, we observe a reduction of around 700 cycles
on a 2GHz GICv2 platform for a NULL hypercall.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-02-29 18:34:22 +00:00
Shannon Zhao
bb0c70bcca arm64: KVM: Add a new vcpu device control group for PMUv3
To configure the virtual PMUv3 overflow interrupt number, we use the
vcpu kvm_device ioctl, encapsulating the KVM_ARM_VCPU_PMU_V3_IRQ
attribute within the KVM_ARM_VCPU_PMU_V3_CTRL group.

After configuring the PMUv3, call the vcpu ioctl with attribute
KVM_ARM_VCPU_PMU_V3_INIT to initialize the PMUv3.

Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-02-29 18:34:21 +00:00
Shannon Zhao
808e738142 arm64: KVM: Add a new feature bit for PMUv3
To support guest PMUv3, use one bit of the VCPU INIT feature array.
Initialize the PMU when initialzing the vcpu with that bit and PMU
overflow interrupt set.

Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-02-29 18:34:21 +00:00
Shannon Zhao
5f0a714a2b arm64: KVM: Free perf event of PMU when destroying vcpu
When KVM frees VCPU, it needs to free the perf_event of PMU.

Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-02-29 18:34:21 +00:00