If we truncate an uncompressed inline item, ram_bytes isn't updated to reflect
the new size. The fixe uses the size directly from the item header when
reading uncompressed inlines, and also fixes truncate to update the
size as it goes.
Reported-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org
Convert all applicable cases of printk and pr_* to the btrfs_* macros.
Fix all uses of the BTRFS prefix.
Signed-off-by: Frank Holton <fholton@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Remove unused eb parameter from btrfs_item_nr
Signed-off-by: Ross Kirk <ross.kirk@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
u64 is "unsigned long long" on all architectures now, so there's no need to
cast it when formatting it using the "ll" length modifier.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This commit adds support to print UUID tree elements to print-tree.c.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This is confusing, sometimes the key type is printed in hex (without
a leading "0x" which makes things even more complicated), sometimes
in decimal...
Change it to be in decimal everywhere.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
With more than one btrfs volume mounted, it can be very difficult to find
out which volume is hitting an error. btrfs_error() will print this, but
it is currently rigged as more of a fatal error handler, while many of
the printk()s are currently for debugging and yet-unhandled cases.
This patch just changes the functions where the device information is
already available. Some cases remain where the root or fs_info is not
passed to the function emitting the error.
This may introduce some confusion with volumes backed by multiple devices
emitting errors referring to the primary device in the set instead of the
one on which the error occurred.
Use btrfs_printk(fs_info, format, ...) rather than writing the device
string every time, and introduce macro wrappers ala XFS for brevity.
Since the function already cannot be used for continuations, print a
newline as part of the btrfs_printk() message rather than at each caller.
Signed-off-by: Simon Kirby <sim@hostway.ca>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
I don't think that BTRFS_DEV_EXTENT_KEY is supposed
to fall through to BTRFS_DEV_STATS_KEY ...
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The device statistics are written into the device tree with each
transaction commit. Only modified statistics are written.
When a filesystem is mounted, the device statistics for each involved
device are read from the device tree and used to initialize the
counters.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
If lookup_extent_backref fails, path->nodes[0] reasonably could be
null along with other callers of btrfs_print_leaf, so ensure we have a
valid extent buffer before dereferencing.
Signed-off-by: Daniel J Blueman <daniel.blueman@gmail.com>
This removes the continues call's of btrfs_header_level. One call of
btrfs_header_level(c) its enough.
Signed-off-by Daniel Cadete <danielncadete10@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This commit introduces a new kind of back reference for btrfs metadata.
Once a filesystem has been mounted with this commit, IT WILL NO LONGER
BE MOUNTABLE BY OLDER KERNELS.
When a tree block in subvolume tree is cow'd, the reference counts of all
extents it points to are increased by one. At transaction commit time,
the old root of the subvolume is recorded in a "dead root" data structure,
and the btree it points to is later walked, dropping reference counts
and freeing any blocks where the reference count goes to 0.
The increments done during cow and decrements done after commit cancel out,
and the walk is a very expensive way to go about freeing the blocks that
are no longer referenced by the new btree root. This commit reduces the
transaction overhead by avoiding the need for dead root records.
When a non-shared tree block is cow'd, we free the old block at once, and the
new block inherits old block's references. When a tree block with reference
count > 1 is cow'd, we increase the reference counts of all extents
the new block points to by one, and decrease the old block's reference count by
one.
This dead tree avoidance code removes the need to modify the reference
counts of lower level extents when a non-shared tree block is cow'd.
But we still need to update back ref for all pointers in the block.
This is because the location of the block is recorded in the back ref
item.
We can solve this by introducing a new type of back ref. The new
back ref provides information about pointer's key, level and in which
tree the pointer lives. This information allow us to find the pointer
by searching the tree. The shortcoming of the new back ref is that it
only works for pointers in tree blocks referenced by their owner trees.
This is mostly a problem for snapshots, where resolving one of these
fuzzy back references would be O(number_of_snapshots) and quite slow.
The solution used here is to use the fuzzy back references in the common
case where a given tree block is only referenced by one root,
and use the full back references when multiple roots have a reference
on a given block.
This commit adds per subvolume red-black tree to keep trace of cached
inodes. The red-black tree helps the balancing code to find cached
inodes whose inode numbers within a given range.
This commit improves the balancing code by introducing several data
structures to keep the state of balancing. The most important one
is the back ref cache. It caches how the upper level tree blocks are
referenced. This greatly reduce the overhead of checking back ref.
The improved balancing code scales significantly better with a large
number of snapshots.
This is a very large commit and was written in a number of
pieces. But, they depend heavily on the disk format change and were
squashed together to make sure git bisect didn't end up in a
bad state wrt space balancing or the format change.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This is a large change for adding compression on reading and writing,
both for inline and regular extents. It does some fairly large
surgery to the writeback paths.
Compression is off by default and enabled by mount -o compress. Even
when the -o compress mount option is not used, it is possible to read
compressed extents off the disk.
If compression for a given set of pages fails to make them smaller, the
file is flagged to avoid future compression attempts later.
* While finding delalloc extents, the pages are locked before being sent down
to the delalloc handler. This allows the delalloc handler to do complex things
such as cleaning the pages, marking them writeback and starting IO on their
behalf.
* Inline extents are inserted at delalloc time now. This allows us to compress
the data before inserting the inline extent, and it allows us to insert
an inline extent that spans multiple pages.
* All of the in-memory extent representations (extent_map.c, ordered-data.c etc)
are changed to record both an in-memory size and an on disk size, as well
as a flag for compression.
From a disk format point of view, the extent pointers in the file are changed
to record the on disk size of a given extent and some encoding flags.
Space in the disk format is allocated for compression encoding, as well
as encryption and a generic 'other' field. Neither the encryption or the
'other' field are currently used.
In order to limit the amount of data read for a single random read in the
file, the size of a compressed extent is limited to 128k. This is a
software only limit, the disk format supports u64 sized compressed extents.
In order to limit the ram consumed while processing extents, the uncompressed
size of a compressed extent is limited to 256k. This is a software only limit
and will be subject to tuning later.
Checksumming is still done on compressed extents, and it is done on the
uncompressed version of the data. This way additional encodings can be
layered on without having to figure out which encoding to checksum.
Compression happens at delalloc time, which is basically singled threaded because
it is usually done by a single pdflush thread. This makes it tricky to
spread the compression load across all the cpus on the box. We'll have to
look at parallel pdflush walks of dirty inodes at a later time.
Decompression is hooked into readpages and it does spread across CPUs nicely.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The offset field in struct btrfs_extent_ref records the position
inside file that file extent is referenced by. In the new back
reference system, tree leaves holding references to file extent
are recorded explicitly. We can scan these tree leaves very quickly, so the
offset field is not required.
This patch also makes the back reference system check the objectid
when extents are in deleting.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
This patch makes the back reference system to explicit record the
location of parent node for all types of extents. The location of
parent node is placed into the offset field of backref key. Every
time a tree block is balanced, the back references for the affected
lower level extents are updated.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The memory reclaiming issue happens when snapshot exists. In that
case, some cache entries may not be used during old snapshot dropping,
so they will remain in the cache until umount.
The patch adds a field to struct btrfs_leaf_ref to record create time. Besides,
the patch makes all dead roots of a given snapshot linked together in order of
create time. After a old snapshot was completely dropped, we check the dead
root list and remove all cache entries created before the oldest dead root in
the list.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Block headers now store the chunk tree uuid
Chunk items records the device uuid for each stripes
Device extent items record better back refs to the chunk tree
Block groups record better back refs to the chunk tree
The chunk tree format has also changed. The objectid of BTRFS_CHUNK_ITEM_KEY
used to be the logical offset of the chunk. Now it is a chunk tree id,
with the logical offset being stored in the offset field of the key.
This allows a single chunk tree to record multiple logical address spaces,
upping the number of bytes indexed by a chunk tree from 2^64 to
2^128.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Almost none of the files including module.h need to do so,
remove them.
Include sched.h in extent-tree.c to silence a warning about cond_resched()
being undeclared.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Add (untested and simple) directory item code
Fix comp_keys to use the new key ordering
Add btrfs_insert_empty_item
Signed-off-by: Chris Mason <chris.mason@oracle.com>