Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There are no gpio-nalils, so fix label accordingly.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Pull kbuild updates from Michal Marek:
- prototypes for x86 asm-exported symbols (Adam Borowski) and a warning
about missing CRCs (Nick Piggin)
- asm-exports fix for LTO (Nicolas Pitre)
- thin archives improvements (Nick Piggin)
- linker script fix for CONFIG_LD_DEAD_CODE_DATA_ELIMINATION (Nick
Piggin)
- genksyms support for __builtin_va_list keyword
- misc minor fixes
* 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild:
x86/kbuild: enable modversions for symbols exported from asm
kbuild: fix scripts/adjust_autoksyms.sh* for the no modules case
scripts/kallsyms: remove last remnants of --page-offset option
make use of make variable CURDIR instead of calling pwd
kbuild: cmd_export_list: tighten the sed script
kbuild: minor improvement for thin archives build
kbuild: modpost warn if export version crc is missing
kbuild: keep data tables through dead code elimination
kbuild: improve linker compatibility with lib-ksyms.o build
genksyms: Regenerate parser
kbuild/genksyms: handle va_list type
kbuild: thin archives for multi-y targets
kbuild: kallsyms allow 3-pass generation if symbols size has changed
make already provides the current working directory in a variable, so make
use of it instead of forking a shell. Also replace usage of PWD by
CURDIR. PWD is provided by most shells, but not all, so this makes the
build system more robust.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Michal Marek <mmarek@suse.com>
Add basic gpio operations. User could get/set gpio value for specific
line of gpiochip.
Reference "tools/gpio/gpio-hammer.c" or
"tools/testing/selftest/gpio/gpio-mockup-chardev.c" for how to use it.
Signed-off-by: Bamvor Jian Zhang <bamvor.zhangjian@linaro.org>
Reviewed-by: Michael Welling <mwelling@ieee.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
There is a nice buildsystem dedicated for userspace tools in Linux kernel tree.
Switch gpio target to be built by it.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Alexandre Courbot <acourbot@nvidia.com>
Tested-by: Alexandre Courbot <acourbot@nvidia.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
The gpio-event-mon is used from userspace as an example of how
to monitor GPIO line events. It will latch on to a certain
GPIO line on a certain gpiochip and print timestamped events
as they arrive.
Example output:
$ gpio-event-mon -n gpiochip2 -o 0 -r -f
Monitoring line 0 on gpiochip2
Initial line value: 1
GPIO EVENT 946685798487609863: falling edge
GPIO EVENT 946685798732482910: rising edge
GPIO EVENT 946685799115997314: falling edge
GPIO EVENT 946685799381469726: rising edge
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
The gpio-hammer is used from userspace as an example of how
to retrieve a GPIO handle for one or several GPIO lines and
hammer the outputs from low to high and back again. It will
pulse the selected lines once per second for a specified
number of times or indefinitely if no loop count is
supplied.
Example output:
$ gpio-hammer -n gpiochip0 -o5 -o6 -o7
Hammer lines [5, 6, 7] on gpiochip0, initial states: [1, 1, 1]
[-] [5: 0, 6: 0, 7: 0]
Tested-by: Michael Welling <mwelling@ieee.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
lsgpio.c: In function ‘main’:
lsgpio.c:166:7: warning: ‘device_name’ may be used uninitialized in this functio
n [-Wmaybe-uninitialized]
ret = list_device(device_name);
^
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
I named the field representing the current user of GPIO line as
"label" but this is too vague and ambiguous. Before anyone gets
confused, rename it to "consumer" and indicate clearly in the
documentation that this is a string set by the user of the line.
Also clean up leftovers in the documentation.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Use %2d for the GPIO line number. This should align the results
horziontally for most gpio chips.
The GPIO label uses quotes for real values. For GPIO names this is
currently missing. The patch adds the missing quote.
Signed-off-by: Markus Pargmann <mpa@pengutronix.de>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
This adds a GPIO line ABI for getting name, label and a few select
flags from the kernel.
This hides the kernel internals and only tells userspace what it
may need to know: the different in-kernel consumers are masked
behind the flag "kernel" and that is all userspace needs to know.
However electric characteristics like active low, open drain etc
are reflected to userspace, as this is important information.
We provide information on all lines on all chips, later on we will
likely add a flag for the chardev consumer so we can filter and
display only the lines userspace actually uses in e.g. lsgpio,
but then we first need an ABI for userspace to grab and use
(get/set/select direction) a GPIO line.
Sample output from "lsgpio" on ux500:
GPIO chip: gpiochip7, "8011e000.gpio", 32 GPIO lines
line 0: unnamed unlabeled
line 1: unnamed unlabeled
(...)
line 25: unnamed "SFH7741 Proximity Sensor" [kernel output open-drain]
line 26: unnamed unlabeled
(...)
Tested-by: Michael Welling <mwelling@ieee.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
The gpio_chip label is useful for userspace to understand what
kind of GPIO chip it is dealing with. Let's store a copy of this
label in the gpio_device, add it to the struct passed to userspace
for GPIO_GET_CHIPINFO_IOCTL and modify lsgpio to show it.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
This creates GPIO tools under tools/gpio/* and adds a single
example program to list the GPIOs on a system. When proper
devices are created it provides this minimal output:
Cc: Johan Hovold <johan@kernel.org>
Cc: Michael Welling <mwelling@ieee.org>
Cc: Markus Pargmann <mpa@pengutronix.de>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>