/* * Copyright (C) 2006-2007 PA Semi, Inc * * Driver for the PA Semi PWRficient onchip 1G/10G Ethernet MACs * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pasemi_mac.h" /* We have our own align, since ppc64 in general has it at 0 because * of design flaws in some of the server bridge chips. However, for * PWRficient doing the unaligned copies is more expensive than doing * unaligned DMA, so make sure the data is aligned instead. */ #define LOCAL_SKB_ALIGN 2 /* TODO list * * - Multicast support * - Large MTU support * - SW LRO * - Multiqueue RX/TX */ #define LRO_MAX_AGGR 64 #define PE_MIN_MTU 64 #define PE_MAX_MTU 9000 #define PE_DEF_MTU ETH_DATA_LEN #define DEFAULT_MSG_ENABLE \ (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | \ NETIF_MSG_IFUP | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR) MODULE_LICENSE("GPL"); MODULE_AUTHOR ("Olof Johansson "); MODULE_DESCRIPTION("PA Semi PWRficient Ethernet driver"); static int debug = -1; /* -1 == use DEFAULT_MSG_ENABLE as value */ module_param(debug, int, 0); MODULE_PARM_DESC(debug, "PA Semi MAC bitmapped debugging message enable value"); extern const struct ethtool_ops pasemi_mac_ethtool_ops; static int translation_enabled(void) { #if defined(CONFIG_PPC_PASEMI_IOMMU_DMA_FORCE) return 1; #else return firmware_has_feature(FW_FEATURE_LPAR); #endif } static void write_iob_reg(unsigned int reg, unsigned int val) { pasemi_write_iob_reg(reg, val); } static unsigned int read_mac_reg(const struct pasemi_mac *mac, unsigned int reg) { return pasemi_read_mac_reg(mac->dma_if, reg); } static void write_mac_reg(const struct pasemi_mac *mac, unsigned int reg, unsigned int val) { pasemi_write_mac_reg(mac->dma_if, reg, val); } static unsigned int read_dma_reg(unsigned int reg) { return pasemi_read_dma_reg(reg); } static void write_dma_reg(unsigned int reg, unsigned int val) { pasemi_write_dma_reg(reg, val); } static struct pasemi_mac_rxring *rx_ring(const struct pasemi_mac *mac) { return mac->rx; } static struct pasemi_mac_txring *tx_ring(const struct pasemi_mac *mac) { return mac->tx; } static inline void prefetch_skb(const struct sk_buff *skb) { const void *d = skb; prefetch(d); prefetch(d+64); prefetch(d+128); prefetch(d+192); } static int mac_to_intf(struct pasemi_mac *mac) { struct pci_dev *pdev = mac->pdev; u32 tmp; int nintf, off, i, j; int devfn = pdev->devfn; tmp = read_dma_reg(PAS_DMA_CAP_IFI); nintf = (tmp & PAS_DMA_CAP_IFI_NIN_M) >> PAS_DMA_CAP_IFI_NIN_S; off = (tmp & PAS_DMA_CAP_IFI_IOFF_M) >> PAS_DMA_CAP_IFI_IOFF_S; /* IOFF contains the offset to the registers containing the * DMA interface-to-MAC-pci-id mappings, and NIN contains number * of total interfaces. Each register contains 4 devfns. * Just do a linear search until we find the devfn of the MAC * we're trying to look up. */ for (i = 0; i < (nintf+3)/4; i++) { tmp = read_dma_reg(off+4*i); for (j = 0; j < 4; j++) { if (((tmp >> (8*j)) & 0xff) == devfn) return i*4 + j; } } return -1; } static void pasemi_mac_intf_disable(struct pasemi_mac *mac) { unsigned int flags; flags = read_mac_reg(mac, PAS_MAC_CFG_PCFG); flags &= ~PAS_MAC_CFG_PCFG_PE; write_mac_reg(mac, PAS_MAC_CFG_PCFG, flags); } static void pasemi_mac_intf_enable(struct pasemi_mac *mac) { unsigned int flags; flags = read_mac_reg(mac, PAS_MAC_CFG_PCFG); flags |= PAS_MAC_CFG_PCFG_PE; write_mac_reg(mac, PAS_MAC_CFG_PCFG, flags); } static int pasemi_get_mac_addr(struct pasemi_mac *mac) { struct pci_dev *pdev = mac->pdev; struct device_node *dn = pci_device_to_OF_node(pdev); int len; const u8 *maddr; u8 addr[6]; if (!dn) { dev_dbg(&pdev->dev, "No device node for mac, not configuring\n"); return -ENOENT; } maddr = of_get_property(dn, "local-mac-address", &len); if (maddr && len == 6) { memcpy(mac->mac_addr, maddr, 6); return 0; } /* Some old versions of firmware mistakenly uses mac-address * (and as a string) instead of a byte array in local-mac-address. */ if (maddr == NULL) maddr = of_get_property(dn, "mac-address", NULL); if (maddr == NULL) { dev_warn(&pdev->dev, "no mac address in device tree, not configuring\n"); return -ENOENT; } if (sscanf(maddr, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &addr[0], &addr[1], &addr[2], &addr[3], &addr[4], &addr[5]) != 6) { dev_warn(&pdev->dev, "can't parse mac address, not configuring\n"); return -EINVAL; } memcpy(mac->mac_addr, addr, 6); return 0; } static int pasemi_mac_set_mac_addr(struct net_device *dev, void *p) { struct pasemi_mac *mac = netdev_priv(dev); struct sockaddr *addr = p; unsigned int adr0, adr1; if (!is_valid_ether_addr(addr->sa_data)) return -EINVAL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); adr0 = dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | dev->dev_addr[4] << 8 | dev->dev_addr[5]; adr1 = read_mac_reg(mac, PAS_MAC_CFG_ADR1); adr1 &= ~0xffff; adr1 |= dev->dev_addr[0] << 8 | dev->dev_addr[1]; pasemi_mac_intf_disable(mac); write_mac_reg(mac, PAS_MAC_CFG_ADR0, adr0); write_mac_reg(mac, PAS_MAC_CFG_ADR1, adr1); pasemi_mac_intf_enable(mac); return 0; } static int get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph, u64 *hdr_flags, void *data) { u64 macrx = (u64) data; unsigned int ip_len; struct iphdr *iph; /* IPv4 header checksum failed */ if ((macrx & XCT_MACRX_HTY_M) != XCT_MACRX_HTY_IPV4_OK) return -1; /* non tcp packet */ skb_reset_network_header(skb); iph = ip_hdr(skb); if (iph->protocol != IPPROTO_TCP) return -1; ip_len = ip_hdrlen(skb); skb_set_transport_header(skb, ip_len); *tcph = tcp_hdr(skb); /* check if ip header and tcp header are complete */ if (iph->tot_len < ip_len + tcp_hdrlen(skb)) return -1; *hdr_flags = LRO_IPV4 | LRO_TCP; *iphdr = iph; return 0; } static int pasemi_mac_unmap_tx_skb(struct pasemi_mac *mac, const int nfrags, struct sk_buff *skb, const dma_addr_t *dmas) { int f; struct pci_dev *pdev = mac->dma_pdev; pci_unmap_single(pdev, dmas[0], skb_headlen(skb), PCI_DMA_TODEVICE); for (f = 0; f < nfrags; f++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; pci_unmap_page(pdev, dmas[f+1], frag->size, PCI_DMA_TODEVICE); } dev_kfree_skb_irq(skb); /* Freed descriptor slot + main SKB ptr + nfrags additional ptrs, * aligned up to a power of 2 */ return (nfrags + 3) & ~1; } static struct pasemi_mac_csring *pasemi_mac_setup_csring(struct pasemi_mac *mac) { struct pasemi_mac_csring *ring; u32 val; unsigned int cfg; int chno; ring = pasemi_dma_alloc_chan(TXCHAN, sizeof(struct pasemi_mac_csring), offsetof(struct pasemi_mac_csring, chan)); if (!ring) { dev_err(&mac->pdev->dev, "Can't allocate checksum channel\n"); goto out_chan; } chno = ring->chan.chno; ring->size = CS_RING_SIZE; ring->next_to_fill = 0; /* Allocate descriptors */ if (pasemi_dma_alloc_ring(&ring->chan, CS_RING_SIZE)) goto out_ring_desc; write_dma_reg(PAS_DMA_TXCHAN_BASEL(chno), PAS_DMA_TXCHAN_BASEL_BRBL(ring->chan.ring_dma)); val = PAS_DMA_TXCHAN_BASEU_BRBH(ring->chan.ring_dma >> 32); val |= PAS_DMA_TXCHAN_BASEU_SIZ(CS_RING_SIZE >> 3); write_dma_reg(PAS_DMA_TXCHAN_BASEU(chno), val); ring->events[0] = pasemi_dma_alloc_flag(); ring->events[1] = pasemi_dma_alloc_flag(); if (ring->events[0] < 0 || ring->events[1] < 0) goto out_flags; pasemi_dma_clear_flag(ring->events[0]); pasemi_dma_clear_flag(ring->events[1]); ring->fun = pasemi_dma_alloc_fun(); if (ring->fun < 0) goto out_fun; cfg = PAS_DMA_TXCHAN_CFG_TY_FUNC | PAS_DMA_TXCHAN_CFG_UP | PAS_DMA_TXCHAN_CFG_TATTR(ring->fun) | PAS_DMA_TXCHAN_CFG_LPSQ | PAS_DMA_TXCHAN_CFG_LPDQ; if (translation_enabled()) cfg |= PAS_DMA_TXCHAN_CFG_TRD | PAS_DMA_TXCHAN_CFG_TRR; write_dma_reg(PAS_DMA_TXCHAN_CFG(chno), cfg); /* enable channel */ pasemi_dma_start_chan(&ring->chan, PAS_DMA_TXCHAN_TCMDSTA_SZ | PAS_DMA_TXCHAN_TCMDSTA_DB | PAS_DMA_TXCHAN_TCMDSTA_DE | PAS_DMA_TXCHAN_TCMDSTA_DA); return ring; out_fun: out_flags: if (ring->events[0] >= 0) pasemi_dma_free_flag(ring->events[0]); if (ring->events[1] >= 0) pasemi_dma_free_flag(ring->events[1]); pasemi_dma_free_ring(&ring->chan); out_ring_desc: pasemi_dma_free_chan(&ring->chan); out_chan: return NULL; } static void pasemi_mac_setup_csrings(struct pasemi_mac *mac) { int i; mac->cs[0] = pasemi_mac_setup_csring(mac); if (mac->type == MAC_TYPE_XAUI) mac->cs[1] = pasemi_mac_setup_csring(mac); else mac->cs[1] = 0; for (i = 0; i < MAX_CS; i++) if (mac->cs[i]) mac->num_cs++; } static void pasemi_mac_free_csring(struct pasemi_mac_csring *csring) { pasemi_dma_stop_chan(&csring->chan); pasemi_dma_free_flag(csring->events[0]); pasemi_dma_free_flag(csring->events[1]); pasemi_dma_free_ring(&csring->chan); pasemi_dma_free_chan(&csring->chan); pasemi_dma_free_fun(csring->fun); } static int pasemi_mac_setup_rx_resources(const struct net_device *dev) { struct pasemi_mac_rxring *ring; struct pasemi_mac *mac = netdev_priv(dev); int chno; unsigned int cfg; ring = pasemi_dma_alloc_chan(RXCHAN, sizeof(struct pasemi_mac_rxring), offsetof(struct pasemi_mac_rxring, chan)); if (!ring) { dev_err(&mac->pdev->dev, "Can't allocate RX channel\n"); goto out_chan; } chno = ring->chan.chno; spin_lock_init(&ring->lock); ring->size = RX_RING_SIZE; ring->ring_info = kzalloc(sizeof(struct pasemi_mac_buffer) * RX_RING_SIZE, GFP_KERNEL); if (!ring->ring_info) goto out_ring_info; /* Allocate descriptors */ if (pasemi_dma_alloc_ring(&ring->chan, RX_RING_SIZE)) goto out_ring_desc; ring->buffers = dma_alloc_coherent(&mac->dma_pdev->dev, RX_RING_SIZE * sizeof(u64), &ring->buf_dma, GFP_KERNEL); if (!ring->buffers) goto out_ring_desc; memset(ring->buffers, 0, RX_RING_SIZE * sizeof(u64)); write_dma_reg(PAS_DMA_RXCHAN_BASEL(chno), PAS_DMA_RXCHAN_BASEL_BRBL(ring->chan.ring_dma)); write_dma_reg(PAS_DMA_RXCHAN_BASEU(chno), PAS_DMA_RXCHAN_BASEU_BRBH(ring->chan.ring_dma >> 32) | PAS_DMA_RXCHAN_BASEU_SIZ(RX_RING_SIZE >> 3)); cfg = PAS_DMA_RXCHAN_CFG_HBU(2); if (translation_enabled()) cfg |= PAS_DMA_RXCHAN_CFG_CTR; write_dma_reg(PAS_DMA_RXCHAN_CFG(chno), cfg); write_dma_reg(PAS_DMA_RXINT_BASEL(mac->dma_if), PAS_DMA_RXINT_BASEL_BRBL(ring->buf_dma)); write_dma_reg(PAS_DMA_RXINT_BASEU(mac->dma_if), PAS_DMA_RXINT_BASEU_BRBH(ring->buf_dma >> 32) | PAS_DMA_RXINT_BASEU_SIZ(RX_RING_SIZE >> 3)); cfg = PAS_DMA_RXINT_CFG_DHL(2) | PAS_DMA_RXINT_CFG_L2 | PAS_DMA_RXINT_CFG_LW | PAS_DMA_RXINT_CFG_RBP | PAS_DMA_RXINT_CFG_HEN; if (translation_enabled()) cfg |= PAS_DMA_RXINT_CFG_ITRR | PAS_DMA_RXINT_CFG_ITR; write_dma_reg(PAS_DMA_RXINT_CFG(mac->dma_if), cfg); ring->next_to_fill = 0; ring->next_to_clean = 0; ring->mac = mac; mac->rx = ring; return 0; out_ring_desc: kfree(ring->ring_info); out_ring_info: pasemi_dma_free_chan(&ring->chan); out_chan: return -ENOMEM; } static struct pasemi_mac_txring * pasemi_mac_setup_tx_resources(const struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); u32 val; struct pasemi_mac_txring *ring; unsigned int cfg; int chno; ring = pasemi_dma_alloc_chan(TXCHAN, sizeof(struct pasemi_mac_txring), offsetof(struct pasemi_mac_txring, chan)); if (!ring) { dev_err(&mac->pdev->dev, "Can't allocate TX channel\n"); goto out_chan; } chno = ring->chan.chno; spin_lock_init(&ring->lock); ring->size = TX_RING_SIZE; ring->ring_info = kzalloc(sizeof(struct pasemi_mac_buffer) * TX_RING_SIZE, GFP_KERNEL); if (!ring->ring_info) goto out_ring_info; /* Allocate descriptors */ if (pasemi_dma_alloc_ring(&ring->chan, TX_RING_SIZE)) goto out_ring_desc; write_dma_reg(PAS_DMA_TXCHAN_BASEL(chno), PAS_DMA_TXCHAN_BASEL_BRBL(ring->chan.ring_dma)); val = PAS_DMA_TXCHAN_BASEU_BRBH(ring->chan.ring_dma >> 32); val |= PAS_DMA_TXCHAN_BASEU_SIZ(TX_RING_SIZE >> 3); write_dma_reg(PAS_DMA_TXCHAN_BASEU(chno), val); cfg = PAS_DMA_TXCHAN_CFG_TY_IFACE | PAS_DMA_TXCHAN_CFG_TATTR(mac->dma_if) | PAS_DMA_TXCHAN_CFG_UP | PAS_DMA_TXCHAN_CFG_WT(4); if (translation_enabled()) cfg |= PAS_DMA_TXCHAN_CFG_TRD | PAS_DMA_TXCHAN_CFG_TRR; write_dma_reg(PAS_DMA_TXCHAN_CFG(chno), cfg); ring->next_to_fill = 0; ring->next_to_clean = 0; ring->mac = mac; return ring; out_ring_desc: kfree(ring->ring_info); out_ring_info: pasemi_dma_free_chan(&ring->chan); out_chan: return NULL; } static void pasemi_mac_free_tx_resources(struct pasemi_mac *mac) { struct pasemi_mac_txring *txring = tx_ring(mac); unsigned int i, j; struct pasemi_mac_buffer *info; dma_addr_t dmas[MAX_SKB_FRAGS+1]; int freed, nfrags; int start, limit; start = txring->next_to_clean; limit = txring->next_to_fill; /* Compensate for when fill has wrapped and clean has not */ if (start > limit) limit += TX_RING_SIZE; for (i = start; i < limit; i += freed) { info = &txring->ring_info[(i+1) & (TX_RING_SIZE-1)]; if (info->dma && info->skb) { nfrags = skb_shinfo(info->skb)->nr_frags; for (j = 0; j <= nfrags; j++) dmas[j] = txring->ring_info[(i+1+j) & (TX_RING_SIZE-1)].dma; freed = pasemi_mac_unmap_tx_skb(mac, nfrags, info->skb, dmas); } else freed = 2; } kfree(txring->ring_info); pasemi_dma_free_chan(&txring->chan); } static void pasemi_mac_free_rx_buffers(struct pasemi_mac *mac) { struct pasemi_mac_rxring *rx = rx_ring(mac); unsigned int i; struct pasemi_mac_buffer *info; for (i = 0; i < RX_RING_SIZE; i++) { info = &RX_DESC_INFO(rx, i); if (info->skb && info->dma) { pci_unmap_single(mac->dma_pdev, info->dma, info->skb->len, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(info->skb); } info->dma = 0; info->skb = NULL; } for (i = 0; i < RX_RING_SIZE; i++) RX_BUFF(rx, i) = 0; } static void pasemi_mac_free_rx_resources(struct pasemi_mac *mac) { pasemi_mac_free_rx_buffers(mac); dma_free_coherent(&mac->dma_pdev->dev, RX_RING_SIZE * sizeof(u64), rx_ring(mac)->buffers, rx_ring(mac)->buf_dma); kfree(rx_ring(mac)->ring_info); pasemi_dma_free_chan(&rx_ring(mac)->chan); mac->rx = NULL; } static void pasemi_mac_replenish_rx_ring(const struct net_device *dev, const int limit) { const struct pasemi_mac *mac = netdev_priv(dev); struct pasemi_mac_rxring *rx = rx_ring(mac); int fill, count; if (limit <= 0) return; fill = rx_ring(mac)->next_to_fill; for (count = 0; count < limit; count++) { struct pasemi_mac_buffer *info = &RX_DESC_INFO(rx, fill); u64 *buff = &RX_BUFF(rx, fill); struct sk_buff *skb; dma_addr_t dma; /* Entry in use? */ WARN_ON(*buff); skb = dev_alloc_skb(mac->bufsz); skb_reserve(skb, LOCAL_SKB_ALIGN); if (unlikely(!skb)) break; dma = pci_map_single(mac->dma_pdev, skb->data, mac->bufsz - LOCAL_SKB_ALIGN, PCI_DMA_FROMDEVICE); if (unlikely(dma_mapping_error(dma))) { dev_kfree_skb_irq(info->skb); break; } info->skb = skb; info->dma = dma; *buff = XCT_RXB_LEN(mac->bufsz) | XCT_RXB_ADDR(dma); fill++; } wmb(); write_dma_reg(PAS_DMA_RXINT_INCR(mac->dma_if), count); rx_ring(mac)->next_to_fill = (rx_ring(mac)->next_to_fill + count) & (RX_RING_SIZE - 1); } static void pasemi_mac_restart_rx_intr(const struct pasemi_mac *mac) { struct pasemi_mac_rxring *rx = rx_ring(mac); unsigned int reg, pcnt; /* Re-enable packet count interrupts: finally * ack the packet count interrupt we got in rx_intr. */ pcnt = *rx->chan.status & PAS_STATUS_PCNT_M; reg = PAS_IOB_DMA_RXCH_RESET_PCNT(pcnt) | PAS_IOB_DMA_RXCH_RESET_PINTC; if (*rx->chan.status & PAS_STATUS_TIMER) reg |= PAS_IOB_DMA_RXCH_RESET_TINTC; write_iob_reg(PAS_IOB_DMA_RXCH_RESET(mac->rx->chan.chno), reg); } static void pasemi_mac_restart_tx_intr(const struct pasemi_mac *mac) { unsigned int reg, pcnt; /* Re-enable packet count interrupts */ pcnt = *tx_ring(mac)->chan.status & PAS_STATUS_PCNT_M; reg = PAS_IOB_DMA_TXCH_RESET_PCNT(pcnt) | PAS_IOB_DMA_TXCH_RESET_PINTC; write_iob_reg(PAS_IOB_DMA_TXCH_RESET(tx_ring(mac)->chan.chno), reg); } static inline void pasemi_mac_rx_error(const struct pasemi_mac *mac, const u64 macrx) { unsigned int rcmdsta, ccmdsta; struct pasemi_dmachan *chan = &rx_ring(mac)->chan; if (!netif_msg_rx_err(mac)) return; rcmdsta = read_dma_reg(PAS_DMA_RXINT_RCMDSTA(mac->dma_if)); ccmdsta = read_dma_reg(PAS_DMA_RXCHAN_CCMDSTA(chan->chno)); printk(KERN_ERR "pasemi_mac: rx error. macrx %016lx, rx status %lx\n", macrx, *chan->status); printk(KERN_ERR "pasemi_mac: rcmdsta %08x ccmdsta %08x\n", rcmdsta, ccmdsta); } static inline void pasemi_mac_tx_error(const struct pasemi_mac *mac, const u64 mactx) { unsigned int cmdsta; struct pasemi_dmachan *chan = &tx_ring(mac)->chan; if (!netif_msg_tx_err(mac)) return; cmdsta = read_dma_reg(PAS_DMA_TXCHAN_TCMDSTA(chan->chno)); printk(KERN_ERR "pasemi_mac: tx error. mactx 0x%016lx, "\ "tx status 0x%016lx\n", mactx, *chan->status); printk(KERN_ERR "pasemi_mac: tcmdsta 0x%08x\n", cmdsta); } static int pasemi_mac_clean_rx(struct pasemi_mac_rxring *rx, const int limit) { const struct pasemi_dmachan *chan = &rx->chan; struct pasemi_mac *mac = rx->mac; struct pci_dev *pdev = mac->dma_pdev; unsigned int n; int count, buf_index, tot_bytes, packets; struct pasemi_mac_buffer *info; struct sk_buff *skb; unsigned int len; u64 macrx, eval; dma_addr_t dma; tot_bytes = 0; packets = 0; spin_lock(&rx->lock); n = rx->next_to_clean; prefetch(&RX_DESC(rx, n)); for (count = 0; count < limit; count++) { macrx = RX_DESC(rx, n); prefetch(&RX_DESC(rx, n+4)); if ((macrx & XCT_MACRX_E) || (*chan->status & PAS_STATUS_ERROR)) pasemi_mac_rx_error(mac, macrx); if (!(macrx & XCT_MACRX_O)) break; info = NULL; BUG_ON(!(macrx & XCT_MACRX_RR_8BRES)); eval = (RX_DESC(rx, n+1) & XCT_RXRES_8B_EVAL_M) >> XCT_RXRES_8B_EVAL_S; buf_index = eval-1; dma = (RX_DESC(rx, n+2) & XCT_PTR_ADDR_M); info = &RX_DESC_INFO(rx, buf_index); skb = info->skb; prefetch_skb(skb); len = (macrx & XCT_MACRX_LLEN_M) >> XCT_MACRX_LLEN_S; pci_unmap_single(pdev, dma, mac->bufsz - LOCAL_SKB_ALIGN, PCI_DMA_FROMDEVICE); if (macrx & XCT_MACRX_CRC) { /* CRC error flagged */ mac->netdev->stats.rx_errors++; mac->netdev->stats.rx_crc_errors++; /* No need to free skb, it'll be reused */ goto next; } info->skb = NULL; info->dma = 0; if (likely((macrx & XCT_MACRX_HTY_M) == XCT_MACRX_HTY_IPV4_OK)) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum = (macrx & XCT_MACRX_CSUM_M) >> XCT_MACRX_CSUM_S; } else skb->ip_summed = CHECKSUM_NONE; packets++; tot_bytes += len; /* Don't include CRC */ skb_put(skb, len-4); skb->protocol = eth_type_trans(skb, mac->netdev); lro_receive_skb(&mac->lro_mgr, skb, (void *)macrx); next: RX_DESC(rx, n) = 0; RX_DESC(rx, n+1) = 0; /* Need to zero it out since hardware doesn't, since the * replenish loop uses it to tell when it's done. */ RX_BUFF(rx, buf_index) = 0; n += 4; } if (n > RX_RING_SIZE) { /* Errata 5971 workaround: L2 target of headers */ write_iob_reg(PAS_IOB_COM_PKTHDRCNT, 0); n &= (RX_RING_SIZE-1); } rx_ring(mac)->next_to_clean = n; lro_flush_all(&mac->lro_mgr); /* Increase is in number of 16-byte entries, and since each descriptor * with an 8BRES takes up 3x8 bytes (padded to 4x8), increase with * count*2. */ write_dma_reg(PAS_DMA_RXCHAN_INCR(mac->rx->chan.chno), count << 1); pasemi_mac_replenish_rx_ring(mac->netdev, count); mac->netdev->stats.rx_bytes += tot_bytes; mac->netdev->stats.rx_packets += packets; spin_unlock(&rx_ring(mac)->lock); return count; } /* Can't make this too large or we blow the kernel stack limits */ #define TX_CLEAN_BATCHSIZE (128/MAX_SKB_FRAGS) static int pasemi_mac_clean_tx(struct pasemi_mac_txring *txring) { struct pasemi_dmachan *chan = &txring->chan; struct pasemi_mac *mac = txring->mac; int i, j; unsigned int start, descr_count, buf_count, batch_limit; unsigned int ring_limit; unsigned int total_count; unsigned long flags; struct sk_buff *skbs[TX_CLEAN_BATCHSIZE]; dma_addr_t dmas[TX_CLEAN_BATCHSIZE][MAX_SKB_FRAGS+1]; int nf[TX_CLEAN_BATCHSIZE]; int nr_frags; total_count = 0; batch_limit = TX_CLEAN_BATCHSIZE; restart: spin_lock_irqsave(&txring->lock, flags); start = txring->next_to_clean; ring_limit = txring->next_to_fill; prefetch(&TX_DESC_INFO(txring, start+1).skb); /* Compensate for when fill has wrapped but clean has not */ if (start > ring_limit) ring_limit += TX_RING_SIZE; buf_count = 0; descr_count = 0; for (i = start; descr_count < batch_limit && i < ring_limit; i += buf_count) { u64 mactx = TX_DESC(txring, i); struct sk_buff *skb; if ((mactx & XCT_MACTX_E) || (*chan->status & PAS_STATUS_ERROR)) pasemi_mac_tx_error(mac, mactx); /* Skip over control descriptors */ if (!(mactx & XCT_MACTX_LLEN_M)) { TX_DESC(txring, i) = 0; TX_DESC(txring, i+1) = 0; buf_count = 2; continue; } skb = TX_DESC_INFO(txring, i+1).skb; nr_frags = TX_DESC_INFO(txring, i).dma; if (unlikely(mactx & XCT_MACTX_O)) /* Not yet transmitted */ break; buf_count = 2 + nr_frags; /* Since we always fill with an even number of entries, make * sure we skip any unused one at the end as well. */ if (buf_count & 1) buf_count++; for (j = 0; j <= nr_frags; j++) dmas[descr_count][j] = TX_DESC_INFO(txring, i+1+j).dma; skbs[descr_count] = skb; nf[descr_count] = nr_frags; TX_DESC(txring, i) = 0; TX_DESC(txring, i+1) = 0; descr_count++; } txring->next_to_clean = i & (TX_RING_SIZE-1); spin_unlock_irqrestore(&txring->lock, flags); netif_wake_queue(mac->netdev); for (i = 0; i < descr_count; i++) pasemi_mac_unmap_tx_skb(mac, nf[i], skbs[i], dmas[i]); total_count += descr_count; /* If the batch was full, try to clean more */ if (descr_count == batch_limit) goto restart; return total_count; } static irqreturn_t pasemi_mac_rx_intr(int irq, void *data) { const struct pasemi_mac_rxring *rxring = data; struct pasemi_mac *mac = rxring->mac; struct net_device *dev = mac->netdev; const struct pasemi_dmachan *chan = &rxring->chan; unsigned int reg; if (!(*chan->status & PAS_STATUS_CAUSE_M)) return IRQ_NONE; /* Don't reset packet count so it won't fire again but clear * all others. */ reg = 0; if (*chan->status & PAS_STATUS_SOFT) reg |= PAS_IOB_DMA_RXCH_RESET_SINTC; if (*chan->status & PAS_STATUS_ERROR) reg |= PAS_IOB_DMA_RXCH_RESET_DINTC; netif_rx_schedule(dev, &mac->napi); write_iob_reg(PAS_IOB_DMA_RXCH_RESET(chan->chno), reg); return IRQ_HANDLED; } #define TX_CLEAN_INTERVAL HZ static void pasemi_mac_tx_timer(unsigned long data) { struct pasemi_mac_txring *txring = (struct pasemi_mac_txring *)data; struct pasemi_mac *mac = txring->mac; pasemi_mac_clean_tx(txring); mod_timer(&txring->clean_timer, jiffies + TX_CLEAN_INTERVAL); pasemi_mac_restart_tx_intr(mac); } static irqreturn_t pasemi_mac_tx_intr(int irq, void *data) { struct pasemi_mac_txring *txring = data; const struct pasemi_dmachan *chan = &txring->chan; struct pasemi_mac *mac = txring->mac; unsigned int reg; if (!(*chan->status & PAS_STATUS_CAUSE_M)) return IRQ_NONE; reg = 0; if (*chan->status & PAS_STATUS_SOFT) reg |= PAS_IOB_DMA_TXCH_RESET_SINTC; if (*chan->status & PAS_STATUS_ERROR) reg |= PAS_IOB_DMA_TXCH_RESET_DINTC; mod_timer(&txring->clean_timer, jiffies + (TX_CLEAN_INTERVAL)*2); netif_rx_schedule(mac->netdev, &mac->napi); if (reg) write_iob_reg(PAS_IOB_DMA_TXCH_RESET(chan->chno), reg); return IRQ_HANDLED; } static void pasemi_adjust_link(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); int msg; unsigned int flags; unsigned int new_flags; if (!mac->phydev->link) { /* If no link, MAC speed settings don't matter. Just report * link down and return. */ if (mac->link && netif_msg_link(mac)) printk(KERN_INFO "%s: Link is down.\n", dev->name); netif_carrier_off(dev); pasemi_mac_intf_disable(mac); mac->link = 0; return; } else { pasemi_mac_intf_enable(mac); netif_carrier_on(dev); } flags = read_mac_reg(mac, PAS_MAC_CFG_PCFG); new_flags = flags & ~(PAS_MAC_CFG_PCFG_HD | PAS_MAC_CFG_PCFG_SPD_M | PAS_MAC_CFG_PCFG_TSR_M); if (!mac->phydev->duplex) new_flags |= PAS_MAC_CFG_PCFG_HD; switch (mac->phydev->speed) { case 1000: new_flags |= PAS_MAC_CFG_PCFG_SPD_1G | PAS_MAC_CFG_PCFG_TSR_1G; break; case 100: new_flags |= PAS_MAC_CFG_PCFG_SPD_100M | PAS_MAC_CFG_PCFG_TSR_100M; break; case 10: new_flags |= PAS_MAC_CFG_PCFG_SPD_10M | PAS_MAC_CFG_PCFG_TSR_10M; break; default: printk("Unsupported speed %d\n", mac->phydev->speed); } /* Print on link or speed/duplex change */ msg = mac->link != mac->phydev->link || flags != new_flags; mac->duplex = mac->phydev->duplex; mac->speed = mac->phydev->speed; mac->link = mac->phydev->link; if (new_flags != flags) write_mac_reg(mac, PAS_MAC_CFG_PCFG, new_flags); if (msg && netif_msg_link(mac)) printk(KERN_INFO "%s: Link is up at %d Mbps, %s duplex.\n", dev->name, mac->speed, mac->duplex ? "full" : "half"); } static int pasemi_mac_phy_init(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); struct device_node *dn, *phy_dn; struct phy_device *phydev; unsigned int phy_id; const phandle *ph; const unsigned int *prop; struct resource r; int ret; dn = pci_device_to_OF_node(mac->pdev); ph = of_get_property(dn, "phy-handle", NULL); if (!ph) return -ENODEV; phy_dn = of_find_node_by_phandle(*ph); prop = of_get_property(phy_dn, "reg", NULL); ret = of_address_to_resource(phy_dn->parent, 0, &r); if (ret) goto err; phy_id = *prop; snprintf(mac->phy_id, BUS_ID_SIZE, PHY_ID_FMT, (int)r.start, phy_id); of_node_put(phy_dn); mac->link = 0; mac->speed = 0; mac->duplex = -1; phydev = phy_connect(dev, mac->phy_id, &pasemi_adjust_link, 0, PHY_INTERFACE_MODE_SGMII); if (IS_ERR(phydev)) { printk(KERN_ERR "%s: Could not attach to phy\n", dev->name); return PTR_ERR(phydev); } mac->phydev = phydev; return 0; err: of_node_put(phy_dn); return -ENODEV; } static int pasemi_mac_open(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); unsigned int flags; int i, ret; flags = PAS_MAC_CFG_TXP_FCE | PAS_MAC_CFG_TXP_FPC(3) | PAS_MAC_CFG_TXP_SL(3) | PAS_MAC_CFG_TXP_COB(0xf) | PAS_MAC_CFG_TXP_TIFT(8) | PAS_MAC_CFG_TXP_TIFG(12); write_mac_reg(mac, PAS_MAC_CFG_TXP, flags); ret = pasemi_mac_setup_rx_resources(dev); if (ret) goto out_rx_resources; mac->tx = pasemi_mac_setup_tx_resources(dev); if (!mac->tx) goto out_tx_ring; /* We might already have allocated rings in case mtu was changed * before interface was brought up. */ if (dev->mtu > 1500 && !mac->num_cs) { pasemi_mac_setup_csrings(mac); if (!mac->num_cs) goto out_tx_ring; } /* Zero out rmon counters */ for (i = 0; i < 32; i++) write_mac_reg(mac, PAS_MAC_RMON(i), 0); /* 0x3ff with 33MHz clock is about 31us */ write_iob_reg(PAS_IOB_DMA_COM_TIMEOUTCFG, PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT(0x3ff)); write_iob_reg(PAS_IOB_DMA_RXCH_CFG(mac->rx->chan.chno), PAS_IOB_DMA_RXCH_CFG_CNTTH(256)); write_iob_reg(PAS_IOB_DMA_TXCH_CFG(mac->tx->chan.chno), PAS_IOB_DMA_TXCH_CFG_CNTTH(32)); write_mac_reg(mac, PAS_MAC_IPC_CHNL, PAS_MAC_IPC_CHNL_DCHNO(mac->rx->chan.chno) | PAS_MAC_IPC_CHNL_BCH(mac->rx->chan.chno)); /* enable rx if */ write_dma_reg(PAS_DMA_RXINT_RCMDSTA(mac->dma_if), PAS_DMA_RXINT_RCMDSTA_EN | PAS_DMA_RXINT_RCMDSTA_DROPS_M | PAS_DMA_RXINT_RCMDSTA_BP | PAS_DMA_RXINT_RCMDSTA_OO | PAS_DMA_RXINT_RCMDSTA_BT); /* enable rx channel */ pasemi_dma_start_chan(&rx_ring(mac)->chan, PAS_DMA_RXCHAN_CCMDSTA_DU | PAS_DMA_RXCHAN_CCMDSTA_OD | PAS_DMA_RXCHAN_CCMDSTA_FD | PAS_DMA_RXCHAN_CCMDSTA_DT); /* enable tx channel */ pasemi_dma_start_chan(&tx_ring(mac)->chan, PAS_DMA_TXCHAN_TCMDSTA_SZ | PAS_DMA_TXCHAN_TCMDSTA_DB | PAS_DMA_TXCHAN_TCMDSTA_DE | PAS_DMA_TXCHAN_TCMDSTA_DA); pasemi_mac_replenish_rx_ring(dev, RX_RING_SIZE); write_dma_reg(PAS_DMA_RXCHAN_INCR(rx_ring(mac)->chan.chno), RX_RING_SIZE>>1); /* Clear out any residual packet count state from firmware */ pasemi_mac_restart_rx_intr(mac); pasemi_mac_restart_tx_intr(mac); flags = PAS_MAC_CFG_PCFG_S1 | PAS_MAC_CFG_PCFG_PR | PAS_MAC_CFG_PCFG_CE; if (mac->type == MAC_TYPE_GMAC) flags |= PAS_MAC_CFG_PCFG_TSR_1G | PAS_MAC_CFG_PCFG_SPD_1G; else flags |= PAS_MAC_CFG_PCFG_TSR_10G | PAS_MAC_CFG_PCFG_SPD_10G; /* Enable interface in MAC */ write_mac_reg(mac, PAS_MAC_CFG_PCFG, flags); ret = pasemi_mac_phy_init(dev); if (ret) { /* Since we won't get link notification, just enable RX */ pasemi_mac_intf_enable(mac); if (mac->type == MAC_TYPE_GMAC) { /* Warn for missing PHY on SGMII (1Gig) ports */ dev_warn(&mac->pdev->dev, "PHY init failed: %d.\n", ret); dev_warn(&mac->pdev->dev, "Defaulting to 1Gbit full duplex\n"); } } netif_start_queue(dev); napi_enable(&mac->napi); snprintf(mac->tx_irq_name, sizeof(mac->tx_irq_name), "%s tx", dev->name); ret = request_irq(mac->tx->chan.irq, &pasemi_mac_tx_intr, IRQF_DISABLED, mac->tx_irq_name, mac->tx); if (ret) { dev_err(&mac->pdev->dev, "request_irq of irq %d failed: %d\n", mac->tx->chan.irq, ret); goto out_tx_int; } snprintf(mac->rx_irq_name, sizeof(mac->rx_irq_name), "%s rx", dev->name); ret = request_irq(mac->rx->chan.irq, &pasemi_mac_rx_intr, IRQF_DISABLED, mac->rx_irq_name, mac->rx); if (ret) { dev_err(&mac->pdev->dev, "request_irq of irq %d failed: %d\n", mac->rx->chan.irq, ret); goto out_rx_int; } if (mac->phydev) phy_start(mac->phydev); init_timer(&mac->tx->clean_timer); mac->tx->clean_timer.function = pasemi_mac_tx_timer; mac->tx->clean_timer.data = (unsigned long)mac->tx; mac->tx->clean_timer.expires = jiffies+HZ; add_timer(&mac->tx->clean_timer); return 0; out_rx_int: free_irq(mac->tx->chan.irq, mac->tx); out_tx_int: napi_disable(&mac->napi); netif_stop_queue(dev); out_tx_ring: if (mac->tx) pasemi_mac_free_tx_resources(mac); pasemi_mac_free_rx_resources(mac); out_rx_resources: return ret; } #define MAX_RETRIES 5000 static void pasemi_mac_pause_txchan(struct pasemi_mac *mac) { unsigned int sta, retries; int txch = tx_ring(mac)->chan.chno; write_dma_reg(PAS_DMA_TXCHAN_TCMDSTA(txch), PAS_DMA_TXCHAN_TCMDSTA_ST); for (retries = 0; retries < MAX_RETRIES; retries++) { sta = read_dma_reg(PAS_DMA_TXCHAN_TCMDSTA(txch)); if (!(sta & PAS_DMA_TXCHAN_TCMDSTA_ACT)) break; cond_resched(); } if (sta & PAS_DMA_TXCHAN_TCMDSTA_ACT) dev_err(&mac->dma_pdev->dev, "Failed to stop tx channel, tcmdsta %08x\n", sta); write_dma_reg(PAS_DMA_TXCHAN_TCMDSTA(txch), 0); } static void pasemi_mac_pause_rxchan(struct pasemi_mac *mac) { unsigned int sta, retries; int rxch = rx_ring(mac)->chan.chno; write_dma_reg(PAS_DMA_RXCHAN_CCMDSTA(rxch), PAS_DMA_RXCHAN_CCMDSTA_ST); for (retries = 0; retries < MAX_RETRIES; retries++) { sta = read_dma_reg(PAS_DMA_RXCHAN_CCMDSTA(rxch)); if (!(sta & PAS_DMA_RXCHAN_CCMDSTA_ACT)) break; cond_resched(); } if (sta & PAS_DMA_RXCHAN_CCMDSTA_ACT) dev_err(&mac->dma_pdev->dev, "Failed to stop rx channel, ccmdsta 08%x\n", sta); write_dma_reg(PAS_DMA_RXCHAN_CCMDSTA(rxch), 0); } static void pasemi_mac_pause_rxint(struct pasemi_mac *mac) { unsigned int sta, retries; write_dma_reg(PAS_DMA_RXINT_RCMDSTA(mac->dma_if), PAS_DMA_RXINT_RCMDSTA_ST); for (retries = 0; retries < MAX_RETRIES; retries++) { sta = read_dma_reg(PAS_DMA_RXINT_RCMDSTA(mac->dma_if)); if (!(sta & PAS_DMA_RXINT_RCMDSTA_ACT)) break; cond_resched(); } if (sta & PAS_DMA_RXINT_RCMDSTA_ACT) dev_err(&mac->dma_pdev->dev, "Failed to stop rx interface, rcmdsta %08x\n", sta); write_dma_reg(PAS_DMA_RXINT_RCMDSTA(mac->dma_if), 0); } static int pasemi_mac_close(struct net_device *dev) { struct pasemi_mac *mac = netdev_priv(dev); unsigned int sta; int rxch, txch, i; rxch = rx_ring(mac)->chan.chno; txch = tx_ring(mac)->chan.chno; if (mac->phydev) { phy_stop(mac->phydev); phy_disconnect(mac->phydev); } del_timer_sync(&mac->tx->clean_timer); netif_stop_queue(dev); napi_disable(&mac->napi); sta = read_dma_reg(PAS_DMA_RXINT_RCMDSTA(mac->dma_if)); if (sta & (PAS_DMA_RXINT_RCMDSTA_BP | PAS_DMA_RXINT_RCMDSTA_OO | PAS_DMA_RXINT_RCMDSTA_BT)) printk(KERN_DEBUG "pasemi_mac: rcmdsta error: 0x%08x\n", sta); sta = read_dma_reg(PAS_DMA_RXCHAN_CCMDSTA(rxch)); if (sta & (PAS_DMA_RXCHAN_CCMDSTA_DU | PAS_DMA_RXCHAN_CCMDSTA_OD | PAS_DMA_RXCHAN_CCMDSTA_FD | PAS_DMA_RXCHAN_CCMDSTA_DT)) printk(KERN_DEBUG "pasemi_mac: ccmdsta error: 0x%08x\n", sta); sta = read_dma_reg(PAS_DMA_TXCHAN_TCMDSTA(txch)); if (sta & (PAS_DMA_TXCHAN_TCMDSTA_SZ | PAS_DMA_TXCHAN_TCMDSTA_DB | PAS_DMA_TXCHAN_TCMDSTA_DE | PAS_DMA_TXCHAN_TCMDSTA_DA)) printk(KERN_DEBUG "pasemi_mac: tcmdsta error: 0x%08x\n", sta); /* Clean out any pending buffers */ pasemi_mac_clean_tx(tx_ring(mac)); pasemi_mac_clean_rx(rx_ring(mac), RX_RING_SIZE); pasemi_mac_pause_txchan(mac); pasemi_mac_pause_rxint(mac); pasemi_mac_pause_rxchan(mac); pasemi_mac_intf_disable(mac); free_irq(mac->tx->chan.irq, mac->tx); free_irq(mac->rx->chan.irq, mac->rx); for (i = 0; i < mac->num_cs; i++) { pasemi_mac_free_csring(mac->cs[i]); mac->cs[i] = NULL; } mac->num_cs = 0; /* Free resources */ pasemi_mac_free_rx_resources(mac); pasemi_mac_free_tx_resources(mac); return 0; } static void pasemi_mac_queue_csdesc(const struct sk_buff *skb, const dma_addr_t *map, const unsigned int *map_size, struct pasemi_mac_txring *txring, struct pasemi_mac_csring *csring) { u64 fund; dma_addr_t cs_dest; const int nh_off = skb_network_offset(skb); const int nh_len = skb_network_header_len(skb); const int nfrags = skb_shinfo(skb)->nr_frags; int cs_size, i, fill, hdr, cpyhdr, evt; dma_addr_t csdma; fund = XCT_FUN_ST | XCT_FUN_RR_8BRES | XCT_FUN_O | XCT_FUN_FUN(csring->fun) | XCT_FUN_CRM_SIG | XCT_FUN_LLEN(skb->len - nh_off) | XCT_FUN_SHL(nh_len >> 2) | XCT_FUN_SE; switch (ip_hdr(skb)->protocol) { case IPPROTO_TCP: fund |= XCT_FUN_SIG_TCP4; /* TCP checksum is 16 bytes into the header */ cs_dest = map[0] + skb_transport_offset(skb) + 16; break; case IPPROTO_UDP: fund |= XCT_FUN_SIG_UDP4; /* UDP checksum is 6 bytes into the header */ cs_dest = map[0] + skb_transport_offset(skb) + 6; break; default: BUG(); } /* Do the checksum offloaded */ fill = csring->next_to_fill; hdr = fill; CS_DESC(csring, fill++) = fund; /* Room for 8BRES. Checksum result is really 2 bytes into it */ csdma = csring->chan.ring_dma + (fill & (CS_RING_SIZE-1)) * 8 + 2; CS_DESC(csring, fill++) = 0; CS_DESC(csring, fill) = XCT_PTR_LEN(map_size[0]-nh_off) | XCT_PTR_ADDR(map[0]+nh_off); for (i = 1; i <= nfrags; i++) CS_DESC(csring, fill+i) = XCT_PTR_LEN(map_size[i]) | XCT_PTR_ADDR(map[i]); fill += i; if (fill & 1) fill++; /* Copy the result into the TCP packet */ cpyhdr = fill; CS_DESC(csring, fill++) = XCT_FUN_O | XCT_FUN_FUN(csring->fun) | XCT_FUN_LLEN(2) | XCT_FUN_SE; CS_DESC(csring, fill++) = XCT_PTR_LEN(2) | XCT_PTR_ADDR(cs_dest) | XCT_PTR_T; CS_DESC(csring, fill++) = XCT_PTR_LEN(2) | XCT_PTR_ADDR(csdma); fill++; evt = !csring->last_event; csring->last_event = evt; /* Event handshaking with MAC TX */ CS_DESC(csring, fill++) = CTRL_CMD_T | CTRL_CMD_META_EVT | CTRL_CMD_O | CTRL_CMD_ETYPE_SET | CTRL_CMD_REG(csring->events[evt]); CS_DESC(csring, fill++) = 0; CS_DESC(csring, fill++) = CTRL_CMD_T | CTRL_CMD_META_EVT | CTRL_CMD_O | CTRL_CMD_ETYPE_WCLR | CTRL_CMD_REG(csring->events[!evt]); CS_DESC(csring, fill++) = 0; csring->next_to_fill = fill & (CS_RING_SIZE-1); cs_size = fill - hdr; write_dma_reg(PAS_DMA_TXCHAN_INCR(csring->chan.chno), (cs_size) >> 1); /* TX-side event handshaking */ fill = txring->next_to_fill; TX_DESC(txring, fill++) = CTRL_CMD_T | CTRL_CMD_META_EVT | CTRL_CMD_O | CTRL_CMD_ETYPE_WSET | CTRL_CMD_REG(csring->events[evt]); TX_DESC(txring, fill++) = 0; TX_DESC(txring, fill++) = CTRL_CMD_T | CTRL_CMD_META_EVT | CTRL_CMD_O | CTRL_CMD_ETYPE_CLR | CTRL_CMD_REG(csring->events[!evt]); TX_DESC(txring, fill++) = 0; txring->next_to_fill = fill; write_dma_reg(PAS_DMA_TXCHAN_INCR(txring->chan.chno), 2); return; } static int pasemi_mac_start_tx(struct sk_buff *skb, struct net_device *dev) { struct pasemi_mac * const mac = netdev_priv(dev); struct pasemi_mac_txring * const txring = tx_ring(mac); struct pasemi_mac_csring *csring; u64 dflags = 0; u64 mactx; dma_addr_t map[MAX_SKB_FRAGS+1]; unsigned int map_size[MAX_SKB_FRAGS+1]; unsigned long flags; int i, nfrags; int fill; const int nh_off = skb_network_offset(skb); const int nh_len = skb_network_header_len(skb); prefetch(&txring->ring_info); dflags = XCT_MACTX_O | XCT_MACTX_ST | XCT_MACTX_CRC_PAD; nfrags = skb_shinfo(skb)->nr_frags; map[0] = pci_map_single(mac->dma_pdev, skb->data, skb_headlen(skb), PCI_DMA_TODEVICE); map_size[0] = skb_headlen(skb); if (dma_mapping_error(map[0])) goto out_err_nolock; for (i = 0; i < nfrags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; map[i+1] = pci_map_page(mac->dma_pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); map_size[i+1] = frag->size; if (dma_mapping_error(map[i+1])) { nfrags = i; goto out_err_nolock; } } if (skb->ip_summed == CHECKSUM_PARTIAL && skb->len <= 1540) { switch (ip_hdr(skb)->protocol) { case IPPROTO_TCP: dflags |= XCT_MACTX_CSUM_TCP; dflags |= XCT_MACTX_IPH(nh_len >> 2); dflags |= XCT_MACTX_IPO(nh_off); break; case IPPROTO_UDP: dflags |= XCT_MACTX_CSUM_UDP; dflags |= XCT_MACTX_IPH(nh_len >> 2); dflags |= XCT_MACTX_IPO(nh_off); break; default: WARN_ON(1); } } mactx = dflags | XCT_MACTX_LLEN(skb->len); spin_lock_irqsave(&txring->lock, flags); /* Avoid stepping on the same cache line that the DMA controller * is currently about to send, so leave at least 8 words available. * Total free space needed is mactx + fragments + 8 */ if (RING_AVAIL(txring) < nfrags + 14) { /* no room -- stop the queue and wait for tx intr */ netif_stop_queue(dev); goto out_err; } /* Queue up checksum + event descriptors, if needed */ if (mac->num_cs && skb->ip_summed == CHECKSUM_PARTIAL && skb->len > 1540) { csring = mac->cs[mac->last_cs]; mac->last_cs = (mac->last_cs + 1) % mac->num_cs; pasemi_mac_queue_csdesc(skb, map, map_size, txring, csring); } fill = txring->next_to_fill; TX_DESC(txring, fill) = mactx; TX_DESC_INFO(txring, fill).dma = nfrags; fill++; TX_DESC_INFO(txring, fill).skb = skb; for (i = 0; i <= nfrags; i++) { TX_DESC(txring, fill+i) = XCT_PTR_LEN(map_size[i]) | XCT_PTR_ADDR(map[i]); TX_DESC_INFO(txring, fill+i).dma = map[i]; } /* We have to add an even number of 8-byte entries to the ring * even if the last one is unused. That means always an odd number * of pointers + one mactx descriptor. */ if (nfrags & 1) nfrags++; txring->next_to_fill = (fill + nfrags + 1) & (TX_RING_SIZE-1); dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; spin_unlock_irqrestore(&txring->lock, flags); write_dma_reg(PAS_DMA_TXCHAN_INCR(txring->chan.chno), (nfrags+2) >> 1); return NETDEV_TX_OK; out_err: spin_unlock_irqrestore(&txring->lock, flags); out_err_nolock: while (nfrags--) pci_unmap_single(mac->dma_pdev, map[nfrags], map_size[nfrags], PCI_DMA_TODEVICE); return NETDEV_TX_BUSY; } static void pasemi_mac_set_rx_mode(struct net_device *dev) { const struct pasemi_mac *mac = netdev_priv(dev); unsigned int flags; flags = read_mac_reg(mac, PAS_MAC_CFG_PCFG); /* Set promiscuous */ if (dev->flags & IFF_PROMISC) flags |= PAS_MAC_CFG_PCFG_PR; else flags &= ~PAS_MAC_CFG_PCFG_PR; write_mac_reg(mac, PAS_MAC_CFG_PCFG, flags); } static int pasemi_mac_poll(struct napi_struct *napi, int budget) { struct pasemi_mac *mac = container_of(napi, struct pasemi_mac, napi); struct net_device *dev = mac->netdev; int pkts; pasemi_mac_clean_tx(tx_ring(mac)); pkts = pasemi_mac_clean_rx(rx_ring(mac), budget); if (pkts < budget) { /* all done, no more packets present */ netif_rx_complete(dev, napi); pasemi_mac_restart_rx_intr(mac); pasemi_mac_restart_tx_intr(mac); } return pkts; } static int pasemi_mac_change_mtu(struct net_device *dev, int new_mtu) { struct pasemi_mac *mac = netdev_priv(dev); unsigned int reg; unsigned int rcmdsta = 0; int running; int ret = 0; if (new_mtu < PE_MIN_MTU || new_mtu > PE_MAX_MTU) return -EINVAL; running = netif_running(dev); if (running) { /* Need to stop the interface, clean out all already * received buffers, free all unused buffers on the RX * interface ring, then finally re-fill the rx ring with * the new-size buffers and restart. */ napi_disable(&mac->napi); netif_tx_disable(dev); pasemi_mac_intf_disable(mac); rcmdsta = read_dma_reg(PAS_DMA_RXINT_RCMDSTA(mac->dma_if)); pasemi_mac_pause_rxint(mac); pasemi_mac_clean_rx(rx_ring(mac), RX_RING_SIZE); pasemi_mac_free_rx_buffers(mac); } /* Setup checksum channels if large MTU and none already allocated */ if (new_mtu > 1500 && !mac->num_cs) { pasemi_mac_setup_csrings(mac); if (!mac->num_cs) { ret = -ENOMEM; goto out; } } /* Change maxf, i.e. what size frames are accepted. * Need room for ethernet header and CRC word */ reg = read_mac_reg(mac, PAS_MAC_CFG_MACCFG); reg &= ~PAS_MAC_CFG_MACCFG_MAXF_M; reg |= PAS_MAC_CFG_MACCFG_MAXF(new_mtu + ETH_HLEN + 4); write_mac_reg(mac, PAS_MAC_CFG_MACCFG, reg); dev->mtu = new_mtu; /* MTU + ETH_HLEN + VLAN_HLEN + 2 64B cachelines */ mac->bufsz = new_mtu + ETH_HLEN + ETH_FCS_LEN + LOCAL_SKB_ALIGN + 128; out: if (running) { write_dma_reg(PAS_DMA_RXINT_RCMDSTA(mac->dma_if), rcmdsta | PAS_DMA_RXINT_RCMDSTA_EN); rx_ring(mac)->next_to_fill = 0; pasemi_mac_replenish_rx_ring(dev, RX_RING_SIZE-1); napi_enable(&mac->napi); netif_start_queue(dev); pasemi_mac_intf_enable(mac); } return ret; } static int __devinit pasemi_mac_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; struct pasemi_mac *mac; int err; DECLARE_MAC_BUF(mac_buf); err = pci_enable_device(pdev); if (err) return err; dev = alloc_etherdev(sizeof(struct pasemi_mac)); if (dev == NULL) { dev_err(&pdev->dev, "pasemi_mac: Could not allocate ethernet device.\n"); err = -ENOMEM; goto out_disable_device; } pci_set_drvdata(pdev, dev); SET_NETDEV_DEV(dev, &pdev->dev); mac = netdev_priv(dev); mac->pdev = pdev; mac->netdev = dev; netif_napi_add(dev, &mac->napi, pasemi_mac_poll, 64); dev->features = NETIF_F_IP_CSUM | NETIF_F_LLTX | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_GSO; mac->lro_mgr.max_aggr = LRO_MAX_AGGR; mac->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS; mac->lro_mgr.lro_arr = mac->lro_desc; mac->lro_mgr.get_skb_header = get_skb_hdr; mac->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID; mac->lro_mgr.dev = mac->netdev; mac->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY; mac->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY; mac->dma_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa007, NULL); if (!mac->dma_pdev) { dev_err(&mac->pdev->dev, "Can't find DMA Controller\n"); err = -ENODEV; goto out; } mac->iob_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa001, NULL); if (!mac->iob_pdev) { dev_err(&mac->pdev->dev, "Can't find I/O Bridge\n"); err = -ENODEV; goto out; } /* get mac addr from device tree */ if (pasemi_get_mac_addr(mac) || !is_valid_ether_addr(mac->mac_addr)) { err = -ENODEV; goto out; } memcpy(dev->dev_addr, mac->mac_addr, sizeof(mac->mac_addr)); mac->dma_if = mac_to_intf(mac); if (mac->dma_if < 0) { dev_err(&mac->pdev->dev, "Can't map DMA interface\n"); err = -ENODEV; goto out; } switch (pdev->device) { case 0xa005: mac->type = MAC_TYPE_GMAC; break; case 0xa006: mac->type = MAC_TYPE_XAUI; break; default: err = -ENODEV; goto out; } dev->open = pasemi_mac_open; dev->stop = pasemi_mac_close; dev->hard_start_xmit = pasemi_mac_start_tx; dev->set_multicast_list = pasemi_mac_set_rx_mode; dev->set_mac_address = pasemi_mac_set_mac_addr; dev->mtu = PE_DEF_MTU; /* 1500 MTU + ETH_HLEN + VLAN_HLEN + 2 64B cachelines */ mac->bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + LOCAL_SKB_ALIGN + 128; dev->change_mtu = pasemi_mac_change_mtu; dev->ethtool_ops = &pasemi_mac_ethtool_ops; if (err) goto out; mac->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); /* Enable most messages by default */ mac->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; err = register_netdev(dev); if (err) { dev_err(&mac->pdev->dev, "register_netdev failed with error %d\n", err); goto out; } else if netif_msg_probe(mac) printk(KERN_INFO "%s: PA Semi %s: intf %d, hw addr %s\n", dev->name, mac->type == MAC_TYPE_GMAC ? "GMAC" : "XAUI", mac->dma_if, print_mac(mac_buf, dev->dev_addr)); return err; out: if (mac->iob_pdev) pci_dev_put(mac->iob_pdev); if (mac->dma_pdev) pci_dev_put(mac->dma_pdev); free_netdev(dev); out_disable_device: pci_disable_device(pdev); return err; } static void __devexit pasemi_mac_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct pasemi_mac *mac; if (!netdev) return; mac = netdev_priv(netdev); unregister_netdev(netdev); pci_disable_device(pdev); pci_dev_put(mac->dma_pdev); pci_dev_put(mac->iob_pdev); pasemi_dma_free_chan(&mac->tx->chan); pasemi_dma_free_chan(&mac->rx->chan); pci_set_drvdata(pdev, NULL); free_netdev(netdev); } static struct pci_device_id pasemi_mac_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_PASEMI, 0xa005) }, { PCI_DEVICE(PCI_VENDOR_ID_PASEMI, 0xa006) }, { }, }; MODULE_DEVICE_TABLE(pci, pasemi_mac_pci_tbl); static struct pci_driver pasemi_mac_driver = { .name = "pasemi_mac", .id_table = pasemi_mac_pci_tbl, .probe = pasemi_mac_probe, .remove = __devexit_p(pasemi_mac_remove), }; static void __exit pasemi_mac_cleanup_module(void) { pci_unregister_driver(&pasemi_mac_driver); } int pasemi_mac_init_module(void) { int err; err = pasemi_dma_init(); if (err) return err; return pci_register_driver(&pasemi_mac_driver); } module_init(pasemi_mac_init_module); module_exit(pasemi_mac_cleanup_module);