/* * Copyright (C) 2012 by Alan Stern * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ /* This file is part of ehci-hcd.c */ /*-------------------------------------------------------------------------*/ /* * EHCI timer support... Now using hrtimers. * * Lots of different events are triggered from ehci->hrtimer. Whenever * the timer routine runs, it checks each possible event; events that are * currently enabled and whose expiration time has passed get handled. * The set of enabled events is stored as a collection of bitflags in * ehci->enabled_hrtimer_events, and they are numbered in order of * increasing delay values (ranging between 1 ms and 100 ms). * * Rather than implementing a sorted list or tree of all pending events, * we keep track only of the lowest-numbered pending event, in * ehci->next_hrtimer_event. Whenever ehci->hrtimer gets restarted, its * expiration time is set to the timeout value for this event. * * As a result, events might not get handled right away; the actual delay * could be anywhere up to twice the requested delay. This doesn't * matter, because none of the events are especially time-critical. The * ones that matter most all have a delay of 1 ms, so they will be * handled after 2 ms at most, which is okay. In addition to this, we * allow for an expiration range of 1 ms. */ /* * Delay lengths for the hrtimer event types. * Keep this list sorted by delay length, in the same order as * the event types indexed by enum ehci_hrtimer_event in ehci.h. */ static unsigned event_delays_ns[] = { }; /* Enable a pending hrtimer event */ static void ehci_enable_event(struct ehci_hcd *ehci, unsigned event, bool resched) { ktime_t *timeout = &ehci->hr_timeouts[event]; if (resched) *timeout = ktime_add(ktime_get(), ktime_set(0, event_delays_ns[event])); ehci->enabled_hrtimer_events |= (1 << event); /* Track only the lowest-numbered pending event */ if (event < ehci->next_hrtimer_event) { ehci->next_hrtimer_event = event; hrtimer_start_range_ns(&ehci->hrtimer, *timeout, NSEC_PER_MSEC, HRTIMER_MODE_ABS); } } /* * Handler functions for the hrtimer event types. * Keep this array in the same order as the event types indexed by * enum ehci_hrtimer_event in ehci.h. */ static void (*event_handlers[])(struct ehci_hcd *) = { }; static enum hrtimer_restart ehci_hrtimer_func(struct hrtimer *t) { struct ehci_hcd *ehci = container_of(t, struct ehci_hcd, hrtimer); ktime_t now; unsigned long events; unsigned long flags; unsigned e; spin_lock_irqsave(&ehci->lock, flags); events = ehci->enabled_hrtimer_events; ehci->enabled_hrtimer_events = 0; ehci->next_hrtimer_event = EHCI_HRTIMER_NO_EVENT; /* * Check each pending event. If its time has expired, handle * the event; otherwise re-enable it. */ now = ktime_get(); for_each_set_bit(e, &events, EHCI_HRTIMER_NUM_EVENTS) { if (now.tv64 >= ehci->hr_timeouts[e].tv64) event_handlers[e](ehci); else ehci_enable_event(ehci, e, false); } spin_unlock_irqrestore(&ehci->lock, flags); return HRTIMER_NORESTART; }